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Abstract: The continuous scaling of electronic components has led to the development of high-
performance microprocessors which are even suitable for safety-critical applications where radiation-
induced errors, such as single event effects (SEEs), are one of the most important reliability issues.
This work focuses on the development of a fault injection environment capable of analyzing the
impact of errors on the functionality of an ARM Cortex-A9 microprocessor embedded within a
Zynq-7000 AP-SoC, considering different fault models affecting both the system memory and register
resources of the embedded processor. We developed a novel Python-based fault injection platform
for the emulation of radiation-induced faults within the AP-SoC hardware resources during the
execution of software applications. The fault injection approach is not intrusive, and it does not
require modifying the software application under evaluation. The experimental analyses have been
performed on a subset of the MiBench benchmark software suite. Fault injection results demonstrate
the capability of the developed method and the possibility of evaluating various sets of fault models.

Keywords: embedded processor; reliability; single event effects

1. Introduction

The continuous downscaling of transistors is leading to more performant devices due
to smaller device sizes with higher operating frequencies. However, smaller size and higher
operational frequencies lead to systems that are more vulnerable to soft errors. When a
charged particle interacts within the silicon matter of a circuit and releases its energy, it
might lead to a bitflip in the sequential logic of the circuits such as memory and registers,
known as single event upset (SEU). An SEU affecting the sequential logic of a processor
system executing an application can result in wrong outcomes or even in the crash of the
system with a dramatic effect on the application [1].

There are several methodologies for investigating the impact of soft errors affecting a
processor system. Performing radiation tests and exposing the system to radiation particles
while the application is running on the processor provides the most realistic behavior of
the physical phenomena [2,3]. However, most of the time, the final system is not available
during the design phase and, therefore, it is necessary to rely on emulation platforms.
Many alternatives have been proposed in order to overcome the difficulties of radiation
test experiments [4]. Simulating or emulating the radiation-induced fault through fault
injection environments introduces an efficient alternative for analyzing the effect of soft
errors on the execution of an embedded processor.

In this work, we focused on the processing system integrated into all programmable-
system-on-a-chip (AP-SoC), analyzing the effect of single event effects (SEEs) on the behav-
ior of the application executed on the embedded processor. To do so, we have developed a
fault injection platform for emulating different SEEs and detecting the effects they produce
on the running application. Differently from the state-of-the-art solutions, we did not only
focus on the evaluation of the SEU effects, but also expanded the analysis covering other
fault models such as single event multiple upsets (SEMUs) and clear and present content
(affecting either the memory resources or registers of the processor system). We evaluated
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the effects of the faults during the execution of different software applications on an ARM
Cortex-A9 platform embedded within a Xilinx Zynq-7020 Reconfigurable AP-SoC device.
To the best of our knowledge, it is the first work that exploits the operating system mapped
on the embedded processor for executing a fault injection environment which leads to a
fast and comprehensive fault injection execution.

Moreover, we performed a deep investigation on the outcome of the software applica-
tions while soft errors affect the memory and registers of the processor system.

Please notice that the developed platform is not targeting the software-level fault
injections but targeting the hardware faults and their impact on the execution of the
software faults.

The paper is organized as follows. Section 2 illustrates previous related works.
Section 3 describes the evaluated fault models, while Section 4 describes the proposed radi-
ation analysis platform. The obtained results are reported in Section 5. Finally, Section 6
contains a conclusion and discussion on future works.

2. Related Works

Several works have been dedicated to evaluating the soft errors affecting embedded
processors through both radiation test experiments [5]. However, due to the challenges
in terms of costs and availability introduced by radiation tests, fault injection techniques
are widely exploited to investigate the impact of soft errors on embedded systems [6–8].
In [9], the authors developed a simulation-based fault injection platform for fault injecting
bits of the in-memory resources, CPU registers, and interconnection infrastructure. The
authors in [10] investigate the impact of soft errors on the operations of a microprocessor-
based architecture by injecting bitflips at a random time and in a random location on the
resources of an application running on an 80C51 microcontroller and a 320C50 Digital
Signal Processor. A fault injection technique is proposed in [11] which allows injecting
bitflips at the LLVM compiler’s intermediate representation (IR) level.

