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Abstract: In the aim of improving the positioning accuracy of the monocular visual-inertial simulta-
neous localization and mapping (VI-SLAM) system, an improved initialization method with faster
convergence is proposed. This approach is classified into three parts: Firstly, in the initial stage, the
pure vision measurement model of ORB-SLAM is employed to make all the variables visible. Sec-
ondly, the frequency of the IMU and camera was aligned by IMU pre-integration technology. Thirdly,
an improved iterative method is put forward for estimating the initial parameters of IMU faster.
The estimation of IMU initial parameters is divided into several simpler sub-problems, containing
direction refinement gravity estimation, gyroscope deviation estimation, accelerometer bias, and
scale estimation. The experimental results on the self-built robot platform show that our method can
up-regulate the initialization convergence speed, simultaneously improve the positioning accuracy
of the entire VI-SLAM system.

Keywords: VI-SLAM; initialization; localization; optimization

1. Introduction

Visual simultaneous localization and mapping (VSLAM) techniques allow mobile
robots [1,2] and VR/AR devices [3,4] to be aware of their surrounding scene, while carry-
ing on the self-localization in the unknown environments. In recent years, many visual
SLAM methods have been studied, such as multi-sensor fusion SLAM (e.g., visual-inertial,
visual-LIDAR, and/or visual-GPS), deep learning SLAM, multi-agent SLAM, as well this
technology has attracted a lot of interest in the emerging contexts of 5G/6G communica-
tions, since directional antenna arrays and higher bandwidths can be fruitfully exploited to
achieve high accuracy and 5G/6G SLAM [5–7]. The SLAM system based on pure visual
sensors has certain problems in robustness and accuracy, which limits its application in
the field of terrestrial mobile robots. The monocular camera is not accurate in comparison
with a binocular camera, but the computing complexity is lower, the IMU sensor can solve
the problem of tracking failure and low precision when the monocular camera moves into
the challenging environment (less texture and/or lighting changes) by using the IMU pre-
integration technology and EKF/nonlinear optimization methods. On the other hand, the
visual sensor can make up for the cumulative drift of the IMU [8]. Indeed, such information
is crucial when operating in harsh propagation environments (e.g., rich of multipath) where
the typical GNSS information is highly inaccurate or completely unavailable [9]. Now, the
monocular visual-inertial SLAM system has become a hot topic which contains strap down
inertial measurement units (IMU) and monocular vision sensors to provide a low-cost,
lightweight, and high-quality solution for most positioning and navigation applications
in an indoor and outdoor environment. For simultaneous interpreting of multiple sensor
measurements from various sensor frames, a process of initial parameters estimation and
calibration is essential. The camera only needs to be calibrated once because it does not
change over time, and the IMU sensor must be initialized before each use. This paper
focuses on the IMU’s initial values estimation. The IMU initialization process is designed to
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evaluate as fast as possible for the initial parameters with the initial IMU biases (gyroscope
and accelerometer biases), gravity, and scale for the process of later numerical optimization.
Once the parameters are triumphantly acquired, inertial measurement can be employed to
enhance the robustness and accuracy of the continuous tracking and then find the mea-
surement scale of a three-dimensional visual map, which cannot be obtained with a pure
monocular SLAM system. Currently, the tightly-coupled nonlinear optimization approach
for visual-inertial SLAM is widely applied, almost the state-of-the-art frameworks, for
instance, OKVIS [10], VI-ORBSLAM [11], VI-DSO [12], and VINS-MONO [13] cannot have
a good performance without an efficient initialization process. Especially, the convergence
speed of initial estimation has a significant effect on the whole system.

Generally, the initialization of the monocular VI-SLAM system is a fragile but signifi-
cant step. The former visual inertia initialization methods can be divided into joint methods
together with disjoint methods [14]. The pros and cons of the initialization methods are
shown in Table 1.

Table 1. Pros and cons of the initialization methods.

Classification Pros Cons Typical Studies

Joint method

• With small-scale
errors.

• Fast convergence
speed.

• lead to bad
solutions under
conditions of the
spurious tracks.

• The estimation
accuracy is not
high enough.

Martinelli, A. [15,16]
Campos, C. [17]

Disjoint method

• The initialization
estimation
accuracy is high.

