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Abstract: Climate change and pollution fighting have become prominent global concerns in the
twenty-first century. In this context, accurate estimates for polluting emissions and their evolution
are critical for robust policy-making processes and ultimately for solving stringent global climate
challenges. As such, the primary objective of this study is to produce more accurate forecasts of
greenhouse gas (GHG) emissions. This in turn contributes to the timely evaluation of the progress
achieved towards meeting global climate goals set by international agendas and also acts as an early-
warning system. We forecast the evolution of GHG emissions in 12 top polluting economies by using
data for the 1970–2018 period and employing six econometric and machine-learning models (the
exponential smoothing state-space model (ETS), the Holt–Winters model (HW), the TBATS model,
the ARIMA model, the structural time series model (STS), and the neural network autoregression
model (NNAR)), along with a naive model. A battery of robustness checks is performed. Results
confirm a priori expectations and consistently indicate that the neural network autoregression model
(NNAR) presents the best out-of-sample forecasting performance for GHG emissions at different
forecasting horizons by reporting the lowest average RMSE (root mean square error) and MASE
(mean absolute scaled error) within the array of predictive models. Predictions made by the NNAR
model for the year 2030 indicate that total GHG emissions are projected to increase by 3.67% on
average among the world’s 12 most polluting countries until 2030. Only four top polluters will record
decreases in total GHG emissions values in the coming decades (i.e., Canada, the Russian Federation,
the US, and China), although their emission levels will remain in the upper decile. Emission increases
in a handful of developing economies will see significant growth rates (a 22.75% increase in GHG
total emissions in Brazil, a 15.75% increase in Indonesia, and 7.45% in India) that are expected to offset
the modest decreases in GHG emissions projected for the four countries. Our findings, therefore,
suggest that the world’s top polluters cannot meet assumed pollution reduction targets in the form
of NDCs under the Paris agreement. Results thus highlight the necessity for more impactful policies
and measures to bring the set targets within reach.

Keywords: GHG emissions; automated forecasting; neural network autoregression model (NNAR);
GHG emissions prediction; Paris agreement

1. Introduction

Along with climate change, air pollution is one of the most serious environmental
hazards to human health, estimated to cause 7 million premature deaths per year [1]. The
economic consequences of air pollution are dire, as estimates indicate $5 trillion in welfare
losses and 225 billion in lost income [2,3].

Air pollution includes greenhouse gas (GHG) emissions that warm the earth’s surface
and atmosphere [4]. GHG refer to the sum of seven gases that have direct effects on climate
change: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), chlorofluorocarbons
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(CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6),
and nitrogen trifluoride (NF3) [5].

Understanding the urgency of more vigorous climate combat, decisive steps have been
taken at the global level. The United Nations Framework Convention on Climate Change
(UNFCCC) adopted the Kyoto Protocol (1997) and the Paris Agreement (2015) [6]. The Paris
Agreement, signed in December 2015, gathered all signatory countries under a common
goal toward making significant efforts to tackle climate change and air pollution [7,8]. The
Paris Agreement is meant to improve upon and replace the Kyoto Protocol, an earlier
international treaty designed to curb the release of GHG, whose effectiveness has been
heavily criticized because the world’s two top carbon dioxide-emitting countries, China
and the United States, chose not to be part of the agreement [9]. In contrast, the 2015 Paris
agreement has been signed by nearly every country in the world (together responsible for
more than 90 percent of global emissions), with 190 of the signatory countries (including the
US and China) going further and having underlined their support with formal approval.
As such, while before the Paris Conference the signatory countries submitted carbon
reduction targets (i.e., “intended nationally determined contributions” or INDCs), these
targets subsequently became “nationally determined contributions” or NDCs after the
formal approval of the agreement [10]. Hence, the Paris Agreement and the attainment
of long-term climate targets are built around these NDCs representing each country’s
efforts to cut national emissions and adapt to climate change consequences. Given the
heterogeneity in circumstances, resources, and capabilities, the agreement was developed
so that each country establishes their own commitments in terms of how much they can
contribute to the 2030 Agenda. However, almost all submitted NDCs contain a target to
reduce polluting emissions by a specific percentage over a specified period, in most cases,
the first established deadline being 2030. However, while signatory parties are legally
required to establish an NDC under the Paris agreement and to take actions to accomplish
it, the NDC itself is not legally binding or enforceable pledge [11].

Considering the GHG emission mitigation targets that most world countries have set
for 2030 and/or 2050 under the Paris agreement, the total GHG emissions were expected
to decline significantly in the aftermath of its adoption and to continue a decreasing trend
over the next decades. However, the vast majority of world economies are yet to deliver on
their pledges [12].

Data employed in our study backs this finding. Figure 1 shows that on average total
GHG emissions have continued to increase after 2015, although there is high heterogeneity
across countries at the world level when it comes to their contribution to world pollution.
Figure 2 highlights that only a handful of countries significantly contributed to world
pollution over the 1970–2018 period. Specifically, the main culprits reflected in Figure 2
are the US, with a mean annual value for total GHG emissions measured in kt of CO2
equal to 6,134,747 over the 49-year period, closely followed by China with 5,439,570 kt
average annual GHG over the same period and at some distance by the Russian Federation,
which registered 2,635,846 kt average annual GHG emissions. The rhythm of emissions
growth has also been heterogenic at the world level over the past decades, as our study will
further reflect. Overall, global greenhouse gas emissions have risen considerably since 1970,
showing a 67.31% increase by 2018 (when total GHG emissions in kt of CO2 equivalent
at world level registered a mean value of 254,047.3) relative to their 1970 levels (mean
value of 151,837.9 kt of CO2 equivalent). This translates into an increase of 102,209.4 kt
CO2 in absolute terms over the 1970–2018. Over the entire 49-year period, interim short-
term reversals followed economic contractions, with a sharper decrease during the 1990s
economic recession caused by the Gulf War and subsequent oil price shocks.
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This incongruence between policy targets and the current reality is particularly worry-
ing given that top polluters continue to show significant increases in total GHG emissions
and highlights the necessity of more impactful policies and measures to bring the set tar-
gets within reach. Consequently, accurate and robust forecasts for polluting emissions are
needed for an effective and efficient policy-making process. The issue is timely, as countries
must juggle post-pandemic recovery and bend the emission trends [13]. However, the task
is particularly challenging, as the world should halve annual greenhouse gas emissions
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in the next eight years to keep global warming below 1.5 ◦C this century, and thus meet
the aspirational goal of the Paris Agreement [14]. Other studies report the need for a cut
of total GHG emissions by 7.6 percent each year between 2020 and 2030 to stay on track
toward the 1.5 ◦C temperature goal of the Paris Agreement [15]. Current statistics show a
rapid recovery of economic activity and increasing emissions as energy demand soars [16].

