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Abstract: The self-supervised monocular depth estimation paradigm has become an important
branch of computer vision depth-estimation tasks. However, the depth estimation problem arising
from object edge depth pulling or occlusion is still unsolved. The grayscale discontinuity of object
edges leads to a relatively high depth uncertainty of pixels in these regions. We improve the geometric
edge prediction results by taking uncertainty into account in the depth-estimation task. To this end,
we explore how uncertainty affects this task and propose a new self-supervised monocular depth
estimation technique based on multi-scale uncertainty. In addition, we introduce a teacher–student
architecture in models and investigate the impact of different teacher networks on the depth and
uncertainty results. We evaluate the performance of our paradigm in detail on the standard KITTI
dataset. The experimental results show that the accuracy of our method increased from 87.7% to
88.2%, the AbsRel error rate decreased from 0.115 to 0.11, the SqRel error rate decreased from 0.903
to 0.822, and the RMSE error rate decreased from 4.863 to 4.686 compared with the benchmark
Monodepth2. Our approach has a positive impact on the problem of texture replication or inaccurate
object boundaries, producing sharper and smoother depth images.

Keywords: monocular depth estimation; self-supervised method; uncertainty estimation

1. Introduction

Monocular depth estimation refers to the ability to learn a dense depth map at the
pixel level from the video stream. It is a fundamental challenge in the field of computer
vision with potential applications in robotics, autonomous driving, 3D reconstruction, and
medical imaging [1–4]. How to predict a high quality dense depth map remains a problem
to be solved. As the edges of objects in the image are prone to noise, bleeding, feature
shifts, and surface field curvature changes can lead to distortion of the depth around the
object. Even with high-precision camera equipment, these factors are inevitably introduced
in the process of acquiring image data.

The exploration of edge depth has been around since long before deep learning became
prevalent. By edge depth, we mean the depth of the edges of objects in the depth map. In
the field of free point-of-view television technology, to improve the depth characteristics
of object edges, Liu et al. [5] classified the pixels of the depth map and proposed a modi-
fied smoothness function to improve the accuracy of object edge depth values. However,
monocular depth estimation methods have paid little attention to occlusion and image detail
distortion. Related research is reflected in edge-aware depth estimation techniques.

To solve the problem of image edge detail distortion,Chou et al. [6] investigated the
effect of the quality of the depth map on the synthetic focusing performance and proposes
a synthetic focusing paradigm that integrates RGB images and depth information. In the
task of reconstructing depth from raw video data using neural networks, Yang et al. [7]
proposed using surface normal vectors to constrain the estimated depth. They constructed a
depth-normal consistency that perceived the edges of objects inside the image.
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Additional work includes estimating the depth map from the light field by sparse depth
edges and gradients [8] and extracting RGB image edges and depth edges for alignment to
improve the estimation accuracy [9].

Currently, most of the work related to improving edge depth requires the introduc-
tion of an additional network, e.g., semantic segmentation [10–12], edge map detection
networks [13–15], or optical flow [16]. We found that research on uncertainty, which has
only recently entered the limelight, can also improve the quality of edge depth and without
learning other complex networks. Uncertainty is defined into two categories, epistemic
and aleatoric [17].

The former can be used to understand examples that are different from those inside
a training set, such as new scenes or new targets under which the model will predict the
wrong depths with high probability, and such wrong depth results need to be detected. The
latter can correctly learn the uncertainty (confidence) of the depth at the edge of the object,
which is exactly what we require. The monocular depth estimation is mainly optimized for
photometric error of the pixels, with little attention to the depth of geometric edges. This
strategy of encouraging depth continuity can lead to misalignment of the edge depth in
certain situations, e.g., when there is low texture, low luminance, or occlusion. To this end,
we investigated the depth uncertainty of the monocular depth-estimation task.

In summary, to obtain an edge-aware depth estimation model, we introduce a depth
uncertainty strategy, and use a framework in migration learning that allows our network
to learn better quality models on monocular video sequences. Our main contributions are
summarized as follows:

1. We study the impact of multi-scale uncertainty on self-supervised monocular depth
estimation and find that it yields more edge-depth uncertainty.