The evaluation of transient faults occurring in processors’ computational units, mem-
ory units, and CPU registers is not considered. CAROL-FI is a fault injection platform
proposed by [12], which allows the injection of several fault models in a randomly chosen
variable during the execution of an application under the test, focusing on Xeon Phi devices
and NVIDIA GPUs as the main supercomputer cores. The EFIFT tool, which has been
proposed by [13], is a GDB-based fault injection platform that corrupts the execution of the
application based on the chosen fault model, such as corruption of variable data, registers,
and memories. Instead, the platform proposed by [14], called PROPANE, acts by stopping
the execution in order to replace a fault-free portion of the code with a corrupted one and
resume the execution after. On the other side, instead of targeting the application under the
test, a different approach has been followed by the authors in [15]. They have proposed a
framework for injecting in real-time multicore embedded systems, focusing on monitoring
the whole system through the running operating system and accordingly, injecting faults
in locations that include the OS, specific resources such as hardware counters but without
specifically addressing memory or processor registers.

The main contribution of this work is the development of a python-based fault injec-
tion platform capable to perform hardware-oriented fault injection on the memory and
register resources of embedded microprocessors. The platform supports a larger set of
fault models and an in-depth analysis of the outcomes resulting from the fault injection
campaign, considering not only the behavior of the application but also the exception
generated towards the operating system. The use of a python environment running on the
operating system of the embedded microprocessor results in a fast fault injection platform
with respect to the state-of-the-art.

3. Radiation-Induced Fault Models

When a radiation particle interacts within the silicon device and releases its energy,
it can generate different phenomena. In order to perform a deep investigation of the
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SEE effects on embedded microprocessors, we have considered single and multiple effects
within memory and register cells, and on the functional memory module activating memory
page preset and clear.

3.1. Single Event Upset in the Memory

The executable binary of a software application is stored in memory. When a radiation
particle hits this memory and releases its energy, it can change the state of a single memory
element, referred to as single event upset (SEU), resulting in a malfunction or eventual
abnormal termination of the application.

3.2. Single Event Multiple Upset in Memory

By transistors scaling down, the distance between adjacent memory cells is drastically
reduced. The cells with small separation distances can have multiple sensitive junctions
collecting the charge that is released by a single interacting particle. Therefore, as an
effect of one single incident, multiple events (bit value corruption) can arise. Results of
many radiation tests indicate the occurrence of single event multiple upset in memories.
Previously, we have performed a radiation test on Xilinx Kintex-7 SRAM-based FPGA
with the ultrahigh energy heavy ion beam at the CERN facility [3]. By elaborating the
readback data file of the configuration memory and analyzing the location of SEUs in
the configuration memory, different upsets patterns have been found as multiple upsets
occurred close to each other forming a cluster, which is known as SEMU occurrence. Similar
multiple-bit upsets (MBUs) have been seen in reports of previous radiation tests with lower
energy as well [16,17]. By analyzing the readback file, we have found different cluster
patterns suffering from MBU. Figure 1 represents different identified cluster configurations.
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Figure 1. The observed Cluster SEMU pattern during the radiation test.

The sensitivity rate of each cluster configuration, represented as cross-section sensi-
tivity has been calculated and represented in Figure 2. As it can be observed, the cluster
configuration with the two adjacent bits corrupted by a single particle is the case with the
highest cross-section.
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Figure 2. Cluster distribution cross-section for different cluster sizes.

Considering that the technology of the processor integrated into the Zynq-7000 as the
device under the test is 28 nm, the same technology of Xilinx Kintex-7 used for the radiation
test performed at [3], we have referred to the same SEMU occurrence for evaluating their
effects within the processor system memory. Therefore, we considered the occurrence of
two bitflips in the adjacent location as the condition with the highest occurrence among
SEMU phenomena. Figure 3 represent the general scheme of the processing system of
AP-SoC under the study.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. Cluster distribution cross-section for different cluster sizes. 

Considering that the technology of the processor integrated into the Zynq-7000 as the 
device under the test is 28 nm, the same technology of Xilinx Kintex-7 used for the radia-
tion test performed at [3], we have referred to the same SEMU occurrence for evaluating 
their effects within the processor system memory. Therefore, we considered the occur-
rence of two bitflips in the adjacent location as the condition with the highest occurrence 
among SEMU phenomena. Figure 3 represent the general scheme of the processing system 
of AP-SoC under the study. 

