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Abstract: This paper focuses on the instability problem of the medium-voltage DC (MVDC) distribu-
tion system and proposes an impedance phase reshaping (IPR) method. To obtain the load impedance
model of the MVDC distribution system, the input impedance of the input-series-output-parallel
(ISOP) DC transformer (DCT) is derived by the generalized average modeling (GAM). Based on the
obtained model, the traditional ISOP DCT controller optimization (IDCO) approach is discussed
and the IPR method is developed. An impedance phase controller is introduced based on the
original control method. According to the optimized impedance stability criterion, the parameters
of the impedance phase controller are determined. Compared with the IDCO approach, the pro-
posed method weakens the negative resistance characteristic of the load impedance at the resonant
frequency. Therefore, the MV bus voltage oscillation is rapidly mitigated. Besides, the dynamic
performance of the system using the IPR method can be classified as good. The simulation results
show that the mathematical model is correct, and the proposed method is effective for the rapid
stabilization of MVDC distribution systems.

Keywords: MVDC distribution system; input-series-output-parallel (ISOP); DC transformer; gener-
alized average modeling (GAM); impedance phase reshaping (IPR)

1. Introduction

The medium-voltage DC (MVDC) distribution system has become the trend of the
future energy internet power distribution due to the beneficial attributes, such as its
flexibility and efficiency [1–3]. An MVDC grid was designed for the interconnection
of high-power test benches at a university campus [4]. Furthermore, the MVDC power
distribution has been widely applied in railway electrification systems and marine electrical
distribution systems [5–10].

A typical DC distribution system is shown in Figure 1. The DC transformer (DCT)
plays a prominent role in the modern MVDC distribution system. As the key device, it
connects the MVDC bus and the low-voltage DC (LVDC) bus. Given the voltage stress of
the switching devices, the inputs-series-output-parallel (ISOP) topology of several DC/DC
converter modules has been introduced. For the ISOP DCT, the dual-active bridge (DAB)
converter is a more suitable submodule than other converters, such as the bidirectional
half-bridge converter and the series resonant converter [11,12]. In addition, an input
voltage sharing (IVS) control strategy has been presented to ensure the power sharing of
the ISOP DCT [13,14]. However, a tightly regulated converter behaves as a constant power
load (CPL) [15–18], which exhibits a negative resistance characteristic and may destabilize
the system. When a regulated ISOP DCT is connected to a power electronic converter or
an inductive circuit as shown in Figure 1, the stability of the MVDC distribution system
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may become corrupted and substantial oscillations would occur. Besides, it has been
confirmed that the system behaves in an unstable way with the increase of the source-side
inductance [19–21]. Consequently, an impedance-based stability analysis for the ISOP DCT
is essential to guarantee the stability of the MVDC distribution system.
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Figure 1. A typical DC distribution system. 
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Figure 1. A typical DC distribution system.

The prerequisite for the impedance-based stability analysis is to develop the impedance
model of the system, including the source impedance and the load impedance. Based on
the model, the stability of the system can be analyzed by the impedance stability criterion.

Several theoretical modeling techniques have been proposed to obtain an impedance
model. Taking the first harmonic approximation into consideration, the generalized average
modeling (GAM) [22–24] is more accurate than the reduced-order modeling [25] for the
DAB converter. Based on the impedance model, Middlebrook et al. discussed the stability
criterion for voltage regulated DC/DC converters [26], and Sun et al. studied the stability
criterion for grid-connected inverters [27]. The ratio of the source impedance and the load
impedance is known as the minor loop gain, and the whole system is stable if it satisfies the
Nyquist Criterion [28]. Moreover, various stability criteria have been proposed by defining
the constraint boundary of the minor loop gain [29,30]. Riccobono et al. [31] presented a
Passivity-Based Stability Criterion (PBSC), which increases the phase of the system total
impedance up to 0◦ at the resonant frequency. Hence, the impedance becomes passive to
guarantee the bus stability [32,33].

According to the above-mentioned stability criteria, the system stability can be im-
proved by reshaping the impedance. Feng et al. [34] introduced two control methods to
modify the impedance by building a virtual impedance connected in parallel or series with
the input impedance of the DAB converter. There was no intersection of the impedance am-
plitude by increasing the input impedance amplitude. In [35], a resonance term was applied
to dampen the bus impedance. However, this approach only relies on the source impedance
and ignores the influence of the load impedance. Compared with the impedance amplitude
reshaping, the phase modification takes into account that the amplitude must intersect.
Zhang et al. [36] proposed a parallel virtual impedance (PVI) and a series virtual impedance
(SVI) control strategy to modify the load impedance phase at a small range of frequency.
According to the approaches introduced in [36], Feng et al. [37] analyzed the stability
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improvement of the system via the controller optimization. Meanwhile, an impedance
shaping regulator has been proposed to reshape the impedance phase. Although they both
enhance the stability of the DAB-based energy storage systems, the impedance shaping
regulator has better dynamic responses than the optimized method of the DAB controller.
The system with the optimized DAB controller requires minimum cost. Moreover, Guan
et al. [38] proposed a three-closed-loop control strategy to reshape the input impedance of
the DAB converter. On the basis of the control method introduced in [38], Wang et al. [39]
investigated a triple-close-loop IVS control strategy, which improved the dynamic and
steady-state performance of the ISOP DCT. However, the strategy has drawbacks with
complicated parameter calculation and extra design steps.