2. We analyze the effect of different teacher–student combination strategies on the
uncertainty of self-supervised monocular depth estimation.

3. We propose a paradigm for self-supervised monocular depth estimation based on a
teacher–student framework and combined with multi-scale uncertainty. Our method
effectively improves the overall performance of depth estimation.

We provide detailed experimental results on the KITTI [18] dataset. Our qualitative
results show that our method obtains smoother results on the edges of people, cars, or road
signs compared to previous work, which blends some of the edges with the background.
The depth uncertainty map correctly represents the uncertainty of geometric edges and
can restrict the learning of depth to edge pixels with large uncertainty.

2. Related Work

In this section, we review the relevant paradigms for self-supervised monocular depth
estimation and how uncertainty estimation techniques are used on depth-estimation tasks.

2.1. Self-Supervised Methods

Before the prevalence of self-supervised methods, supervised methods were mainly
used. Learning-based methods use the relationship between color images and their depth
to fit prediction models, such as combining nonparametric scene sampling [19] or local
prediction [20]. Later, end-to-end supervised models emerged [21,22]. The learning-based
approach is the optimal representation of optical flow and stereo estimation.

However, we already know that it is difficult to obtain ground truth data in different
real-world environments. How to predict the depth without labeled data is the goal pur-
sued by all. To overcome this problem, self-supervised methods using image reconstruction
have become a popular research topic, and they contain two classes of monocular video
sequences and stereo pairs.

The paradigm of stereo pairs is to model the geometric properties between stereo
image pairs as depth information, which is obtained by projection transformations between
images [23]. Such an approach allows training the network based on the loss of photometric
error between the actual image and the projected image. Later, model architectures for pose
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prediction networks and depth prediction networks between frames of video sequences
were developed [24].

Garg et al. [25] used L2 loss as the photometric error loss while producing ambiguity
in the prediction results. Godard et al. [23] adopted a combination of L1 loss as well as
SSIM loss to train the model named Monodepth, which was combined with post-processing
operations to obtain more accurate depth accuracy. Then, they proposed the Monodepth2 [26]
model, which solved the depth blurring problem in the object occlusion region to an extent by
minimizing the reprojection loss for each pixel. Some specific network structures [27–30] or
improved loss functions [31] have also appeared to optimize models.

There are also hybrid methods that use both stereo pair data and video sequence
image frames [32,33]. Other refinement strategies, such as [34–36]. Some recent approaches
used relatively bulky architectures to improve the depth quality [37], which indicates a
higher memory cost as well as time.

2.2. Uncertainty Estimation

Uncertainty in decision making is crucial in real-world practical applications of com-
puter vision, as it prevents overconfident and wrong decisions. Before the prevalence
of neural networks, uncertainty was studied regarding stereo matching and optical flow
problems. Stereo matching performs deep learning by inferring the differences in the
network feature maps and estimating the difference maps [38]. Confidence inference for
optical flow mainly consists of two types of posterior and model-inherent inferences. The
first is by analyzing the uncertainty fraction of the optical flow field [39], and the second is
by using the minimization energy module [40].

Recently, depth-estimation tasks have used uncertainty to improve model performance
by adding confidence to the model output [41]. Depth estimation for 3D reconstruction can
also introduce uncertainty in depth to improve the accuracy and robustness of learning [42].
To address depth estimation in regions without illumination, [43] extends the Gated2Depth
framework by adding uncertainty to help filter the depth of these regions.

Our work focuses on solving the problem of inaccurate geometric edge depth esti-
mation in complex scenes. Similar to our objective, [42] proposed a new photometric loss
function using an uncertainty-based monocular depth estimation method to solve the
problem of edge pixel pull due to object movement. They mainly rely on the proposed loss
to constrain the pull of moving object depth and do not fully utilize the role of uncertainty
in this problem—instead, only to evaluate the reliability of the output results.