Unsurprisingly, polluting emissions have steadily drawn the attention of academics
and policymakers over the past decades, and national and international agencies increas-
ingly employ forecasts of polluting emissions in their policy-making process. Consequently,
producing accurate estimates for GHG emissions and their evolution is critical for robust
policy-making processes and ultimately for solving global climate challenges [17]. This in
turn is an important motivator for this study, which intends to identify the over-performing
predictive model in terms of forecasting accuracy for total GHG emissions and subse-
quently apply it for producing forecasts for GHG emissions in top-emitting countries over
long forecasting horizons, covering the first benchmark set for individual pledges within
the Paris agreement, i.e., 2030.

Unlike most studies in the existing literature that investigate driving factors for
polluting emissions, we take a univariate approach. This further brings two important
advantages. First, it eliminates the challenge of identifying the right mix of macroeconomic,
social, and financial variables that are potential impact factors for polluting emissions, and
thus eliminates the risk of model misspecification, with further gains in terms of increasing
estimation efficiency. Second, and most importantly, our approach allows us to produce
forecasts for a validated leading indicator, independent of other variables.

Considering the above considerations, this study makes several contributions to the
extant literature, as follows.

First, we employ a wider variety of candidate predictive models, including econo-
metric and machine-learning methods, and perform a battery of robustness checks to
assure that the best-performing out-of-sample forecasting model is identified. As we are
more concerned with prediction accuracy than in-sample information, and in light of the
previous literature, we a-priori expect machine learning methods to over-perform.

Secondly, we use a more relevant metric for air pollution, GHG emissions, instead of
CO2 emissions that are usually employed in previous studies. Consequently, by including
a more accurate indicator of air pollution (i.e., CO2 emissions account for approximately
76 percent of total GHG emissions, according to the Center for Climate and Energy Solu-
tions [18], estimation results are more relevant for policymakers. To this end, this study
uses data for the 1970–2018 period provided by the World Development Indicators (WDI)
database of the World Bank.

Thirdly, unlike most of the aforementioned previous studies that focus only on a
single country or cover at most a handful of economies, this study includes the 12 most
polluting countries in the world, which are responsible together for around 75% of total
GHG emissions at world level. This contributes to assuring the robustness of the forecasting
method and further increases the relevance of results for policymakers.

Results of this study confirm prior expectations and find that overall on average, the
neural network autoregression model (NNAR) presents the best out-of-sample forecasting
performance for GHG emissions over a long forecasting horizon by reporting the lowest
average RMSE within the array of predictive models. Results further show that the world’s
top polluters will not meet assumed GHG emissions’ reduction targets under the Paris
agreement, and thus more impactful policies and measures are needed to bring the set
goals within reach.

The remainder of the paper is organized as follows. The next section gives an overview
of the related literature. Next, Section 3 explains the data and methodology employed in
the empirical investigation, while Section 4 presents and discusses the estimation results
and the performed robustness checks. Finally, Section 5 concludes the study.
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2. Literature Review

The environmental Kuznets curve (EKC) theory [19,20] states that pollution rises with
the economic expansion until a certain level of wealth is achieved, at which point emissions
begin to decline, implying an inverted U-shaped link between environmental degradation
and income [21]. Overall, mixed results were obtained from previous research that looked
at the presence of the EKC in different countries and across different time periods [22].
As a result, the topic of how economic growth and environmental quality are related (i.e.,
the form of the environmental Kuznets curve) continues to be contentious [23]. As such,
on one hand, the EKG hypothesis has been validated empirically by numerous studies
(among others, [6,24–26]). However, on the other hand, a bidirectional causality has also
been repeatedly encountered [27], thus suggesting that emissions can also be a leading
indicator of growth.

Moreover, besides its proven impact on economic growth, air pollution has a sub-
stantial influence on public health [28]. Hence, previous studies confirmed that polluting
emissions are also a leading indicator for various health variables [29] and for mortal-
ity [30,31]. These effects have been found in both long-term studies, which have followed
cohorts of exposed individuals over time, and in studies that connect day-to-day fluctua-
tions in air pollution and health [32]. Moreover, there is mounting evidence that indoor air
pollution is a severe concern to human health in addition to ambient air quality, particularly
in low-income nations where biomass fuels are still used as an energy source [33]. All these
findings further highlight the importance of combating climate change.

As such, given its validated role as an impact factor for important socio-economic
variables, the primary objective of this study is to produce more accurate forecasts of GHG
emissions. This in turn contributes to the timely evaluation of the progress achieved toward
meeting global climate goals set by international agendas and also acts as an early-warning
system when projections show that the state of affairs does not reflect policy statements and
formal pledges are not followed by concrete measures and results. Hence, results of this
study are also important for policymakers to incorporate forecasts of polluting emissions
in their policy-making process.

However, time series analysis and forecasting remain challenging tasks [34], and air
pollution prediction is no exception [35]. Broadly, based on the work of [36] prediction
models pertain to two main cultures or schools of thought [37], each with its benefits
and drawbacks [38]: (i) econometrics, or statistical methods, a category that covers many
familiar models [39], and (ii) machine learning (self-learning systems, capable of learning
from data to improve their performance). Their two common goals, information, and
predictability [40] are differently prioritized, with statistical methods focusing on infer-
ence, whereas machine-learning techniques concentrate on prediction [41]. As the British
statistician George Box has famously put it: “All models are wrong, but some are useful.”
Consequently, the aim in time-series forecasting should be to identify the best predictive
model within a pool of candidates and employ it to produce forecasts for the series of
interest. This study does not deviate from this goal. Previous studies that attempt to model
and forecast univariate polluting emission time series (most often CO2) primarily employ
statistical methods, including the logistic equation [42], the ARIMA [43], and the ARIMA,
Holt–Winters, exponential smoothing, and singular spectrum analysis (SSA) [44]. In the
second category, we encounter among others [45] that use extreme learning machines
based on particle swarm optimization to predict CO2 emissions in Hebei, ref. [46] that
use an artificial neural network (ANN) to predict carbon emission intensity for Australia,
Brazil, China, India, and the USA, and [47], which employ a neural network model for
forecasting the CO2 emission produced by the cereal sector in a southern Italy region.
Overall, previous studies confirm that nonlinear models can capture the nonlinear pattern
of real-world data, and thus overcome the limitation of linear models, improving their
prediction performance [48]. Additionally, artificial neural networks (ANN) are found to
be useful in time series modeling where past values of a variable of interest are used to
determine its future values [49].
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In this study, we attempt to forecast the evolution of GHG emissions by employing
six candidate models belonging to both the aforementioned categories. As such, we
estimate the innovations state-space models for exponential smoothing (ETS), the Holt–
Winters (HW) model, the autoregressive integrated moving average (ARIMA) model, the
trigonometric ETS state-space model with Box-Cox transformation, ARMA errors, trend
and seasonal components (TBATS) model, the structural time series model (STS) and
the neural network autoregression (NNAR) model. Additionally, a naive model is also
employed for comparative purposes.