This paper proposes an impedance phase reshaping (IPR) method, the load impedance
model is obtained by the GAM method, and the impedance phase is modified for the MVDC
distribution system rapid stabilization.

This paper presents the following major contributions.

(1) Establish a GAM input impedance model for the ISOP DCT. The obtained model
is accurate and programmable, which provides a theoretical basis for the stability
analysis.

(2) Propose an IPR method to modify the impedance phase, which weakens the negative
resistance characteristic of the ISOP DCT. The ISOP DCT controller optimization
(IDCO) method is investigated. Compared with the IDCO method, the proposed
approach mitigates the MV bus voltage oscillation rapidly and improves the voltage
quality of the ISOP DCT.

The paper is organized as follows. Section 2 introduces the configuration of the
MVDC Distribution System, and the GAM input impedance model of the ISOP DCT
is established as the load impedance. Section 3 describes the IDCO method. Section 4
discusses the proposed IPR method. Section 5 displays the simulation analysis results.
Section 6 summarizes the major outcomes of this paper and its possible future extensions.

2. Impedance Modeling of the MVDC Distribution System
2.1. Configuration of the MVDC Distribution System

The MVDC distribution system includes the DC grid, the ISOP DCT, and the load.
The structure of the MVDC distribution system is shown in Figure 2.
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Figure 2. Structure of the MVDC distribution system. Figure 2. Structure of the MVDC distribution system.

RL is the load impedance. uM and uL are the MVDC and the LVDC bus voltage,
respectively. Meanwhile, uL is the voltage of the output capacitance Co. In the DC grid, Vg
is the DC grid voltage, Lg is the transmission line inductance. In the ISOP DCT, Co is the
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output capacitance, n (n ∈ N+, N+ is a set of positive integers) is the number of the DAB
modules of the ISOP DCT. In the i-th (i = 1, 2 . . . n) DAB module, H1 and H2 are the rectifier
and the inverter full bridges respectively. S1∼S8 are the switches of the bridge arms. iL is
the current of Ls. Cini is the input capacitance. K is the turns ratio of the high-frequency
transformer. Ls is the leakage inductance of the high-frequency transformer and resonant
inductance. uini and ip are the primary side voltage and current, respectively. Moreover,
uM = ∑n

i=1 uini.
In addition, the control block diagram of the ISOP DCT is descripted in Figure 3. The

input voltage sharing (IVS) control strategy of the ISOP DCT is illustrated in Figure 3. It
consists of an output voltage controller GuL and n − 1 input voltage sharing controllers
GuM . u∗M and u∗L are the MV and the LV bus voltage, respectively. The commonly used
single phase shift (SPS) method is adopted in this paper. dL is the basic phase shift ratio of
each DAB module and is generated by the output voltage controller GuL . dini (i = 1, 2 . . . n)
is the compensation in phase shift ratio of the i-th DAB module, which is generated by the
input voltage sharing controller GuM . di (i = 1, 2 . . . n) is the phase shift ratio.
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Figure 3. Control block diagram of the ISOP DCT. 
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As can be seen from Figure 3, the phase shift ratio di (i = 1, 2 . . . n) is the difference
between the two items, which can be expressed as

di = dL − dini, (1)

Moreover, the decoupling condition of the basic phase shift ratio dL and the compen-
sation in phase shift ratio dini (i = 1, 2 . . . n − 1) is defined as follows:

dinn = −
n−1

∑
i=1

dini, (2)

where dinn is the compensation in the phase shift ratio of the n-th DAB module.
Based on (2), the controllers of the ISOP DCT can be decoupled from each other. The

phase shift ratio di (i = 1, 2 . . . n) is a constant value when power sharing is achieved. Thus,
assuming that the phase shift ratio di = d (i = 1, 2 . . . n), then the load impedance modeling
for the MVDC distribution system is as follows.
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2.2. Generalized Average Modeling of the ISOP DCT

The load impedance model ZL(s) of the MVDC distribution system, i.e., the GAM
input impedance model of the ISOP DCT is established in this section. The voltage uL of
the output capacitance Co and the current iL of the inductance Ls are selected as the state
variables. Thus, the state equation of the ISOP DCT can be expressed as{

diL
dt = s1

nLs
uM − Ks2

Ls
uL,

duL
dt = Kns2

Co
iL − 1

Co
uL
RL

,
(3)

where s1 and s2 are the switching functions of the bridge H1 and H2 in the DAB converter,
respectively.