In contrast, we consider the distribution properties of uncertainty at the geometric
edges of images, which can be used to constrain the learning of object edge depth. Moreover,
we find that it is not only the pulling problem of moving objects but also the case of
occlusion where uncertainty makes a great contribution. By constraining the depth with
uncertainty, it is possible to distinguish the depth of object in front from the depth of the
obscured object behind.

Previous methods have predicted the depths of two objects with overlap to be the same
depth. Figure 1 shows the depth estimation with edge awareness. The pulling phenomenon of
moving character edges is not effectively addressed in monodepth2, while our method solves
this problem by limiting the depth value of pixels with larger uncertainty in edge depth.



Electronics 2021, 10, 3153 4 of 15

Figure 1. Depth map with edge-aware. The previous method (monodepth2) is prone to blurring on object boundaries. In
contrast, our proposed method can predict smoother, sharper, and high-quality depth maps by considering the depth uncertainty.

3. Method

In this section, we first introduce the basic concepts of self-supervised depth estimation,
then introduce techniques for uncertainty in depth-estimation tasks, and finally introduce
the teacher–student frameworks and multi-scale uncertainty.

The overview diagram of our method is shown in Figure 2. To decouple the depth and
pose networks when modeling uncertainty, we introduce the teacher–student framework.
The teacher uses self-supervised monocular depth estimation, which incorporates a depth
and pose network using a video sequence as input, where t’ represents adjacent frames. To
investigate the effect of model uncertainty on depth estimation, we design different strate-
gies, where BaseT (baseline as teacher), DropT (dropout as teacher), and BagT (bagging as
teacher) denote different teacher networks. The parameter N denotes the number of depth
and pose networks used by the strategies. The student includes only the depth network
and incorporates the uncertainty distribution of depth.

Figure 2. Overview of our proposed framework for joint uncertainty and depth prediction. The blue background corre-
sponds to teacher network, and the gray blocks indicate encoders and decoders. The value of N in figure indicates the
number of depth and pose networks taking the value of 1 for baseline or dropout as the teacher network, and N for bagging
as the number of sub-networks. The light orange background corresponds to the student network. The red and orange
blocks are the loss functions used, and the numbers inside represent the corresponding equations.

3.1. Self-Supervised Depth Estimation

The definition of self-supervised monocular estimation is to estimate the pixel-level
depth value of frame sequences without ground truth. The geometric constraints between
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multiple frames are used as the supervision signal. Specifically, the image frame at discrete
time t′ is warped to the previous frame at time t in the training process:

It′→t ∼ KTt→t′Dt(pt)K−1 It′ , (1)

where K is the known intrinsic matrix of the camera, and Tt→t′ indicates spatial transfor-
mation between image It and It′ . The pixel in the image is expressed as pn, and Dt(pt)
represents the depth value of all pixels in the image at t. Therefore, we can obtain depth
Dt and the spatial transformation Tt→t′ through a depth and pose network. Generally, the
more popular choice for the loss function Lss is the weighted sum between the Structured
Similarity Index Measure (SSIM) [44] and L1:

Lss = F (It, It′→t) = α
1− SSIM(It, It′→t)

2
+ (1− α)‖It − It′→t‖1. (2)

Here, α is commonly set to 0.85 [26]. In addition, adjacent locations are encouraged to have
similar depth values, using edge-aware smoothness loss on the mean-normalized inverse
depth ρ̂t, and ρ̂t =

ρt
ρ̄t

. The loss function is defined by Lsm:

Lsm = |∂hρ̂t|e−|∂h It | + |∂wρ̂t|e−|∂w It |, (3)

where ∂h and ∂w, respectively, denote the one-dimensional difference quotient of pixels in
the image height and width directions. This encourages adjacent pixels to have contiguous
depths, causing the network to ignore the depth of edge pixels during training.