 
Figure 3. The general scheme of the processing system of AP-SoC. 

3.3. Clear Content in the Memory 
The clear content in memory resources refers to the situation in which the value read 

in a memory is 0 due to the particle strike [18]. This effect is principally due to failure 
happening within the control logic resources. Control logic is one of the most important 
parts of the memory, with the role to manage several signals and decode instructions com-
ing from the processor. The particle hitting the control logic can cause SEU/MBU that re-

MEM-1

Control Logic

MEM-n

Control Logic

CO
NT

RO
L B

US

AD
DR

ES
S B

US

DA
TA

 B
US

MMU

ARM 
CortexTM-A9 

CLK

CLK

CLK

Figure 3. The general scheme of the processing system of AP-SoC.

3.3. Clear Content in the Memory

The clear content in memory resources refers to the situation in which the value read
in a memory is 0 due to the particle strike [18]. This effect is principally due to failure
happening within the control logic resources. Control logic is one of the most important
parts of the memory, with the role to manage several signals and decode instructions
coming from the processor. The particle hitting the control logic can cause SEU/MBU that
results in clear content in the affected memory bank [19]. This effect may be extremely
critical. Considering that the memory management unit (MMU) is responsible for trans-
lation between the virtual address, computed and processed by the PS, and the physical
address. As an effect of SEU/MBU in MMU, a virtual address can be translated to the
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wrong physical address, leading to the PS to request for a physical address with the content
of 0 [20].

Moreover, as an effect of particle incident in the clock signal of the memory element, a
disturbance voltage pulse or glitch can be generated known as single event transient (SET).
This clock glitch could lead to a false rising or falling edge, leading to the transmission of
an erroneous data value or clear content in memory [21].

3.4. Single Event Upset in Processor Registers

Registers of the processing system are one of the most important resources since they
can provide fast and efficient calculations and data manipulation. They can be implemented
in two ways: the former, as a fast static RAM (SRAM) block, having dedicated input and
output ports in order to result in minimum reading and writing latency; and the latter, as
‘flip-flop’ structures suitable for data storing and manipulation.

The ARM Cortex-A9 Processor, as the embedded processor under the study, has
17 available 32 bits core registers, 13 general-purpose data registers, 3 special-purpose
registers (stack pointer (SP), link register (LR), and program counter (PC)), and a status
register, the current program status register (CPSR), containing information about the
current state of the core and its operating modality.

If the particle strikes the registers of the processor during the execution of the applica-
tion SW, it can modify the state of the affected register, change the content of the register
bits, leading to SEU, and eventual malfunction of the application software. For example, if
the particle strike causes SEU on one single bit of the PC, it can lead to the execution of the
wrong instructions or to jump to a forbidden memory segment provoking a segmentation
fault error.

3.5. Single Event Multiple Upset in Processor Registers

The same as the SEMU on the memory resources of the processor system, due to a
single highly energetic particle strike, depending on the strike angle and linear energy
transfer (LET) of the particle, multiple bits of the registers might be changed, leading to
SEMU effect in the registers. Based on the experiments performed at [3] and elaborated
in subsection II.B, we investigate the occurrence of SEMU where two adjacent bits are
corrupted and changed state with a single particle strike.

3.6. Clear/Preset Content in Process Registers

The clear content fault model addresses the situation in which during the execution of
the application SW, the content of a register is forced to 0 while the preset refers to a case in
which all the bits of a register are forced to 1.

In the case that the registers are implemented using SRAM blocks, a particle affecting
the control logic can cause a clear content or preset content situation. On the other hand, if
the registers are implemented using the FF logics, specific control signals, named preset and
clear are dedicated to each FF which are responsible for manipulating the content of the
whole register. If a particle hits one of these two signals, it can release its energy and create
an undesired voltage glitch. This voltage glitch known as single event transient (SET) can
cause a faulty rising or faulty edge for the clear/preset signals and force the registers bit to
all 0/1.