Besides, the primary side current ip and the LV bus voltage uL are selected as the
output variables. The output equation of the ISOP DCT can be given as{

ip = s1iL,
uL = uL.

(4)

Equations (3) and (4) are based heavily on the model in [22]. More detailed derivation
of the state equation, output equation and switching functions s1 and s2 may be found
therein.

Due to the pure alternating current characteristic of the inductor current iL, the state-
variable vector x is expressed as

x =
[
< uL >0 < iL >1R < iL >1I

]T , (5)

where < uL >0 denotes the zeroth coefficient in the Fourier series of uL. < iL >1R and
< iL >1I denote the real part and imaginary part of the 1st coefficient in the Fourier series
of iL, respectively.

Similarly, the output vector y can be expressed as

y =
[

ip uL ]T . (6)

Substitute (5) into (3) and (4) and apply the small perturbation to d,uini and the state
variables at the steady-state operation point. After linearization, the small-signal matrix
equation is given as { .

x̂ = Ax̂ + Bû,
ŷ = Cx̂ + Dû,

(7)

where A, B, C and D are the constant matrixs. u is the input vector. x̂ and û represent the
small signal value of the state-variable vector x and the input vector u, respectively.

.
x̂ is the

derivative of x̂. ŷ is the small signal value of the output vector y.

x̂ =

 < ûL >0
< îL >1R
< îL >1I

, (8)

ŷ =

[
îp
ûL

]
, (9)

û =

[
ûini

d̂

]
, (10)

A =


−1
RCo

−4Kn sin(dπ)
πCo

−4Kn cos(dπ)
πCo

2K sin(dπ)
πLs

0 ωs
2K cos(dπ)

πLs
−ωs 0

, (11)
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B =


0 − 4Kn<iL>1R cos(dπ)

Co
+ 4Kn<iL>1I sin(dπ)

Co

0 2K<uL>0 cos(dπ)
Ls

− 2
πLs

− 2K<uL>0 sin(dπ)
Ls

, (12)

C =

[
0 0 − 4

π
1 0 0

]
, (13)

D = 0, (14)

where ωs = 2π fs and fs is the switching frequency of the ISOP DCT. < ûL >0, < îL >1R,
< îL >1I, îp, ûL, ûini and d̂ are the small signal values of < uL >0, < iL >1R, < iL >1I, ip,
uL, uini and d respectively.

Thus, combining (7)–(14), the open-loop transfer functions Yop(s), Gipd(s), GuLuini (s)
and GuLd(s) can be defined as[

îp
ûL

]
=

[
Yop(s) Gipd(s)

GuLuini (s) GuLd(s)

][
ûini

d̂

]
. (15)

where Yop(s) is the transfer function from îp to ûini, Gipd(s) is the transfer function from îp

to d̂, GuLuini (s) is the transfer function from ûL to ûini and GuLd(s) is the transfer function
from ûL to d̂ respectively.

According to (15) and Figure 3, the small-signal block diagram of the i-th (i = 1, 2 . . .
n − 1) DAB module is shown in Figure 4. û∗L is the small-signal value of the LVDC bus
reference voltage. û∗ini is the small-signal value of the primary side reference voltage of the
i-th (i = 1, 2 . . . n − 1) DAB module.
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As can be seen from Figure 4, û∗L and û∗ini are zero. Given the input capacitance Cini of
the i-th (i = 1, 2 . . . n) DAB converter, the close-loop input admittance YL_n−1(s) for these
n − 1 DAB modules is obtained as follows:

YL_n−1(s) =
n−1

∑
i=1

[Yop(s) + Yci(s)−
GuLuini (s)GuL(s)Gipd(s)

1 + GuL(s)GuLd(s)
+

GuM (s)Gipd(s)

1 + GuL(s)GuLd(s)
], (16)

where Yci (s) is the admittance of the capacitance Cini.
Similarly, the small-signal block diagram of the n-th DAB module is shown in Figure 5.
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From Figure 5, we can see that the compensation in phase shift ratio dinn for the n-th
DAB converter is different from dini (i = 1, 2 . . . n − 1) for the i-th DAB converter as shown
in Figure 4, which is caused by the decoupling condition expressed in (2). Based on the
control block diagram, the close-loop input admittance YL_n(s) of the n-th DAB module is
derived as follows:

YL_n(s) = Yop(s) + Yci(s)−
GuLuini (s)GuL(s)Gipd(s)

1 + GuL(s)GuLd(s)
−

n−1

∑
i=1

GuM (s)Gipd(s)