3.2. Uncertainty Estimation

The uncertainty of the depth-estimation task comes from two aspects, uncertainty
of the model’s own ability to learn the data and self-induced uncertainty of the data.
The former is due to limitation of the amount of data learned by models, resulting in a
large uncertainty in the predicted depth on unlearned scenarios, which can be reduced by
expanding the dataset. We still take the model uncertainty into account because we believe
the training set is usually collected in similar scenes, e.g., street scenes or indoor scenes.

Although the sample size is large, the sample variety is not complete, and the model
still has a probability to encounter unlearned objects. The latter comes from the noise
caused by acquisition devices during data collection and the uncertainty caused by complex
scenes, such as low brightness, unclear textures, and blurred edges due to relative motion
or occlusion of objects. This cannot be reduced by expanding the dataset, but serves as a
limiting signal for network to help us solve the edge depth problem associated with depth
pulling or occlusion.

3.2.1. Uncertainty in Depth Models

The uncertainty of the model (also known as the epistemic uncertainty) can be cal-
culated by measuring the variance between multiple network instances. One of typical
methods is Monte Carlo Dropout [45]. In this way, multiple network instances are sampled
from the weight distribution of a single model to estimate the variance. The connections
between network layers are randomly discarded with probability. Dropout is turned on
during the test, and different network instances of this model can be obtained every time
the sample is taken. As follows, the mean µ(d) and variance σ2(d) can be calculated by
performing N forward inferences:

µ(d) =
1
N

N

∑
i=1

di, (4)

umod(d) = σ2(d) =
1
N

N

∑
i=1

(di − µ(d))2. (5)

Here, the variance calculated by N sampling is defined as the model uncertainty umod.
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A similar sampling approach can also be used to compute the uncertainty of the
depth model, namely bagging (also called bootstrap aggregation) [46]. By training different
instance models on random subsets of the training set, we can compute the mean µ(d) and
variance σ2(d) of different depth outputs. This approach requires training N independent
sub-networks and passing each network forward in computing variance.

3.2.2. Uncertainty from Depth Distribution

Unlike the model uncertainty presented above, uncertainty introduced by data is
unexplained (also called aleatoric). Monocular depth estimation predicts the depth of the
same object by multiple viewpoints, which is based on the assumption of grayscale invari-
ance. Clearly, real-world objects must have different grayscale values at their boundaries
due to light intensity, surface field curvature, or complex structures, which contradicts the
assumption. To encode these uncertainties, we learn its prediction model, whose predicted
values are a function of the depth network weights and inputs.

One of popular strategies is to train a network to infer the uncertainty of the depth
distribution p(d∗|I, D) of parameters ϕ by minimizing the negative log-likelihood:

log p(d∗|I, D) =
N

∑
i=1

log p(d∗|ϕ(I, wi)), (6)

where w is the network weights. The predictive distribution can be modeled as Laplacian
in the case of L1 loss computation with respect to d∗ [47]. In the self-supervised monocular
estimation task, due to the lack of ground truth d∗, the depth data uncertainty udat can
be modeled by photometric matching [48], implying minimization of the following loss
function:

Luncert =
minF (It, It′→t)

udat
+ log udat. (7)

The variance is trained to be in logarithmic form to avoid zero variance. An extra
logarithmic term in the formula then restricts the pixels to make infinite predictions.

3.2.3. Multi-Scale Depth Uncertainty

The monocular depth estimation network uses multi-scale feature maps to prevent the
gradient from entering the minimum. This idea comes from the work of Lin et al. [49]. The
depth uncertainty is modeled on depth weights. We believe that different scale depths need
to be constrained by the uncertainty of the corresponding scale. Specifically, the output of
the decoder is given additional extra intermediate outputs. Each layer contains one 3× 3
convolution, which can be estimated at lower scales. This effectively prevents the training
from falling into a local minimum. The existing models mostly use multi-scale for image
reconstruction and depth estimation. Our total loss is a combination of the losses of every
single scale.