4. The Developed Fault Injection Environment

The developed fault injection environment is based on a python overlay executed
within the operating system (OS) able to perform physical resources modification and
classify the failure effect considering the behavior of the application and the exception
generated at the OS level. We have developed a python-based environment, which is able
to emulate different radiation-induced SEE effects, on both the memory resources and
registers of the processing system of the AP-SoC, during the execution of the application SW.
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Moreover, the outcome, as well as the execution status of the application SW, is elaborated
in detail to investigate the cause of the failure of the application.

4.1. Single Event Effect in Memory

In order to evaluate the impact of the different SEE affecting the memory resources of
the processing system, where the binary of the application, executable and linking format
(ELF) is stored, we have developed the python-based workflow represented in Figure 4,
executing on the Linux operating system of the ARM Cortex.
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As a first step, the golden ELF file consisting of the non-faulty executable binary of
application SW has been provided as an input to the developed fault injection environment
in order to generate the fault-free (golden) output of the application. As a second step, the
fault injection acts on the generation of the faulty ELF file. It reads the golden ELF, selects a
random bit in the golden executable binary, performs emulation of the different SEE effects
by injecting a bitflip in the selected bits, and creates a faulty version of the binary executable
file. Based on the injection number selected by the user, the bitflip injection is repeated,
generating the different faulty ELF files. Please note that the executable binary of the
software application running on the processor is loaded in the memory of the processing
system. Therefore, injecting a bitflip in the executable ELF file is modifying the value stored
in the memory of PS, injecting bitflip on the memory element of SoC, leading to emulation
of SEU effect on the memory.

We have instrumented the developed python tool to exploit multi-processing features,
dedicating each process for generating and executing the faulty ELF or executable binary
of application SW. Moreover, in order to observe the effect of SEU on the memory used
for storing the ELF of the application SW, the execution status or exit code of the process
which executes the faulty ELF file is collected and classified by the main process. Moreover,
the outputs generated by executing the faulty ELF file are observed and compared with
the golden output in order to provide a more detailed investigation of the impact of SEE
affecting the memory of the processor system on the output of the application SW.

4.2. Single Event Effect in Registers

The second analysis workflow is dedicated to emulating the radiation effects within
the processor registers. We enhanced the environment to mimic the SEE effect during
the runtime of the application on the PS, represented in Figure 5. It is based on a python
extended GDB tool, executing through the Linux operating system, running on the target
ARM microprocessor.
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The flow starts by running the golden (fault-free) application and obtaining the
golden outputs of the application software. It moves forward by emulating the SEE
effect on the software accessible registers during the runtime of the application. To do
so, a register among software accessible registers is selected randomly as well as a bit
among the 32 bits of the selected registers is chosen randomly for performing a bitflip.
Please notice that the PS under the study is based on ARM-v7 architecture. Therefore, the
software accessible registers include the floating-point status and control register (FPCR),
the 64 NEON technology registers, the general-purpose registers (R1 to R13), and the
three special-purpose registers named as program counter (PC), link register (LR) and
stack pointer (SP) [22]. After the bitflip selection, the fault injection tool computes a
random breakpoint node. The breakpoint node is selected in two steps: firstly, a random
instruction number among the source instructions of the application, starting from zero
to the total number of instruction lines (LOC) of application SW is selected. Secondly,
exploiting GNU project debugger (GDB) features, a random assembly instruction offset
starting from the selected LOC baseline is chosen. This defines the breakpoint node for
performing bitflip injection. Please note that choosing a random breakpoint with this
methodology overcomes the limitation of time-based breakpoint selections for applications
with short execution time.

The injection phase is carried out exploiting the GDB, an open-source debugger that
uses low-level system calls such as ptrace to monitor and modify the value of the core
resources as well as to control the application execution flow. To elaborate more, thanks
to the features provided by GDB, the fault injection platform starts the execution of the
application with the golden binary, interrupting the execution when it reaches the randomly
chosen breakpoint node, injecting bitflip by modifying the value of the selected bit of the
selected register and resuming the execution of the application until the termination. The
same as the previously developed platforms, we have exploited the multi-process features
of python for executing single register bitflip injection. Once each process is terminated,
the python environment evaluates each application’s results and the computation exit
code and compares the result with the golden execution in order to define and classify the
error distribution.
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4.3. Error Analysis