1 + GuL(s)GuLd(s)
. (17)

The input impedance of the ISOP DCT is the sum of the input impedance for these

n DAB modules. By adding (16) and (17), the admittance term
n−1
∑

i=1

GuM (s)Gipd(s)
1+GuL (s)GuLd(s)

could

be eliminated. The impedance generated by the input voltage sharing control is zero.
Hence, the input impedance of the ISOP DCT, i.e., the load impedance ZL(s) of the MVDC
distribution system can be calculated by

ZL(s) =
1

YL_n−1(s) + YL_n(s)
= n/[Yop(s) + Yci(s)−

GuLuini (s)GuL(s)Gipd(s)

1 + GuL(s)GuLd(s)
]. (18)

Based on the impedance model obtained in (18), the inter connection of the sub-system
for the system is shown as Figure 6. ZS(s) and ZL(s) are the source impedance and the
load impedance of the MVDC distribution system, i.e., the transmission line inductance
and the input impedance of the ISOP DCT, respectively.GS(s) and GL(s) are the transfer
functions of the source sub-system and the load sub-system, respectively.
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The cascade of the two individually stable sub-systems is shown in Figure 6, and the
total input-to-output transfer function GgL(s) is.

GgL(s) =
uL
Vg

= GS(s)GL(s) ·
ZL(s)

ZS(s) + ZL(s)
= GS(s)GL(s) ·

1
1 + Tm

, (19)
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where the minor loop gain Tm is defined as

Tm =
ZS(s)
ZL(s)

, (20)

According to (19), since GS(s) and GL(s) are stable transfer functions, the minor loop
gain Tm is the one responsible for the system stability. Therefore, a necessary and sufficient
condition for stability of the MVDC distribution system can be obtained by applying the
Nyquist Criterion to Tm, i.e., the stability of the system is guaranteed if and only if the
Nyquist contour of Tm does not encircle the (−1, j0) point. Otherwise, the MV bus voltage
oscillation would occur. The amplitude intersection f0 in the Bode diagram of ZS(s) and
ZL(s) is the oscillation frequency. Besides, the Nyquist criterion is also met by ensuring
that the phase difference is less than 180◦.

3. Stability Improvement via the IDCO Method

In an unstable MVDC distribution system, the original proportional coefficient and
the integral coefficient of the output voltage controller are Kp0 and Ki0, respectively. Simi-
larly, the proportional coefficient and the integral coefficient of the input voltage sharing
controller are Kpi and Kii, respectively. The parameters of the system are listed in Table 1.
The bode diagram of the source impedance ZS(s) and the load impedance ZL(s) are shown
in Figure 6. α is the phase difference at the intersection frequency f0. β0 is the phase of the
load impedance ZL(s) at f0.

As can be seen from Figure 7, ZS(s) and ZL(s) intersect at f0 = 70 Hz. β0 = −91.5◦ and
the phase difference α = 181.5◦. According to the stability criterion, the MVDC distribution
system is unstable and the oscillation frequency of the MV bus voltage is 70 Hz.
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Table 1. Parameters of the MVDC distribution system.

Parameters Description Value

DC Grid
Lg Transmission line inductance 0.06 H
Vg DC grid voltage 10 kV

ISOP DCT

uM MVDC bus voltage 10 kV
uL LVDC bus voltage 750 V
K Turns ratio of the high-frequency transformer 3
n Number of DAB modules 3

uini The primary side voltage of the i-th DAB module 3.33 kV

Ls
The leakage inductance of the high-frequency transformer

and resonant inductance of every DAB module 112.5 µH

fs Switching frequency 20 kHz
Cini Input capacitance of the i-th DAB module 225 µF
Co Output capacitance 3 mF
Pr Rated power 0.9 MW

Input Voltage
Sharing Controller

Kpi Proportional coefficient 0.7754
Kii Integral coefficient 136.3038

Output Voltage Controller

Kp0 Original proportional coefficient 1.0449
Ki0 Original integral coefficient 1520.6999
Kp Optimized proportional coefficient 0.1682
Ki Optimized integral coefficient 344.7928

Impedance Phase Reshaping
Method

θ Impedance phase interval (0.90)
k Gain of impedance phase controller 0.45
f Cut-off frequency of first-order low-pass filter 450 Hz

According to the analysis in Section 2, the input impedance generated by the input
voltage sharing control is zero. Therefore, the input voltage sharing controller optimization
can hardly affect the input impedance of the ISOP DCT.