In low-to-medium resolution images, large low-texture regions are not easy to learn.
Since monocular depth estimation is predicted based on grayscale values, similar grayscale
values between objects or backgrounds cause the network to tend to predict continuous
depth. Figure 3 shows a visual example of depth uncertainty estimation. The color of
pedestrian clothes in the top left image is similar to the background, and the color of
vehicles in the bottom left image is similar to the low textured trees in the background.

These regions are predicted with strong depth uncertainty, which helps constrain the
network to make continuous depth predictions on discontinuous boundaries. The multi-
scale uncertainty in the figure predicts more uncertainty details (compare the uncertainty
intensity of pedestrians and trees in the background), which is helpful for structurally
complex objects.
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Figure 3. Depth uncertainty estimation cases. Multi-scale uncertainty obtain more depth uncertainty details than single-
scale, especially in the geometric blur caused by moving targets (top) or relative motion between targets and tree in the
background (bottom).

3.3. Teacher-Student Frameworks

In order to decouple the depth and pose when modeling depth uncertainty, we first
train a self-supervised monocular depth estimation network and then use a depth network
to mimic it. This teacher–student framework is a type of transfer learning, which can learn
smaller models in the same field. Generally, the teacher structure is a complex deep neural
network, while the student is lightweight and simple model. Poggi et al. [50] improved the
performance of depth estimation results by incorporating this architecture into a network.

We used three teacher–student combinations to investigate the effects on modeling
depth uncertainty. The teacher models contained self-supervised monocular depth estimation,
dropout layer networks, and bagging strategy models, respectively. The student models
mimic the depth distribution from the teacher, which is equivalent to supervised learning,
with the supervised signal coming from the output of teacher. Then, we can model the depth
uncertainty on the student. Specifically, we train a teacher instance to obtain an output dT.
Assuming the use of L1 loss, the depth uncertainty can be modeled as LTS:

LTS =
‖µ(dS)− dT‖1

σ(dS)
+ log σ(dS), (8)

To avoid zero values in the denominator, let uS = log σ(dS), and the loss function can
be transformed into:

LTS = exp(−uS)‖µ(dS)− dT‖1 + uS, (9)

The µ(dS) and uS represent the depth mean and variance of student outputs. When
the depth of the prediction result cannot imitate the teacher depth well, the value of L1
becomes larger, and the network will increase the uncertainty of pixels in order to minimize
the loss.

4. Experiments

In this section, we validate the effectiveness of using uncertainty for self-supervised
depth estimation and research different networks of teachers.

4.1. Training Details and Metrics

At first, we describe the relevant details about training and the metrics used in the
evaluation model.

4.1.1. Details on the Learning Procedure

In our experiment, the training process uses a monocular sequence, and the open
source model Monodepth2 [26] is chosen as the baseline model. Most of our protocols fol-
low the setting of [26], the input and output image size is 192× 640, trained for 20 epochs
using Adam, and the batch size is set to 12 (due to memory limitations, we use gradient ac-
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cumulation technology). Moreover, the ImageNet [51] pre-training is used at the beginning
of the encoder. In addition, we turn on dropout during training and testing, and only use it
in the decoder. Regarding our methods, we set the hyperparameter N to 8 and randomly
extract 25% of the training set for each bagging network.

4.1.2. Depth Metrics

In order to compare the performance of depth networks, we report the following seven
standard performance criteria. They are the Absolute Relative Error (AbsRel), Squared Rela-
tive Difference (SqRel), Root Mean Squared Error (RMSE), Root Mean Squared Logarithmic
Error (RMSE log), and three accuracy metrics (threshold δ < 1.25k, k ∈ 1, 2, 3). For a detailed
description, please refer to the reader to [52] for further description of these metrics.

4.1.3. Uncertainty Metrics

In addition to the above metrics to evaluate the performance of our depth estimation
model, we measure both Area Under the Sparsification Error (AUSE) and Area Under the
Random Gain (AURG) as measures to evaluate the quality of uncertainty prediction. They
come from the sparsity of specified parameters—the so-called sparsification plots [47]. This
graph shows similarity between the estimated uncertainty and true error. Generally the
descending sorting curve of true error versus ground truth is called oracle sparsification,
difference between sparsification and oracle is called AUSE.