Similar approaches in the literature, but with application on other time series, include
the study by [50], which estimate and report the forecasting performance of nine models for
the price of gold, concluding that on average, the exponential smoothing model is providing
the best forecasts in terms of the lowest root mean squared error. Similarly, ref. [51] uses
seven automated forecasting techniques, including statistical and machine learning models,
for explaining and predicting the evolution of CO2 emissions in Bahrain and identify the
NNAR model to provide the most accurate out-of-sample forecasts. More recently, ref. [34]
also predicted the evolution of Bahrain’s CO2 emissions by employing a neural network
time series nonlinear autoregressive model, the Gaussian process regression model, and
Holt’s method, to agree that the NNAR model is outperforming the other candidates.
Ref. [52] also employs four of the techniques applied in this investigation (i.e., ARIMA,
ETS, NNAR, and TBATS) along with their feasible hybrid combinations to forecast the
second wave of COVID-19 hospitalizations in Italy, concluding that the best single models
were NNAR and ARIMA, and that the best hybrid models always included a NNAR
process. Finally, ref. [53] employ statistical and deep learning methods to forecast long-
term pollution trends for the two categories of particulate matter (PM) in a major city in
eastern India, i.e., Kolkata. They conclude that statistical methods (i.e., auto-regressive
(AR), seasonal auto-regressive integrated moving average (SARIMA) and Holt–Winters)
outperform deep learning methods for their data. However, they argue that the results
might be due to the limited data available, and that with a higher quantity of data and
higher frequency and forecasting horizon, deep-learning models would out-perform.

All of these works bring important results for the global climate fight related literature.
However, most of these works have a narrow interest (i.e., most are single-country studies,
as seen above) and most importantly, they do not strongly defend their results robustness.
The vast majority stops at evaluating the predictive ability of alternative models by re-
porting various forecasting accuracy metrics. [34] employs the root mean square errors
(RMSE) to this end, whereas [53] estimate both RMSE and MAE, and [52] reports MAE,
MAPE, MASE, and RMSE metrics. Nonetheless, except [51] that reports the KSPA test,
other studies do not estimate and present statistical tests for multiple forecast comparisons
and thus, do not investigate the hypothesis whether forecasts are significantly different,
defending their results. Additionally, none of these previous works have re-estimated
the models by employing an alternative forecasting technique (i.e., recursive window,
changing window length, various time series slitting rules, etc.).

In this study, results’ robustness is assured firstly by employing out-of-sample fore-
casting on a holdout sample of observations and investigating the accuracy of several
forecasting methods in comparative perspective, then by reassessing the predictive ability
of candidate models via the recursive window forecasting technique, and finally by per-
forming all estimations for 12 different top polluting countries, responsible for around 3

4 of
total GHG emissions at world level. Moreover, applying the Kolmogorov–Smirnov (KS)
predictive accuracy test (KSPA) proposed by [54] and the Diebold–Mariano (DM) test intro-
duced by [55] and developed by [56] further contributes to testing the over-performance of
the best predictive model and assures our results’ robustness.

Additionally, a further advantage of our approach consists in the fact that the em-
ployment of standard econometric methods together with machine-learning techniques in
estimations and predictions allows comparison with previous results from the literature.
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3. Materials and Methods
3.1. Data
3.1.1. Database

This study uses annual data on total GHG emissions measured in kt of CO2 for
the period 31 December 1970–31 December 2018, thus covering a total of 49 years. The
source of data is the World Development Indicators (WDI) database of the World Bank
(Data source: https://data.worldbank.org/indicator/EN.ATM.GHGT.KT.CE, accessed on
8 November 2021).

In the first stage, GHG data were extracted from the WDI for all countries included
in the database, thus resulting in a sample of 205 individual economies. Then, we have
removed countries for which data were unavailable over the entire period, resulting in the
final sample of 175 countries and 8575 annual observations included in the analysis.

An exploratory analysis aimed at uncovering the state of affairs was subsequently
performed.

3.1.2. GHG Emissions by Country, Top Polluters and Historical Trends

Table 1 reflects the top 20 GHG emitters in the world in the most recent year of
available data, i.e., 2018.

Table 1. Greenhouse Gas Emissions by Top Emitters, 2018 and emission trends (1970–2018).

Country GHG Emissions 2018
(Total, kt of CO2) Region Income Category

% Change
(Relative to

2015)

% Change
(Relative to

1970)