The traditional ISOP DCT controller optimization (IDCO) method is used to optimize
the output voltage controller, which ensures that the phase difference at the impedance
intersection frequency f0 is less than 180◦. According to Section 2, the open-loop transfer
function of the output voltage controller is GuL(s)GuLd(s). Based on the open-loop transfer
function, the optimized PI parameters of the output voltage controller can be obtained by
limiting the cut-off frequency and the phase margin. The objective function and constraints
of the IDCO method are expressed as

min
∣∣∣∣arg

ZS(s, fc, PM, Kp, Ki)

ZL(s, fc, PM, Kp, Ki)

∣∣∣∣
s=jω0

, (21)

s.t.



∣∣ZS(s, fc, PM, Kp, Ki)/ZL(s, fc, PM, Kp, Ki)
∣∣
s=jω0

= 1,∣∣arg
[
ZS(s, fc, PM, Kp, Ki)/ZL(s, fc, PM, Kp, Ki)

]∣∣
s=jω0

< 180◦,∣∣GuL(ωc, Kp, Ki) · GuLd(ωc, Kp, Ki)
∣∣ = 1,

180◦ + arg
[
GuL(ωc, Kp, Ki) · GuLd(ωc, Kp, Ki)

]
= PM,

30◦ ≤ PM ≤ 60◦,
ωc = 2π fc, ω0 = 2π f0,

(22)

where fc and PM are the cut-off frequency and the phase margin for the transfer func-
tion GuL(s)GuLd(s), respectively. Kp and Ki are the optimized proportional coefficient
and optimized integral coefficient, respectively. ωc and ω0 are the angular frequencies
corresponding to fc and f0, respectively.

The reasonable value of PM of the control system is 30–60◦. With other parameters
unchanged, the larger the PM, the more stable the system. Thus, PM = 60◦ is selected. To
investigate the influence of the output voltage controller on the system stability, eight sets
of controller parameters with different cut-off frequency fc are selected. The Bode diagram
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of the load impedance ZL(s) and the Nyquist diagram of the minor loop gain Tm are shown
in Figure 8.
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From Figure 8a, we can see that the phase of ZL(s) varies obviously with the change
of fc at low frequency. The phase at high frequency is −90◦ due to the capacitance charac-
teristic. Moreover, the phase at low frequency exhibits negative resistance characteristics
and can easily cause oscillation of the MV bus voltage. The phase of ZS(s) is 90◦ as shown
in Figure 7. Therefore, the impedance phase difference can be less than 180◦ at 70 Hz by
optimizing the output controller in Figure 8a. When the cut-off frequency fc is 20 Hz or
30 Hz, the stability criterion is satisfied and the MV bus voltage is stable.

As can be seen from Figure 8b, the Nyquist contour of Tm does not encircle (−1, j0)
with the decrease of fc from 90 Hz to 20 Hz. Thus, the stability of the MVDC distribution
system is improved with the reduction of the cut-off frequency fc. However, the bandwidth
of the system relies on the cut-off frequency, which will affect the dynamic performance.
To improve the dynamic performance and system stability, the cut-off frequency fc = 30 Hz
is selected. The optimized output controller parameters Kp and Ki can be obtained based
on (22), which are given in Table 1.

4. Proposed IPR Method

Although the traditional IDCO method improves the system stability, it is slow to
respond due to the large phase margin PM and small cut-off frequency fc. To stabilize the
bus voltage rapidly, an impedance phase reshaping (IPR) method is proposed, and the
flowchart is shown in Figure 9.

As shown in Figure 9, the stability criterion is optimized based on ZS(s) and ZL(s).
Then, an impedance phase controller Gph(s) is introduced to the traditional controller. By
adjusting the parameters k and f, the phase θ of load impedance could meet the optimized
stability criterion. Therefore, the bus voltage oscillation is rapidly damped and the stability
of the MVDC distribution system is guaranteed.
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4.1. Optimization of the Stability Criterion

Since the analysis of Section 2 shows that the input impedance term generated by the
input voltage sharing controllers is zero, the input voltage sharing loop transfer function
GuM (s) can be ignored. The small-signal block diagram of the i-th (i = 1, 2 . . . n) DAB
converter with the impedance phase controller Gph(s) is shown in Figure 10.
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Figure 10. Small-signal block diagram of DAB with Gph(s).

According to (18) and Figure 10, the reshaped load impedance ZL_IPR(s) can be
calculated by

ZL_IPR(s) = n/[Yop(s) + Yci(s) +
GuLuini (s)Gph(s)GuL(s)Gipd(s)

1 + GuL(s)Gph(s)GuLd(s)
]. (23)

At the intersection of the source impedance amplitude and the load impedance ampli-
tude, the load impedance ZL_IPR(jω0) can be expressed as

ZL_IPR(jω0) = |ZL_IPR(jω0)|ejθ , (24)

where θ is the phase of load impedance at the intersection, ω0 is the angular frequency of
the intersection and ω0 = 2π f0.
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The traditional stability criterion is described as{
|ZS(jω0)| = |ZL(jω0)|,
|arg[ZS(jω0)]− arg[ZL(jω0)]| < 180

◦
.