As it has been described in the previous sections, in both of the developed platforms,
fault injection in the memory, and registers, we have exploited the multi-process features
provided by python. To elaborate, the binary of the faulty application is passed to the
python subprocess for the execution, and the status of each process executing the faulty
application is monitored through the execution by the developed platform. The fault
injection platform evaluates the execution status of the application and classifies faulty
applications in different groups:

• Silent Dara Error: If the injected fault does not affect the normal execution of the
application SW and the application terminates the execution without any risen excep-
tion, then the termination status of the application SW does not indicate any error.
However, to perform a detailed analysis we move forward by investigating the output
of the application SW while the normal termination status is received. We compared
the output of the faulty applications with the golden one in order to evaluate the case
in which the injected fault leads to the normal termination of the application SW but
leads to the incorrect output of the application SW labeled as silent data corruption
(SDC). On the other side, if the injected fault model leads to the risen of exceptions
by the operating system during the execution of the application SW that could not be
masked or safely handled by the OS, the execution will be interrupted before the end
of the application and the termination status represents the exception signals raised
by the OS.

We have analyzed the impact of the injected fault model by performing a deep investi-
gation on the cause of each raised exception and classified them as follows:

• Segmentation Fault: Due to the injected fault, the application SW requests for accessing
a memory segment out of its own mapped memory area. It occurs when the injected
fault modifies the address provided to the instruction operand or modifies the content
of registers such as PC and SP.

• Illegal Instruction: In the case that the injected faults corrupt the OPCODE of instruc-
tions, the process tries to execute an illegal instruction which leads to an interruption
of the application’s execution.

• Bus Error: The bus error is classified as the case in which the process executing the
application requests to access a memory location that is not accessible physically.

• Abort: This refers to the condition in which the injected fault leads to the interruption
of the execution of the application, not due to an exception risen by the operating
system but due to an exception risen by the process executing it, itself which tells the
process to terminate.

• Breakpoint Trap: It is defined as the case in which the injected fault causes the process
to enter the debug state and execute the breakpoint hook instructions.

• Arithmetic Operation Error: If the injected fault corrupts one of the operands, the pro-
cess tries to execute an erroneous arithmetic operation which might lead to execution
interruption.

• Hang: It is defined as the condition in which the injected fault leads to the occurrence
of deadlock in the execution of the application.

5. Experimental Results

In order to confirm the effectiveness of the developed radiation analysis workflows, we
have chosen the MiBench benchmark suite as an application to run on the ARM Cortex-A9
Processor embedded within the Zynq-7020 AP-SoC.

5.1. Application Benchmark

As a set of applications running on the PS under the test, the MiBench benchmark
suite has been chosen [23]. Mibench contains different application classified on the basis of
the target application domain such as automotive, network, security. Between the provided
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benchmarks, we chose the basicmath, bitcount, and FFT as the benchmarks dedicated to
mathematical and signal processing operations, highly used in space application. However,
the developed platform is applicable to any other applications. Some specification about
the chosen benchmarks is provided in the following:

• Basicmath carries out basic math operations such as cubic functions solving and angles
conversions which are highly used in space application systems for autonomous
control.

• Bitcount is dedicated to bit manipulation as a key part of the computing system.
• FFT carries out Fast Fourier Transform, composed of pseudorandom sinusoidal com-

ponents having variable amplitude and frequency, used in most of the systems that
require transmitting and receiving signals.

For each application, there are four groups of instructions: control (unconditional and
conditional branch), integer, floating-point, and memory (load and store) [23]. Figure 6
represents the distributions of the selected applications.
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5.2. Experimental Setup

For the purpose of this work, we have used PYNQ-Z2 board with the embedded Zynq-
7020 AP-SoC. It consists of a dual-core ARM Cortex-A9 Processor, with a maximal working
frequency of 1 GHz, mated with 28 nm SRAM-based programmable logic, equivalent to the
Xilinx Artix-7 FPGA. The ARM core allows the SoC to execute bare-metal applications but
also full operating systems such as Linux or real-time operating systems such as FreeRTOS.
In particular, Xilinx provides a default operating system installation running Ubuntu 18.04,
based on version 5.4 of Linux Kernel which has been exploited for executing the developed
analysis environment.