China 12,355,240 East Asia & Pacific Upper middle 4.18 559.31

United States 6,023,620 North America High income 0.33 11.54

India 3,374,990 South Asia Lower middle 10.16 352.11

Russian
Federation 2,543,400 Europe & Central Asia Upper middle 2.73 13.50

Japan 1,186,770 East Asia & Pacific High income −6.19 26.10

Brazil 1,032,640 Latin America &
Caribbean Upper middle −4.62 −18.11

Indonesia 969,580 East Asia & Pacific Lower middle 13.80 185.44

Iran, Islamic Rep. 828,280 Middle East & North
Africa Upper middle 5.31 484.04

Germany 806,090 Europe & Central Asia High income −4.88 −37.35

Canada 724,930 North America High income 2.40 46.46

Korea, Rep. 718,880 East Asia & Pacific High income 4.82 711.00

Mexico 679,880 Latin America &
Caribbean Upper middle 1.46 222.91

Australia 615,380 East Asia & Pacific High income 3.50 92.89

Turkey 502,520 Europe & Central Asia Upper middle 15.83 432.17

United Kingdom 452,080 Europe & Central Asia High income −9.17 −46.15

Pakistan 431,220 South Asia Lower middle 17.89 394.90

France 423,350 Europe & Central Asia High income −1.58 −31.11

Thailand 416,950 East Asia & Pacific Upper middle 6.15 280.61

Italy 399,600 Europe & Central Asia High income −3.98 2.92

Poland 389,650 Europe & Central Asia High income 6.39 −16.42

Average (top
20 polluters) 3.23% 183.34%

Average (175 countries) 3.4% 67%

https://data.worldbank.org/indicator/EN.ATM.GHGT.KT.CE
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As of 2018, the world’s top greenhouse gas (GHG) emitters in absolute terms are
China, the United States, India, the Russian Federation, Japan, and Brazil. The 20 top
polluters reflected in Table 1 belong to all income categories, among which 50% are high-
income countries, 35% are upper-middle-income countries, and 15% lower-middle-income
economies (i.e., India, Indonesia, and Pakistan). This confirms that high polluting emissions
are a problem across the development divide [57]. The rhythm of GHG emissions growth is
highest in Korea, with an alarming 711% increase over 1970–2018, followed by China with
559% and Iran with 484% over the same period. Only five of the world’s top polluters (i.e.,
Brazil, Germany, UK, France, and Poland) register a decrease in emissions since 1970, with
overall modest decreasing rates (emissions have fallen the most in the UK, with a negative
evolution of −46%). As such, although these (mostly) developed countries have shown a
downward trend in overall emissions, their levels remain in the upper decile as of 2018
(for Brazil, Germany, UK, France), while Poland is on the 8th decile in rank of the world
countries with most GHG emissions in 2018. Over the 49-year period, the top 20 world
polluters recorded an enormous 183.34% of GHG emissions growth, whereas the world
average (including the top polluters) is 67% over the same period, as shown in Figure 1.
The disparities in emissions growth are also reflected in Figure 3.
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Equally troublesome, only six countries have actually reduced their GHG emissions
in the aftermath of the Paris agreement (i.e., Japan, Brazil, Germany, UK, France, and Italy).
All other top polluters continue to register increases in emissions since 2015, with Pakistan,
Turkey, and Indonesia showing the highest growth levels.
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Figure 4 confirms that a small handful of nations account for the majority of global
greenhouse gas emissions. On an absolute basis, China, the United States, and India are the
three largest emitters. Together, they account for 48% of 2018 global GHG emissions. The
12 most polluting countries produce overall around three quarters of total GHG emissions
at the world level, while the other 163 countries included in the analysis are responsible
together for 26% of total greenhouse gas emissions in 2018. This underlines that a minority
of countries create a global problem with systemic consequences. This in turn further
motivates us to focus on the 12 top emitting countries in our investigation.
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3.2. Method

Firstly, Appendix A presents the notations and definitions that are employed in the
empirical investigations.

3.2.1. Forecasting Technique

This study implements a holdout technique to compare and select an optimal model
for forecasting GHG emissions in 12 countries. This technique requires the division of
the historical data series of length Ni, i ∈ {1, . . . , 12} in two subsets corresponding to a
training (or fit) period and a test period. For our purposes, the data up until 2013 (i.e.,
approximately 90% of observations) are used in-sample for model training and validation
whilst the period covering 2014–2018 (i.e., 10% of observations) is set aside for testing
the out-of-sample forecasting accuracy of the predictive models. The last observation
in the training interval Si is thus the forecasting origin (here, GHG emissions in 2013),
whereas the period that is predicted (here, 2014–2018) represents the forecasting horizon or
lead-time, equal to Ni-Si [58]. Figure 5 depicts the holdout forecasting technique employed
in this study.
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As most NDCs under the Paris agreement specify the year 2030 as the first deadline
for emissions reduction, we are particularly concerned with identifying the best predictive
model within a pool of seven candidates and subsequently using it for providing h = 12
steps ahead forecasts for GHG emissions in the 12 top polluting countries, thus including
this first deadline in the forecasting horizon.

R software is employed to implement the method and estimate the predictive models
via automatic forecasting algorithms, mainly included in the “forecast” package [59] and
the “stats” package [60].

3.2.2. Robustness Checks

Forecasting accuracy: The forecasting accuracy of all candidate models for each of the
12 series is assessed through estimating the root mean squared error (RMSE), as in [44,55].
This accuracy metric brings the valuable benefit of being directly interpretable in terms
of measurement units. RMSE represents the square root of the mean square error, and
thus is estimated by taking the differences between each point forecast and corresponding
observed value within the lead time, squaring it, and averaging it, as in Equation (1):

RMSE =

√√√√ 1
N

N

∑
i=1

(y i− ŷl)
2 (1)

RMSE, as many other Goodness-of-Fit (GoF) metrics, is referred to as scale-depen-
dent [61]. Within the scale-dependent category of GoFs, RMSE, and the mean absolute
error (MAE) emerged as the most popular. However, RMSE carries some benefits relative
to MAE and is usually the recommended metric [62], although it cannot be used to measure
out-of-sample forecast accuracy at a single forecast horizon [63] when multiple series of
different measurement unit are analyzed. To solve this issue, ref. [63] proposed a new GoF
metric, MASE (the mean absolute scaled error), thus a scale free error metric, which we
also report in this study for robustness checks purposes. MASE is thus estimated by taking
the MAE and dividing it by the MAE of an in-sample naive benchmark, as in Equation (2).

MASE =
MAE

MAEin−sample,naive
=

1
n

n

∑
i=1
|y i− ŷl| (2)
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The MASE metric is symmetrical and resistant to outliers, and values larger than
1 imply that the predictions are, on average, poorer than the naïve model’s in-sample
one-step forecasts [63]. The MASE would only be infinite or undefined if all historical
observations were equal or if all of the actual values throughout the in-sample period were
zeros [64].

The recursive window forecasting technique: To further assure the robustness of our
results, all estimations for the 12 time series are repeated by implementing one of the
most popular techniques for cross-validation, a fixed-length rolling-window forecasting
technique.

As such, the dataset covers the training period set for the first S observations (i.e.,
44 years) in the sample, and a testing period of length N-S, where N is the total number of
observations for each country, i.e., 49. For each year n in the testing interval [S+1:N], or
here [2014:2018], the GHG emissions are predicted after the candidate models have been fit
on the recursive window of S past observations. This sequence is repeated recursively over
the lead-time, and consequently a total of N-S iterations (5) are performed for each of the
12 time series. Figure 6 illustrates this process applied for the current investigation.
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3.2.3. The Predictive Models

Exponential Smoothing State Space Model (ETS): [65] extended the Exponential
Smoothing (ES) classical method and developed the exponential smoothing state space
(ETS) model. The basic ETS model contains two equations, respectively a forecast equation
and a smoothing equation, which are integrated into an innovation state space model. The
estimation of the ETS model is fully automated through the “forecast” package in R and,
together with ARIMA models, is the base model for the most popular automatic forecasting
algorithms [66]. In this study, the system is instructed to automatically select the error,
type, and season, and to apply the corrected Akaike information criterion (AICc) for model
selection. Hence, following the terminology of [59,65], we specify the three-character string
identifying method as (Z,Z,Z).

The Holt–Winters Model (HW): The HW model was introduced in the late 1950s
and early 1960s by [67,68]. It applies three exponential smoothing formulae to the time
series: to the mean, trend, and each seasonal sub-series, respectively [69]. In this study, the
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estimation of the HW model for the 12 time series is automated through the “HoltWinters”
function included in the “stats” package in R software. It computes Holt–Winters filtering
of a given time series, and identifies unknown parameters by minimizing the squared
prediction error.