(25)

In the MVDC distribution system, the phase of ZS(jω0) is 90◦. According to (25), the
phase of the load impedance at f0 should be satisfied θ ∈ (−90◦, 270◦).

To weaken the negative resistance characteristic of the ISOP DCT, the load impedance
phase interval is optimized by narrowing θ ∈ (−90◦, 0◦). According to (24), the optimized
stability criterion can be obtained as{

|ZL_IPR(s)/ZS(s)|s=jω0
= 1,

−90o < θ < 0o.
(26)

4.2. Design for the Impedance Phase Controller

As the order of the low-pass filter increases, the phase increases by 90◦ gradually.
In this paper, a first-order low-pass filter is used to reshape the impedance phase at
the intersection. The transfer function Gph(s) of the impedance phase controller can be
expressed as

Gph(s) =
kω

s + ω
, (27)

ω = 2π f , (28)

where ω and f are the cut-off angular frequency and cut-off frequency of the first-order
low-pass filter, respectively. k is the gain of the impedance phase controller.

In this section, the determination of k and f is discussed. The constraint condition is to
ensure that the intersecting impedance phase θ satisfies the optimized stability criterion
in (26), while the amplitude is rarely affected. To analyze the influence of the gain k on
the stability of the MV bus voltage, the initial cut-off frequency of the low-pass filter f is
30 Hz. The system stability analysis versus the gain k and cut-off frequency f are shown in
Figures 11 and 12.
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Figure 11. Stability analysis of the MVDC distribution system: (a) Bode diagram of ZL_IPR(jω0), (b) Nyquist diagram of Tm.

From Figure 11a, we can see that with the increasing of k, the impedance phase is
closer to 0◦ at low frequency. Since the negative resistance characteristic of ZL_IPR(jω0) is
weakened, the stability of the MVDC distribution system is improved. However, the fre-
quency band that satisfies the optimized stability criterion in (26) is narrowed. Meanwhile,
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with the increasing of k, the amplitude of ZL_IPR(jω0) changes obviously. When k > 0.5,
the intersection frequency f0 moves forward because of the amplitude change. Figure 11b
shows that when k > 0.5, the Nyquist contour of the minor loop gain Tm would encircle the
point (−1, j0), so the MV bus voltage is unstable. When k = 0.5, the Nyquist contour of Tm
is close to the point (−1, j0). Therefore, the voltage tends to be unstable. While k = 0.45,
the dynamic performance of the system is good, and the optimized stability criterion is
satisfied.
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It can be seen from Figure 12a that with the increase of cut-off frequency f, the impact
on the amplitude becomes smaller and can be ignored. When f > 450 Hz, the phase and
amplitude of ZL_IPR(jω0) are hardly changed. Figure 12b shows that none of the Nyquist
contour of the minor loop gain Tm encircles (−1, j0) when k = 0.45. Thus, the system
remains stable with the increasing of f. When f = 450 Hz, the magnitude is hardly changed.

In summary, the proposed method can solve the instability problem of the MVDC dis-
tribution system by weakening the negative resistance characteristic of the load impedance.
When the gain k = 0.45 and the cut-off frequency f = 450 Hz, the impedance satisfies the opti-
mized stability criterion, resulting in the MV bus voltage oscillation being rapidly damped.
Moreover, the impedance amplitude is rarely affected, and the dynamic performance of
the system is good.

4.3. Comparison between the IDCO Method and IPR Method
4.3.1. Negative Resistance Characteristic of the Input Impedance for ISOP DCT

The negative impedance characteristics of the ISOP DCT may destabilize the system.
At the impedance intersection f0, the weakening of the negative impedance characteristic
can suppress the bus voltage oscillation. Therefore, the suppression ability of the bus
voltage oscillation based on the two methods can be evaluated by

β IDCO = arg[ZL(j · 2π fo)], (29)

β IPR = arg[ZL_IPR(j · 2π fo)], (30)

where β IDCO and β IPR are the phases of ZL(j · 2π fo) and ZL_IPR(j · 2π fo), respectively.
ZL(j · 2π fo) is the load impedance at f0 based on the IDCO method and ZL_IPR(j · 2π fo) is
the load impedance at f0 based on the IPR method.

Figure 7 shows that the impedance phase of the original system at fo is β0 = −91.5◦.
Substituting (18) and (23) into (29) and (30), respectively and combining the parameters
in Table 1, β IDCO = −85◦ and β IPR = −83◦ can be obtained at f0 = 70Hz. Both methods
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weaken the negative impedance characteristics of the ISOP DCT. However, the negative
resistance characteristic of the load impedance based on the IPR method (β IPR = −83◦)
is weaker than that of the IDCO method (β IDCO = −85◦), indicating that the system can
achieve stability faster based on the IPR control.