We used the method described in [50] to measure the area under the sparsification
error curve as first indicator. Specifically, for the uncertainty of given error,pixel level
is sorted in descending order, we extracted 2% of the pixel subset each time, and the
remaining pixel error curve can be drawn. If uncertainty is correctly coded, the error curve
will be reduced. Therefore, the lower the value of this indicator, the better. In addition,
subtracting the estimated sparsification from random uncertainty is the area AURG, the
higher the better. We follow [50] and set three error metrics, namely AbsRel, RMSE, and
δ > 1.25.

4.1.4. Dataset

We used the KITTI dataset [18], which is an outdoor scene image data captured by
vehicle with depth estimation sensor while driving on city street, it contains 61 scenes. We
used Eigen et al.’s [53] data split and follow Zhou et al.’s [24] of pretreatment to remove the
static frame. This outcome 39,810 monocular triplets for training and 4424 for validation.
We set the principal point of camera as the center of the image and use the same intrinsic
function for all images, taking the average of all focal lengths as the final focal length. During
evaluation, we set the maximum depth to 80 m according to standard practice in [23] and use
the per-image median ground truth scaling introduced by [24] to report the results.

4.2. Monocular Depth Estimation with Uncertainty

Here, we compare the monocular estimation methods published previously, demon-
strate the effectiveness of our approach by depth estimation evaluation. Then, we conduct
ablation experiments on multiple model architectures with depth uncertainty for different
KITTI benchmarks.

4.2.1. KITTI Eigen Split

We compared the best combined results of our model with those of some state-of-the-
art depth estimation models, all of which are monocular methods. The quantitative results
are shown in Table 1, all on KITTI using Eigen split. The best results for each evaluation
metric are shown in bold. As can be seen, our model is the best result for each metric,
which significantly improves the performance compared to the baseline model monodepth2
with the error rate metrics decreased by 4.35%(AbsRel), 8.97%(SqRel), 3.64%(RMSE), and
3.11%(RMSElog), respectively, and the accuracy rate increased by 0.57%(δ < 1.25 ↑). The
qualitative results are shown in Figure 4.
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Table 1. Quantitative results. Comparison of our method with existing methods using the Eigen split on KITTI [54]. The
best results in each metric are shown in bold.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Zhou [24] 0.183 1.595 6.709 0.27 0.734 0.902 0.959
Yang [55] 0.182 1.481 6.501 0.267 0.725 0.906 0.963

Mahjourian [31] 0.163 1.24 6.22 0.25 0.762 0.916 0.968
DF-Net [56] 0.15 1.124 5.507 0.223 0.806 0.933 0.973

Bian [57] 0.137 1.089 5.439 0.217 0.83 0.942 0.975
Chen [58] 0.118 0.905 5.096 0.211 0.839 0.945 0.977
Tosi [59] 0.111 0.867 4.714 0.199 0.864 0.954 0.979

Godard [26] 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Klingner [60] 0.113 0.835 4.693 0.191 0.879 0.961 0.981

Poggi [50] 0.112 0.861 4.762 0.189 0.88 0.961 0.982
Ours 0.11 0.822 4.686 0.187 0.882 0.961 0.982

Figure 4. Qualitative results on the KITTI Eigen split. Our model produces depth maps with sharper
object boundaries in most cases, which reflects the superior quantitative results in Table 1.
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To further elaborate the findings of the experimental results, we selected representative
results to explain the effect of uncertainty on depth estimation. Figure 5 contains two typical
scenes, occlusion and a low-texture region. Object occlusions (with a front-to-back position rela-
tionship) are typically predicted to have the same depth values. In the first image, monodepth2
predicts the backward vehicle and forward vehicle as having similar depth values.

Our method correctly detects the depth of the vehicle in front. The second image is a
case of predicting depth of low-texture region with dark background and low saturation of
the road sign color. Monodepth2 produced a depth pulling phenomenon at the edges of
road sign, and the pixel size of predicted depth region is larger than the original pixel size
in input image. In contrast, our method produces better results.