TBATS Model (Exponential Smoothing State Space Model with Box-Cox Transfor-
mation, ARMA Errors, Trend, and Seasonal Components): The TBATS model, which is
capable of handling multiple and complex seasonality has been introduced by [70]. The
TBATS model is fit for the 12 time series through the “forecast” package in R. The fitted
model is identified as TBATS (omega, phi, <m1,k1>, . . . , <mJ,kJ>), where omega is the Box-Cox
parameter and phi is the damping parameter, m1, . . . , mJ reflect the seasonal periods, and
k1, . . . , kJ are the corresponding number of Fourier terms used for each seasonality. The
Box-Cox parameter, the trend and the damping parameters are automatically selected in
our estimations by AIC.

ARIMA: ARIMA models constitute a popular statistical technique for time series
forecasting that is capable of describing the autocorrelations in the data. This study applies
the automatic ARIMA methodology provided through the “auto.arima function” within
the “forecast” package for the R software. As in [66], the function uses unit root tests,
minimization of the AICc and MLE to return the best ARIMA model, through a step-wise
automated procedure.

Structural Time Series Models (STS): Structural time series models are (linear Gaussian)
state-space models for (univariate) time series based on a decomposition of the series into
a number of components [71]. STS models can be easily implemented in R through the
function “StructTS” in the “stats” package, as in [72]. This is automatically realized in this
study for the 12 GHG time series by maximum likelihood.

Neural network autoregression model (NNAR): The main predictive model of interest
in this study is NNAR, which provides the adaptability advantage by learning from the
provided inputs and training itself to optimize weights. Generally, a neural network
autoregression model (NNAR) uses p lagged values of the time series as inputs to a neural
network with k hidden nodes, for forecasting the output y(t). The model is thus usually
specified as NNAR(p,k), and the hidden nodes are nonlinear functions of the original
provided inputs. The functions that are applied at the nodes of the hidden layers are called
activation functions. A more complex specification is needed when the data is seasonal,
and thus the model in this case is written as NNAR(p,P,k), where P is the number of
seasonal lags.

Figure 7 reflects the general structure of a neural network autoregression model, with
its three main layers: the first layer of the autoregressive neural network receives the
lagged values of the series (here GHG emissions) as inputs, then a linear combination of the
weighted inputs are fed forward to the hidden layer or layers of the network, and finally a
nonlinear activation function modifies the result from the hidden layer nodes which is then
passed to the last output layer that contains a single node representing the predicted value.
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Figure 7. General structure of the nonlinear autoregressive neural network (NNAR) with one hidden layer.

In equation format, the NNAR model depicted in Figure 7 can be expressed as:

Y = f (H) = f (W ∗ X + B), X = [y(t− 1), y(t− 2), . . . , y(t− p)] (3)

where Y is the output vector, f is the activation function, H is the vector of nodes in the
hidden layer, W represents the weight matrix between the input and the hidden layers, X
is the vector of inputs, and B is a bias vector.

In this study, the “nnetar” function within the R software “forecast” package is used
to automatically fit multilayer feed-forward neural networks with a single hidden layer,
k nodes and p lagged inputs, by automatically selecting parameters p and P through AIC.
The algorithm is also instructed to make 25 repetitions and to estimate the number of
hidden notes as k = (p + P + 1)/2 (rounded to the nearest integer). As the initial weights at
the input layer take random values and are subsequently updated using the observed data,
we follow best practices and train the network 25 times using different random starting
weights, and then average the results. Based on previous results (i.e., [51]), we expect
NNAR models to out-perform other candidates in terms of forecasting accuracy when
applied for GHG emissions series.

3.2.4. The Conceptual Framework

For a clearer view of the implemented method, Figure 8 reflects the consecutive
steps that have been taken to estimate the alternative models and produce out-of-sample
forecasts.
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Next, Figure 9 puts together all building blocks of the research and gives on overview
of the work conducted.
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4. Results and Discussion
4.1. Empirical Results

Table 2 reports the RMSE for out-of-sample forecasting results at a horizon of h = 5
steps ahead (covering the data test period, or 2014–2018) for the models described above,
along with a “naive” forecasting model, which predicts a flat line equal to the last ob-
servation in the training set. Although no single model can provide the best forecast for
GHG emissions at a horizon of five years, the NNAR is over-performing within the pool
of seven competing models. The same conclusion is extracted from estimations of the
second estimated GoF metric, MASE, which is reported in Appendix C. The overall scoring
given by the two metrics is identical. Consequently, when a decision should be made about
relying on a single predictive model for GHG emissions at the selected forecasting horizon,
NNAR emerges as the optimal choice. The STS comes in second in terms of the lowest
RMSE, at a significant distance, while other models are not able to provide competitive
forecasts for the evolution of GHG emissions in the 12 top polluting countries considered
in this study.
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Table 2. Forecasting accuracy (RMSE for out-of-sample forecasting at h = 5).

NNAR ETS ARIMA STS H-W BATS/TBATS Naive

China 241,141.3 1578,920.1 1,500,806.5 1,511,817.9 1,622,516.1 1,646,765.7 392,357.5

United States 145,181.9 153,472.8 16,6416.3 196,148.3 255,999.2 175,472.4 165,455.0

India 58,230.5 76,108.4 54,133.7 42,551.3 269,141.0 45,626.0 310,503.0

Russian Federation 32,264.24 57,429.15 43,193.64 54,974.53 66,939.67 52,285.81 62,813.95

Japan 51,971.29 74,274.37 89,904.26 98,164.92 94,184.98 94,746.37 53,984.63

Brazil 50,432.98 34,096.97 43,155.88 24,167.78 114,618.17 75,126.30 43,755.23

Indonesia 106,501.64 121,314.90 137,564.51 59,337.21 438,966.52 123,244.94 130,566.57

Iran, Islamic Rep. 8763.64 22,545.14 45,868.70 23,366.34 17,374.46 35,536.55 32,180.85

Germany 15,978.24 50,292.81 22,668.79 25,631.45 27,811.22 41,023.36 50,293.06

Canada 21,034.85 18,123.81 10,440.79 31,330.76 32,214.06 15,313.01 28,000.70

Korea, Rep. 15,875.00 23,220.19 20,179.04 23,187.95 45,057.87 27,507.61 26,638.77

Mexico 10,752.22 16,296.63 17,818.57 16,413.70 14,488.03 15,481.74 23,683.56

Score * 8 0 1 3 0 0 0

Score (%) ** 66.67% 0% 8.33% 25.00% 0% 0% 0%

Rank 1 4–7 3 2 4–7 4–7 4–7

Notes: * Score indicates the number of times the model outperforms the other candidate models in term of forecasting accuracy; ** Score
(%) indicates the percentage of outperformance (out of 12 iterations, or countries); Bold values underline the minimum RMSE across the
seven candidate predictive models for each country.