4.3.2. Dynamic Performance of the MVDC Distribution System

The objective of the IDCO method and the IPR method is to improve the stability
of the MVDC distribution system. Both can accomplish the goal by reshaping the load
impedance as shown in Figure 8, 11, and 12. To further analyze the dynamic performance
of the system, the voltage control closed-loop transfer functions are expressed as

GIDCO_CL(s) =
GuL(s)GuLd(s)

1 + GuL(s)GuLd(s)
, (31)

GIPR_CL(s) =
GuL(s)Gph(s)GuLd(s)

1 + GuL(s)Gph(s)GuLd(s)
, (32)

where GIDCO_CL(s) is the voltage control closed-loop transfer function based on the IDCO
method and GIPR_CL(s) is the voltage control closed-loop transfer function based on the
proposed IPR method.

The Bode diagram of GIDCO_OL(s), GIPR_OL(s), GIDCO_CL(s), and GIPR_CL(s) are
shown in Figure 13, and the system parameters are listed in Table 1. GIDCO_OL(s) and
GIPR_OL(s) are the output voltage control open-loop transfer functions, which are the
numerator of (31) and (32), respectively. The comparisons between the IDCO method and
the IPR method are summarized in Table 2.
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Figure 13. Bode diagram of the transfer functions based on the IDCO method and the proposed IPR method: (a) open-

loop transfer functions, (b) closed-loop transfer functions. 
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Figure 13. Bode diagram of the transfer functions based on the IDCO method and the proposed IPR method: (a) open-loop
transfer functions, (b) closed-loop transfer functions.

Table 2. Comparisons of the transfer functions.

GIDCO_CL(s) GIPR_CL(s)

Bandwidth 44 Hz 74 Hz
Phase Margin (PM) 60◦ 47◦

As can be seen from Table 2, the bandwidth of GIPR_CL(s) is 30 Hz greater than that of
GIDCO_OL(s). Thus, compared with the IDCO approach, the dynamic performance of the
MVDC distribution system with the proposed method is better. Moreover, the PMs of both
control methods are in the proper range, and the PM of the IDCO method is larger.
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In conclusion, although the system stability is improved in both methods, the negative
impedance characteristics of the system are weaker based on the IPR method. Therefore,
the proposed IPR method could achieve the rapid stabilization of the MVDC distribution
system. In addition, the bandwidth of the IPR method is larger than that of the IDCO
method. Thus, the dynamic characteristics of the system are better. However, due to the
small PM, the IPR method may produce a large overshoot in the dynamic process.

5. Simulation Results and Discussion

Based on the structure as shown in Figure 2, a 10 kV MVDC distribution system was
built in MATLAB/Simulink. The ISOP DCT consists of three DAB modules, whose rated
power Pr = 0.9 MW. The parameters of the simulation model are given in Table 1.

5.1. Verification of the Voltage Instability in the MVDC Distribution System

Fourier transform is a basic method in transform analysis from the time domain to
the frequency domain. To verify the unstable problem of the MVDC distribution system,
the MV bus voltage uM was analyzed by the fast Fourier transform (FFT) analysis function
in MATLAB. The FFT analysis result of uM is illustrated in Figure 14. THD is the total
harmonic distortion of uM.
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Figure 14. FFT analysis of the MV bus voltage uM.

As can be seen from Figure 14, the oscillation frequency is mainly concentrated at
70 Hz and the THD is 21.49%. The results confirm that the original MVDC distribution
system is unstable and the oscillation frequency of the MV bus voltage uM is consistent
with Figure 7.

5.2. Verification of the Load Impedance Models

To verify the correctness of the developed impedance models, the bode diagrams of
the analytical models are compared with the simulation results. The measurement method
of the impedance simulation results is depicted in Figure 15. Moreover, the analytical
modeling results and the simulation results of the load impedance are shown in Figure 16.
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Figure 16. Bode diagram of the load impedance: (a) input impedance ( )LZ s  based on the IDCO method, (b) input 

impedance (s)L_IPRZ  based on the proposed IPR method. 
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As shown in Figure 15, the sinusoidal perturbations û f are superimposed on the MV
bus. The frequency varies from 2 Hz to 10 kHz, and the peak amplitude of û f is 500 V.
Meanwhile, the disturbance current î f is extracted by FFT analysis. The measured load
impedance of the simulation system is expressed as

ZL(s) =
û f

î f
. (33)

From Figure 16, we can see that the analytical models match well with the measured
results in the swept frequency range from 2 Hz to 10 kHz, indicating that the models
expressed in (18) and (23) are accurate. Moreover, the proposed IPR method only changes
the phase of ZL_IPR(s) at 70 Hz and rarely affect the amplitude. The phase of ZL_IPR(s)
satisfies the phase interval in (26), which coincides with the proposed method.
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Figure 16. Bode diagram of the load impedance: (a) input impedance ZL(s) based on the IDCO method, (b) input impedance
ZL_IPR(s) based on the proposed IPR method.