Figure 5. The case of depth estimation with edge optimization. In the case of object occlusion (white
and black car in the above figure), monodepth2 predicts both as similar depths, and the silvery green
in the figure is the front car outline. Our method correctly predicts the depth of the front car. For the
object in the low-texture region (the road sign in the figure below), monodepth2 predicts the depth
area pixel size not only larger than the pixel size in the original image but also a little blurred at the
depth edge (the depth difference with the background is not obvious). Our method produces better
results both in terms of pixel size and smoothness of edges.

4.2.2. Ablation Study

In order to study depth uncertainty and how our strategy contributes to monocular
depth estimation training, we implemented two methods of depth uncertainty (aleatoric and
epistemic) with different teacher–student strategies for ablation research. Table 2 reports
our final results, where BaseT, BagT, and DropT represent the use of baseline, bagging,
and dropout networks as the teacher models. In addition, A, E, and S indicate the use of
aleatoric, epistemic, and single-scale uncertainty, respectively (multi-scale uncertainty is used
by default). The T+S represents that this method uses teacher–student framework, the Alea
and Epis are shorthand for aleatoric and epistemic.

The Bagging method that generates model uncertainty obtained the best results for
the RMSE metric. While combining Bagging as a teacher model and the two uncertainty
methods BagT+AE obtained the best results for the Sq Rel metric. This indicates that the
model can learn richer information when trained with the combination of uncertainty and
can reduce the error between the predicted and true results.

Our baseline uses Monodepth2, which can already produce high accuracy by itself, and
the networks using the baseline as the teacher model both improve in accuracy compared
to the baseline. Showing that the teacher–student strategy allows the final network to
learn a better distribution of weights. For uncertainty evaluation, the results show that
the best combined result is the BaseT+A, while the method using single-scale uncertainty
(BaseT+A+S) obtains suboptimal results. For the scale-dependent experiments, we only
perform on the strategy with the optimal results (BaseT+A).
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We report visualization view of depth uncertainty under different strategies as shown in
Figure 6. It is clearly seen that the approach using the teacher–student strategy yields clearer
uncertainty results, and the approach using the baseline as the teacher model is superior.
These observations are consistent with the quantitative results Tables 2 and 3.

Table 2. Ablation. The results of our different strategies for monocular depth evaluation using Eigen split at KITTI. The best
results in each metric are shown in bold.

Method T+S Alea Epis Multi-Scale Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE
log ↓

δ <
1.25 ↑

δ <
1.252 ↑

δ <
1.253 ↑

Baseline 0.113 0.87 4.756 0.19 0.879 0.96 0.981
Baseline+A

√ √
0.113 0.865 4.76 0.189 0.88 0.961 0.982

Bagging
√ √

0.113 0.79 4.607 0.189 0.876 0.961 0.983
Dropout

√ √
0.124 0.835 4.74 0.194 0.852 0.955 0.983

BaseT+A+S
√ √

0.111 0.823 4.676 0.188 0.882 0.961 0.982
BaseT+A

√ √ √
0.11 0.822 4.686 0.187 0.882 0.961 0.982

BaseT+AE
√ √ √ √

0.111 0.844 4.706 0.188 0.881 0.961 0.982
BagT+AE

√ √ √ √
0.113 0.786 4.628 0.189 0.875 0.961 0.983

DropT+AE
√ √ √ √

0.119 0.787 4.627 0.189 0.861 0.957 0.983

Figure 6. Visualization view of depth uncertainty under different strategies.
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Table 3. The results of our different strategies for depth uncertainty evaluation. The best results in
each metric are shown in bold.