Table 3 reports the relative root mean squared error (RRMSE) results for the out-
of-sample forecasts, where the best performing forecasting model (i.e., NNAR) acts as a
benchmark. Hence, the forecasting performance of the neural network model is found to
be 28% better than the ETS forecast, 19% better than the ARIMA model, 14% better than
STS, 54% better than Holt–Winters, 31% better than TBATS, and 37% better than the naive
model for forecasting GHG emissions in the 12 top polluters.

Table 3. RRMSE for out-of-sample forecasts of GHC emissions at h = 5 (O = M1/M2).

NNAR/ETS NNAR/ARIMA NNAR/STS NNAR/H-W NNAR/TBATS NNAR/Naive

China 0.15 0.16 0.16 0.15 0.15 0.61

United States 0.95 0.87 0.74 0.57 0.83 0.88

India 0.77 1.08 1.37 0.22 1.28 0.19

Russian Federation 0.56 0.75 0.59 0.48 0.62 0.51

Japan 0.70 0.58 0.53 0.55 0.55 0.96

Brazil 1.48 1.17 2.09 0.44 0.67 1.15

Indonesia 0.88 0.77 1.79 0.24 0.86 0.82

Iran, Islamic Rep. 0.39 0.19 0.38 0.50 0.25 0.27

Germany 0.32 0.70 0.62 0.57 0.39 0.32

Canada 1.16 2.01 0.67 0.65 1.37 0.75

Korea, Rep. 0.68 0.79 0.68 0.35 0.58 0.60

Mexico 0.66 0.60 0.66 0.74 0.69 0.45

Average 0.72 0.81 0.86 0.46 0.69 0.63

Score 10 9 9 12 10 11
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Appendix B presents the graphical representation of the forecasting performance,
showing the NNAR model’s fit to the real test set data for the 12 countries. It can be seen
that the NNAR model (despite its nonlinear nature) fails to precisely follow the complex
real data dynamics behavior (due to real data highly nonlinear characteristics) and in some
instances (i.e., particularly for Brazil, Indonesia, and Canada) is not able to accurately
predict the trend over the testing interval.

Subsequently, applying the Kolmogorov–Smirnov (KS) Predictive Accuracy test
(KSPA) proposed by [54] and also the Diebold-Mariano (DM) test introduced by [55]
and developed by [56] further tests the over-performance of NNAR and contributes to
assuring the robustness of results. The test identifies significant differences between fore-
casts produced by NNAR and the second-best performing model in each of the cases
where NNAR emerged as the optimal model. In instances where NNAR is not found to
over-perform, the KSPA/DM tests are applied to identify the differences between forecasts
from NNAR and the specific optimal predictive model. As such, the forecast errors from
NNAR and competing forecasting models are introduced as inputs into the two-sided
KSPA/DM tests, which are then estimated to identify a statistically significant difference in
the distribution of forecasts errors from the two models.

Table 4 reports the results of the predictive accuracy tests for each pair of competing
models and each country, considering NNAR as the benchmark. When the two-sided
predictive accuracy tests statistic are significant at 1%, we can reject the null hypothesis
and accept the alternate, thus confirming that the forecast errors from NNAR and the other
candidate model do not share the same distribution. The KSPA and DM tests confirm for the
vast majority of countries that the NNAR forecasting technique provides superior forecasts
in comparison to its competitor (the only exceptions are encountered for estimations in the
US and Germany). These findings align with those of [51]. In the instances when NNAR
is not the optimal model in terms of forecasting accuracies, the predictive accuracy tests
generally do not confirm the superiority of the competing model (i.e., for India, Brazil,
Indonesia, and Canada).

Table 4. Results of the KSPA and DM tests (p-values).

Country KPSA (p-Value) DM (p-Value)

China 0.07937 *** 0.04076 **

United States 0.1871 0.2182

India 1 0.4692

Russian Federation 0.07937 *** 0.0569 ***

Japan 0.0235 ** 0.0455 **

Brazil 1 0.1265

Indonesia 0.3571 0.4517

Iran, Islamic Rep. 0.0793 *** 0.0571 ***

Germany 0.3571 0.2092

Canada 0.8730 0.1067

Korea, Rep. 0.002057 * 0.03032 **

Mexico 0.0524 *** 0.0493 **
Note: * indicates a statistically significant difference between the distribution of forecast errors from the best and
second best performing models based on the two-sided HS test at a 1% significance level; ** denotes significance
at 5%; *** denotes significance at 10%.

Table 5 confirms the superiority of NNAR throughout further robustness checks,
including re-estimation at a forecasting horizon of 3 years and also re-estimation by em-
ploying the recursive window forecasting technique, while holding h = 5.
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Table 5. Robustness checks: RMSE score of candidate models for holdout out-of-sample forecasting
at h = 3 and RMSE for recursive window forecasting at h = 5.

NNAR ETS ARIMA STS H-W TBATS Naive

Score (h = 3, holdout)/Rank 8/1 0 1/3 3/2 0 0 0

Score (h = 5, recursive window) 10/1 0 2/2 0 0 0 0

In the last stage of this investigation, the over-performing predictive model (i.e.,
NNAR) is fitted to the entire dataset and further employed to produce point forecasts
for GHG emissions in the 12 countries for the 2019–2030 period (i.e., h = 12). We should
also mention that the in-sample fit has been verified by estimating the Ljung-Box test to
check the residuals for any significant evidence of non-zero correlations at lags 1–20. Test
results confirm that all models are correctly specified. We thus confidently proceed with a
discussion of forecasting results.

Table 6 contains the point forecasts in absolute terms, whereas Table 7 reflects the
percentage change relative to the last year with available data within the dataset (i.e.,
2018). On average, results indicate a continuation of the current increasing trend of GHG
emissions produced by top polluting countries’ in the next decade. Therefore, the NNAR
model predicts that top polluters countries will see an overall increase of 3.67% in GHG
emissions relative to 2018 levels, although significant disparities are identified among
individual countries. Thus, in relative terms, the projections translate into a 22.75% increase
for Brazil, a 15.75% increase for Indonesia, and 7.45% for India. The only countries that
are projected to decrease polluting emissions are Canada (−5.57%), Russian Federation
(−3.01%), the US (−0.76%), and China (−0.89%), although total GHG emissions remain in
the upper decile and fall well behind set pledges.

Table 6. Total GHG emissions in top polluting countries, kt of CO2 tons (forecasted values for 2019–2030).