5.3. Verification of the IPR Method

The simulation model is tested under different working conditions to validate the
proposed method. When t = 0.2, the system is switched from the original control to
the IDCO control or the IPR control. When t = 0.5, the system changes from half load
(p = 0.45 MW) to full load (p = 0.9 MW), i.e., the load steps from 1.25 Ω to 0.625 Ω. Besides,
the reference value u∗L of the LV bus voltage steps from 100% (u∗L = 750 V) to 80% (u∗L = 600 V)
at t = 0.7 s. The damping ability to bus voltage oscillation of these two methods is illustrated
in Figures 17–19. The dynamic performance of the MVDC distribution system is shown in
Figures 20–22.
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Figure 17. Damping results of the MV bus voltage uM.

From Figure 17, we can see that for the IDCO and the IPR method, the oscillation of
the MV bus voltage uM is suppressed within 150 ms and 50 ms, respectively. This confirms
that the IPR method rapidly suppresses the MV bus voltage oscillation. Moreover, the
ripple of uM using the proposed IPR method is smaller than that of the IDCO approach,
because the negative resistance characteristic of the ISOP DCT is weakened.
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Figure 18. Input voltage of three DAB modules: (a) IDCO method, (b) proposed IPR method.

In the observation from Figure 18a,b, the DAB modules voltage uin1, uin2, and uin3
are stable at 3333.3 V. The simulation results demonstrate that the ISOP DCT achieves
input voltage sharing. It indicates that the input voltage sharing controller optimization
could be ignored, which is consistent with Figure 10. In addition, the transient period of
the proposed IPR method is 100 ms shorter than that of the IDCO method. These results
indicate that the proposed method can stabilize the voltage faster.
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Figure 19. Damping results of the LV bus voltage uL.

As shown in Figure 19, when the IPR controller is activated, the stabilization time of
the LV bus voltage uL is reduced from 150 ms to 50 ms. This validates that the proposed
method is effective. The voltage ripple rate of uL with the proposed method (about 2%) is
lower than that of the IDCO approach (about 2.7%). This illustrates that compared with the
IDCO method, the waveform quality based on the IPR method is significantly better. This
also indicates that the impedance phase satisfies the phase interval, which further weakens
the negative resistance characteristic of the load impedance.
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Figure 20. Dynamic waveforms of the MV bus voltage uM based on the IDCO or IPR control method
under a load step-change.

As can be seen from Figure 20, the transient recovery time of the proposed IPR method
is 60 ms, which is faster than that of the IDCO approach (about 80 ms). Although the
ripple rates are both less than 1%, the result shows that the voltage is more stable with
the proposed IPR method than the IDCO method. This validates the effectiveness of the
proposed method at the full-load condition. Furthermore, the dynamic performance is
good due to the proper bandwidth and phase margin as shown in Table 2.

The waveforms of the LV bus voltage uL also confirm the good dynamic performance
of the IPR method as shown in Figures 21 and 22. It is evident that uL tracks the step
reference well as shown in Figure 21, and the corresponding transient voltage has a
short settling time (40 ms). As can be seen from Figure 22, the overshoot of uL with the
proposed IPR control approach is 25 V and the overshoot rate is 4%. It can be seen from
Figures 21 and 22 that compared with the IDCO method, the overshoot based on the IPR
control is larger, but is still within a reasonable range. These results validate the robustness
and effectiveness of the proposed control.
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6. Conclusions

This paper proposes an IPR method to rapidly stabilize the MVDC distribution system.
Based on the obtained load impedance model, the 10 kV MVDC distribution system using
the traditional IDCO method and the proposed IPR method was analyzed and simulated.
The following relevant conclusions were obtained:

(i) Due to the decoupling condition of the control strategy for the ISOP DCT, the load
impedance is hardly affected by the input voltage sharing controller optimization.

(ii) Compared with the IDCO method, the proposed method further weakens the negative
resistance characteristic of the ISOP DCT and suppresses the voltage oscillation
rapidly. Moreover, regardless of load step-change or voltage reference step-change,
the proposed method has a good dynamic performance and stability for the system.
The overshoot of the proposed IPR method is larger than that of the traditional IDCO
method, but it is still reasonable. This is a tradeoff for the rapid stabilization of the
MVDC distribution systems.

(iii) Compared with the method of modifying the impedance amplitude, the proposed
IPR method considers the problem that the amplitude must intersect. The phase
interval of the optimized stability criterion is adjustable. Furthermore, the impedance
phase controller can be designed by the high order low-pass filter and bandpass filter,
which are flexible and can be applied to the stability analysis for other systems.
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