Method
Abs Rel RMSE δ > 1.25

AUSE ↓ AURG ↑ AUSE ↓ AURG ↑ AUSE ↓ AURG ↑
Baseline+A 0.063 0.01 3.676 0.383 0.09 0.02

Bagging 0.063 0.01 3.631 0.275 0.094 0.019
Dropout 0.075 0.005 3.582 0.395 0.122 0.01

BaseT+A+S 0.034 0.039 2.175 1.833 0.034 0.075
BaseT+A 0.034 0.039 2.168 1.871 0.035 0.075

BaseT+AE 0.036 0.038 2.274 1.79 0.037 0.074
BagT+AE 0.037 0.036 2.507 1.428 0.041 0.073

DropT+AE 0.064 0.014 2.488 1.406 0.095 0.03

4.2.3. KITTI New Benchmark

We performed quantitative experiments on the KITTI new benchmark [61], a dataset
with 93,000 depth annotated images, all from the original KITTI dataset. This new dataset
can be used for training and evaluation of depth upsampling techniques and depth predic-
tion. It is the first dataset with high quality depth annotations for this case. Tables 4 and 5
show the quantitative results of our different strategies on the KITTI new benchmark.

Consistent with the previous analysis, baseline as the teacher model with the addition
of multi-scale uncertainty method BaseT+A obtains the best results for combined evaluation
metrics. Regarding the baseline as a teacher model approach, the uncertainty evaluation
metric has multiple identical metric results. These methods all have the same teacher–
student model architecture, only with different uncertainty methods, proving that the main
strategy affecting the overall performance of the model is the teacher–student frameworks.
In addition, increasing epistemic uncertainty reduces accuracy.

Table 4. Quantitative results of our different strategies for depth evaluation on KITTI new benchmark [61]. The best results
in each metric are shown in bold.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Baseline 0.089 0.525 3.867 0.135 0.916 0.983 0.995

Baseline+A 0.088 0.508 3.835 0.133 0.918 0.983 0.995
Bagging 0.091 0.5 3.806 0.136 0.912 0.983 0.995
Dropout 0.099 0.553 4.064 0.147 0.895 0.978 0.995

BaseT+A+S 0.087 0.497 3.79 0.132 0.919 0.984 0.996
BaseT+A 0.086 0.488 3.792 0.131 0.92 0.984 0.995

BaseT+AE 0.087 0.508 3.813 0.132 0.919 0.984 0.995
BagT+AE 0.091 0.501 3.838 0.136 0.912 0.982 0.995

DropT+AE 0.094 0.497 3.862 0.14 0.905 0.981 0.995

Table 5. Quantitative results of our different strategies for uncertainty evaluation on KITTI new
benchmark [61]. The best results in each metric are shown in bold.

Method
Abs Rel RMSE δ > 1.25

AUSE ↓ AURG ↑ AUSE ↓ AURG ↑ AUSE ↓ AURG ↑
Baseline+A 0.049 0.007 3.016 0.259 0.067 0.01

Bagging 0.051 0.007 3.047 0.184 0.071 0.011
Dropout 0.06 0.004 3.177 0.262 0.09 0.006

BaseT+A+S 0.029 0.027 1.926 1.333 0.028 0.047
BaseT+A 0.029 0.027 1.916 1.362 0.029 0.047

BaseT+AE 0.03 0.027 2.019 1.287 0.03 0.047
BagT+AE 0.033 0.026 2.35 0.921 0.037 0.045

DropT+AE 0.05 0.01 2.316 0.955 0.069 0.019
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5. Conclusions

In this paper, we proposed an improved model for self-supervised monocular depth
estimation. To study the influence of the uncertainty of different scales on depth, the results
revealed that multi-scale obtained more depth uncertainty details compared with single-
scale, which is helpful to solve the problem of depth boundary blur caused by occlusion
and low-texture. In addition, we studied the effects of different teacher–student paradigms
(using different networks as teachers) on the monocular depth performance.

This architecture not only decoupled the original depth and pose networks but also
used a simple model to learn the weight distribution of the teacher network. The student
model showed better comprehensive performance, which can improve the depth accuracy
of the model. Our results show that the network combining multi-scale depth uncertainty
with the optimal teacher–student architecture achieved the best results. The qualitative
results show that our proposed network approach can generate high quality depth maps
with clarity and details.
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