Year Point Forecast * China Point Forecast US Point Forecast India Point Forecast Russian Federation

2019 12,309,920 6,016,766 3,431,213 2,557,312

2020 12,283,414 6,010,620 3,476,984 2,543,205

2021 12,267,808 6,005,139 3,513,591 2,513,877

2022 12,258,584 6,000,273 3,542,441 2,483,813

2023 12,253,120 5,995,972 3,564,909 2,462,427

2024 12,249,879 5,992,186 3,582,242 2,451,886

2025 12,247,954 5,988,863 3,595,515 2,449,864

2026 12,246,812 5,985,956 3,605,621 2,452,769

2027 12,246,133 5,983,420 3,613,282 2,457,491

2028 12,245,729 5,981,212 3,619,069 2,461,957

2029 12,245,489 5,979,295 3,623,431 2,465,131

2030 12,245,347 5,977,633 3,626,711 2,466,778

Point Forecast Japan Point Forecast Brazil Point Forecast Indonesia Point Forecast Iran

2019 1,192,158 1,076,958 1,076,732 823,679.7

2020 1,196,957 1,121,942 1,209,626 820,617.5

2021 1,201,228 1,163,625 1,307,557 818,561.4

2022 1,205,024 1,198,314 1,221,594 817,172.9

2023 1,208,393 1,224,208 1,235,139 816,231.7

2024 1,211,380 1,241,788 1,472,859 815,592.0
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Table 6. Cont.

Year Point Forecast * China Point Forecast US Point Forecast India Point Forecast Russian Federation

2025 1,214,023 1,252,892 1,462,027 815,156.5

2026 1,216,360 1,259,567 1,380,622 814,859.6

2027 1,218,422 1,263,456 1,391,117 814,657.1

2028 1,220,240 1,265,679 1,339,545 814,518.9

2029 1,221,841 1,266,936 1,253,736 814,424.5

2030 1,223,250 1,267,643 1,119,400 814,360.0

Point Forecast Germany Point Forecast Canada Point Forecast Korea Point Forecast Mexico

2019 818,123.0 685,765.5 719,072.9 682,001.7

2020 825,845.8 684,968.0 719,233.5 683,925.4

2021 830,972.1 684,929.4 719,367.3 685,666.7

2022 834,448.5 684,927.5 719,478.7 687,240.6

2023 836,839.9 684,927.4 719,571.4 688,661.3

2024 838,500.6 684,927.4 719,648.6 689,942.2

2025 839,661.5 684,927.4 719,712.9 691,095.8

2026 840,476.8 684,927.4 719,766.4 692,133.6

2027 841,051.1 684,927.4 719,810.9 693,066.5

2028 841,456.6 684,927.4 719,848.0 693,904.4

2029 841,743.4 684,927.4 719,878.8 694,656.3

2030 841,946.4 684,927.4 719,904.5 695,330.8

* all numbers represent total GHG emissions measured in kt of CO2.

Table 7. Predicted change in GHG emissions in top polluting countries over 2019–2030.

Country GHG %

China −0.89

United States −0.76

India 7.45

Russian Federation −3.01

Japan 3.07

Brazil 22.75

Indonesia 15.75

Iran, Islamic Rep. −1.68

Germany 4.45

Canada −5.52

Korea, Rep. 0.14

Mexico 2.27

Average growth of GHG until 2030 3.67%

4.2. Discussion of Results

Among all tested models for predicting GHG emissions in the 12 top polluters, the
neural network autoregressive model has illustrated the best forecasting performance. This
in line with [34,51] who reach the same conclusion from forecasting a similar time series
(i.e., CO2 emissions) in a single country, and support those of [49], thus confirming that
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artificial neural networks (ANN) are useful in time series modeling when past values of a
variable are used as inputs to explain its future values.

Consequently, similar to the approaches of the aforementioned studies, we issue
forecasted values for total GHG emissions in the 12 countries by using the neural network
time series nonlinear autoregressive model (NNAR). Overall, we find that both the recent
evolution of total GHG emissions in top polluting countries and also future projections of
emissions fall significantly below what is needed to achieve set climate goals. Emissions
have seen massive increases in Korea, China, and Iran over the 1970–2018 period, due to
the rapid economic growth, poverty eradication, and substantial integration into global
value chains that characterized these economies over the period [73–76]. However, GHG
emissions are projected to increase most in Brazil, Indonesia, and India over the 2019–2030
interval. Our findings conform to those that emerge from a recent study of the International
Energy Agency [16], which shows that polluting emissions have increased in 2020 as
economic activity increased toward the middle of the year, but deviate from the projections
of the European Environment Agency [13] concerning the EU country included in the
study (i.e., Germany).

However, whereas emissions have continued to increase since 2015 (recording an
overall 3.4% increase at the world level and 3.23% increase among the global top 20
polluters), the Paris Agreement requires yearly cuts of almost 8% on average at world level
to reach the global warming threshold of 1.5 degrees Celsius [15]. Moreover, ref. [77] find
that emissions reductions about 80% more ambitious than those in the Paris Agreement
are required to stay within the 2 degrees target, thus highlighting that set global warming
targets are even more out-of-reach than previously considered. Ref. [78] also confirm that
the current commitments are inadequate to meet temperature targets. Projections of future
GHG emissions that emerge from our study confirm that no country is expected to meet
its NDCs under the Paris agreement, which in turn are nonetheless inadequate in the
context of limiting global warming. Given this finding, and considering the catastrophic
impact of pollution on public health variables [28,29], including mortality rate [30,31], the
current trend is particularly troublesome, and significant efforts should be directed toward
its reversal.

Our findings further highlight that more impactful policies are needed to successfully
combat global pollution. Considering previous results in the literature that indicate a
negative relationship between renewable energy and polluting emissions [79–85]), we
argue that countries, especially top GHG emitters, should use the recovery funds available
in the aftermath of the global COVID-19 pandemic and prioritize sustainable energy
policies. This is also in line with the conclusion of [21].

Moreover, given that the bulk of global greenhouse gas emissions has historically
come from a few countries, and that this situation is expected to continue for the foreseeable
future, the logical solution should be to encourage particular nations in implementing
specific GHG reduction targets, rather than issuing global policies that cover the entire
spectrum of economies. Consequently, the small number of nations that causes a global
problem with systemic effects, in particular, must issue and implement ambitious low-
carbon policies. We take a similar view to [86], who suggest that although average global
reductions are expected, advanced economies should contribute more in terms of emissions
reduction, considering their historical contribution to world pollution.

5. Conclusions

Greenhouse gas emissions (GHG) have risen significantly for the past 49 years at the
world level. However, enormous disparities are encountered among individual countries,
both in terms of absolute GHG emissions values and in terms of their rhythm of growth
over the 1970–2018 period. On an absolute basis, China, the United States, and India are the
three largest emitters. Together, they account for 48% of 2018 global GHG emissions. The
12 most polluting countries produce overall around three quarters of total GHG emissions
at the world level, while the other 163 countries included in the analysis are responsible
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together for 26% of total greenhouse gas emissions in 2018. This underlines that a minority
of countries create a global problem with systemic consequences and further motivates our
focus on the 12 top emitting countries in our investigation.