5.3. Static Radiation Sensitivity Analysis

In order to perform an accurate radiation analysis, we performed the radiation char-
acterization of the memory resources and registers of the processing system in terms of
cross-section, defined as the radiation sensitivity of the cell with respect to the physical
characteristic of the technology. We have developed the electrical model of both SRAM
cell and Flip-Flop representing the memory and register resources of the PS, exploiting the
FreePDK physical library tuned for 28 nm, as the technology under the study, and adopting
the electrical Predictive Technology Model (PTM) for bulk CMOS. Using the commercial
K-layout tool, the layout description of the SRAM and FF cells have been extracted in terms
of Graphic Data System-II (GDS-II). Based on the netlist and layout of the cells, we have
performed a radiation analysis, using our in-house Monte Carlo-based simulation tool,
described in detail in [5], using the Heavy Ion Profile related to the Université Catholique
de Louvain (UCL) facility [24]. We have performed a simulation of 10,000 particles for each
cell and we reported the obtained cross-section in Figure 7.
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5.4. Fault Injection Experimental Results

In order to investigate the radiation sensitivity of the selected applications running
on the ARM processor, we have performed 10,000 fault injections, both in the memory
resources and registers of the processing system, emulating different effects such as SEU,
SEMU, clear content, and preset content. Table 1 represents the percentage of the error
in terms of total error rate which includes the cases in which the application SW leads to
an unsuccessful execution. Table 1 represent the error rate when there is a fault occurring
in the memory while Table 2 represent the total error rate while the fault occurs in the
registers. An unsuccessful execution is defined as a case where the application terminated
its execution successfully, but the generated output of the application is different from the
golden one (defined as faulty output or if the execution is interrupted before the end of the
application). Moreover, we have performed a detailed investigation in order to identify the
effect of the injected faults which leads to the execution status being different than normal.
Figures 8 and 9 represent the distribution of the total error rate, elaborating the contribution
of each termination status and risen exception in the total error rate. Figure 8 is dedicated
to the faults occurring in memory while Figure 9 is representing the faults happening in
registers. As it can be observed, most of the errors are dedicated to the case in which the
application terminated successfully, without interruptions, but led to a faulty output of the
application. Please notice that by exploiting the python-based overlay executed on the host
OS, we are able to perform a fast and accurate fault injection for different SEE effects. As
an average, for performing 10,000 fault injections on memory resources, approximately,
10 min is required. This value increased to 3 h for the fault injection campaign in register
resources.

Table 1. Error rate classified per application and fault model in memory.

Application
Total Error Rate for Faults in Memory

SEU SEMU Clear Content

Basicmath 7.01 6.89 6.89
Bitcount 1.65 1.67 1.39

FFT 3.94 4.10 4.33
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Table 2. Error rate classified per application and fault model in register.

Application
Total Error Rate for Faults in Register

SEU SEMU Clear Content Present Content

Basicmath 7.76 8.09 8.43 9.53
Bitcount 4.16 4.50 61.55 1.33

FFT 6.11 11.01 6.49 8.20
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Please note that different applications have different scopes and thus different assem-
bly instructions distributions. This leads to different sensitivity to faults appearing during
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the execution. For example, if an application is more oriented towards bit manipulation
instructions (e.g., MiBench.bitcount) then it will be more susceptible to register injection
since registers value are heavily used by the application through the whole execution and
a single SEU in the registers can compromise the whole functional outcome. Please note
that, in this way, one could also assess the sensitivity of different implementations of the
same application, analyzing how different choices regarding the instructions and the data
structures can affect the overall fault tolerance of the system

6. Conclusions and Future Works

In this paper, we developed a radiation analysis environment capable of emulating
different SEE faults on both the memory and register resources of the processor system
of AP-SoC while an application SW is executing on the embedded ARM Cortex-A9 of
PS. Moreover, an in-deep evaluation of the fault injection campaign has been performed
in order to investigate the effects of injected faults and failure causes of the application
execution. In future work, we have planned to exploit the outcome of the developed fault
injection environment in order to provide an efficient mitigation strategy of embedded
nodes in HPC applications.
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