The primary objective of this study is thus is to produce more accurate forecasts of
GHG emissions. This in turn contributes to the timely evaluation of the progress achieved
towards meeting global climate goals set by international agendas and also acts as an
early-warning system when projections show that the state of affairs does not reflect policy
statements and formal pledges are not followed by concrete measures and results. Results
of this study are also important for policymakers that incorporate forecasts of polluting
emissions in their policy-making process. A policy can only be efficient if it is developed
based on robust input elements. Consequently, an accurate estimation of GHG emissions
in top polluting countries is not only paramount for an effective policy-making process in
the climate combat arena but will also play a vital role in planning economic developments
over the long run. The issue is timely, as countries have to pursue post-pandemic economic
recovery while bending the emissions trend.

As such, this paper attempts to forecast the evolution of GHG emissions in the world
top polluters by employing seven statistical and machine learning methods, such as the
exponential smoothing state-space model (ETS), the Holt–Winters model, the TBATS
model, ARIMA, the structural time series model (STS), and the neural network time series
forecasting method (NNAR). A naive model is also estimated and serves for comparative
purposes. In particular, the study takes a univariate approach that offers the important
advantage of producing forecasts for a validated leading indicator independent of other
variables, aside from increasing efficiency. The results demonstrate that the best single
model in terms of forecasting accuracy for GHG emissions is NNAR, and this finding
resists a battery of robustness checks (including re-estimations at different forecasting
horizons and re-estimation by implementing a recursive window forecasting technique).
Consequently, the NNAR model is further employed to produce GHG emissions point
forecasts for the 12 top polluting countries until 2030, i.e., until the first benchmark under
the Paris agreement.

Although total GHG emissions were expected to decline sharply in the aftermath
of the 2015 Paris agreement and to continue a decreasing trend over the next decades,
empirical results indicate that top polluters will see an overall increase of 3.67% in GHG
emissions relative to their 2018 levels. However, significant disparities remain among
individual countries. Projections from the NNAR model at the 2030 forecasting horizon
point to a 22.75% increase in GHG total emissions in Brazil, a 15.75% increase in Indonesia,
and 7.45% in India. Decreases in GHG total emissions are expected in Canada (−5.57%),
the Russian Federation (−3.01%), the US (−0.76%), and China (−0.89%), although they
remain in the upper decile. More importantly, GHG projected levels fall well behind set
pledges for all top polluting countries and none of the 12 sample economies is expected to
meet its NDCs under the Paris agreement.

Overall, this study makes several important contributions to the extant literature,
as follows: (i) it employs a wider variety of candidate predictive models for polluting
emissions, including econometric and machine-learning methods, and also performs a
battery of robustness checks to defend its findings; (ii) it employs a more accurate indicator
for air pollution, thus increasing the relevancy of its results; (iii) it focuses on the 12 most
polluting countries that are together responsible for around 75% of total GHG emissions
at world level, thus further increasing the relevancy of the findings relative to single-
country/narrower studies.

We conclude that country-specific policies would be more efficient to tackle global
pollution than the global approach that is currently being implemented. In addition, a
country-specific approach is only fair, given the enormous historical disparities in terms
of individual countries’ contributions to world pollution, which are expected to persist.
Moreover, public policies and the recovery funds directed toward post-pandemic economic
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recovery should target sustainable energy production and consumption, which in turn
mitigate polluting emissions.
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Appendix A

Table A1. Variables’ notations and definitions.

Variable Definition

Yi(t) real GHG time series data for 12 countries, i = 1 . . . 12 and t = 1, . . . , 49.

N the length of each time series, i.e., 49 (annual data over 1970–2018 for each of the 12 countries,
i = 1 . . . 12)

S Si is the last observation in the training interval for each time series i, i = 1 . . . 12, and represents
the forecasting origin

Training data set [1;S]

Testing data set [S + 1:N]

{y1, . . . , yS} the observations in the training data set

{yS+1, yS+2, . . . , yN} the observations in the test data set

ŷi(t) = yijm(t)
the 84 (i.e., 7 × 12) forecasted time series from the seven models for each country over the testing
period, i.e., yijm(t), i = 1 . . . 12, t = S + 1, . . . , 49, j = {M1, M2, . . . , M7}, m-model

Mj, j = {M1, M2, . . . , M7}

The 7 predictive models:
1. the exponential smoothing state-space model (ETS),
2. the Holt-Winters Model (HW),
3. the TBATS model,
4. the ARIMA model,
5. the structural time series model (STS),
6. the neural network autoregression model (NNAR)),
7. the naive model

Naive model A naive forecast is the most recently observed value, such that the k-step-ahead naive forecast
(Fi,t+k) equals the observed value for country i at time t: Fi(t + k) = yi(t)

eijm(t)
The 84 vectors of forecast errors representing the difference between an observed value and its
point forecast over the testing period for each country, such as: eijm(t) = yi(t)− ŷi(t), i = 1 . . . 12,
t = S + 1, . . . , 49, and j = {M1, M2, . . . , M7}
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Appendix B. NNAR Fit to the Test Set Data for the 12 Countries
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Appendix C. Forecasting Accuracy (MASE for Out-of-Sample Forecasting at h = 5)

Table A2. Forecasting Accuracy (MASE for Out-of-Sample Forecasting at h = 5).

NNAR ETS ARIMA STS H-W BATS/TBATS

China 0.55 3.45 1.33 2.43 3.95 4.67

United States 0.84 0.95 0.98 1.22 1.33 1.03

India 1.04 1.20 0.88 0.69 4.24 0.81

Russian Federation 0.36 0.45 0.38 0.47 0.95 0.36

Japan 0.94 1.64 2.24 3.78 3.08 3.05

Brazil 1.07 0.25 1.27 0.22 1.85 1.67

Indonesia 0.32 0.33 0.60 0.23 1.27 0.47

Iran, Islamic Rep. 0.36 1.15 2.05 1.38 0.94 1.52

Germany 0.45 1.74 0.72 0.74 1.73 1.73

Canada 0.50 0.39 0.29 0.98 1.03 0.30

Korea, Rep. 0.75 1.48 1.20 1.31 1.87 1.42

Mexico 0.49 0.77 1.15 0.90 0.61 0.75

Score * 8 0 1 3 0 0

Score (%) ** 66.67% 0% 8.33% 25.00% 0% 0%

Rank 1 4–7 3 2 4–7 4–7

Notes: * Score indicates the number of times the model outperforms the other candidate models in term of forecasting accuracy; ** Score
(%) indicates the percentage of outperformance (out of 12 iterations, or countries); Bold values underline the minimum MASE across the
seven candidate predictive models for each country.
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