• Initial estimation is
slow and unstable.

• Rely on the
monocular visual
SLAM process.

Murata, R. [11]

The joint visual-inertial initialization approach is introduced through Martinelli at
first, which is named closed-form solution. However, this research [15] expressed only
in theory and then demonstrated by the simulation of general Gaussian motions, the
application of MAV is not feasible. So this method is later modified in [16], not only
increasing the estimation of gyroscope bias but also is a successful implementation of
actual data from quadrotor MAV. The latest work of [17] put forward a robust and fast
initialization approach according to [15,16]. The accuracy is improved through several
visual-inertial bundle adjustments (BA), and the robustness of the system is enhanced with
the addition of consensus and observability tests. As it is tested on the dataset of Euros [18],
it is proved to be consistently initialized with scale errors is less than five percent. However,
those initialization methods have several limitations:

• An ideal hypothesis in which all features are tracked in perspective should be con-
tented. However, it can lead to bad solutions under conditions of spurious tracks.

• Compared with [19], the disjoint visual-inertial initialization method, the accuracy of
the joint method is lower. To improve it, a lot of frames and tracks are usually added,
which leads to the computational cost being so high that the real-time performance is
unfeasible.

• The method in [17] works only at 20% of trajectory points. If the system requires to be
started immediately, this may be a problem in robot use.

The disjoint visual-inertial initialization approach, i.e., loosely couple method, de-
pends on a very accurate visual measurement model in the initial stage. This method is first
applied by Mur-Artal and later adapted in [11,20] with a good performance on the public



Electronics 2021, 10, 3063 3 of 15

dataset. In particular, the motion of MAV with metric scale can be recovered with a small
error, and the accuracy of positioning is maintained at centimeter-level [11]. However, this
approach also exists several limitations:

• The process of initial estimation is slow and unstable. On account of the inertial
parameters being evaluated through solving a set of the linear equations in various
steps utilizing the least square method, it requires an excellent iterative strategy that
makes fast convergence. However, the convergence speed in [11] is not reliable enough
for all variables estimation. it can be a problem for many real applications.

• Initialization is fragile. As the method requires running monocular visual SLAM in
advance for finding the accurate inertial parameters. If the visual part gets lost, the
inertial system will not be launched immediately.

In summary, there are several initialization methods have been studied for the monoc-
ular VI-SLAM system. However, few researchers have tried to improve it from the perspec-
tive of non-linear optimization. In the current work, an improved initialization approach
that is by the disjoint method is proposed. First, in the initial stage, the pure vision mea-
surement model of ORB-SLAM2 is employed to make all the variables visible. Second,
the frequency of the IMU camera was aligned by IMU pre-integration technology [21].
Third, the IMU initialization process, which is highlighted in a dotted block diagram with
red color. It is divided into several simpler sub-problems, containing direction refinement
gravity estimation, gyroscope deviation estimation, scale estimation as well as accelerome-
ter deviation. In this work, an improved iterative method is put forward for estimating
the initial parameters of IMU faster. The experimental outcomes on a real mobile robot
demonstrate excellent performance while our initialization method is integrated into the
VI-SLAM system which is based on the ORB-SLAM2 skeleton [19,22].

The rest of the current paper is organized as below: We introduce the preparatory
work in Section 2. Then the core part of this paper, the IMU initialization process, is
illustrated in Section 3. Section 4 introduces the real-time experiment for the mobile robot.
Section 5 gives the summaries and the future work.

2. Preliminaries

In the present section, the necessary notation and the monocular visual-inertial co-
ordinate frames and visual measurement model are briefly reviewed, then the IMU pre-
integration on the manifold is described in the following sections.

2.1. Notation

In this paper, we aim to estimate gyroscope bias, gravity, accelerometer bias together
with visual scale in the visual-inertial initialization stage. SO(3) represents a special or-
thogonal group: Lie group, and so(3) is the corresponding Lie algebra. The vectors are
uniformly expressed in italics, the reference frame is marked with a right subscript, e.g.,
AV for the vector A expressed in frame {V}. If a vector describes the relative transformation
from one reference frame to another frame, e.g., ACB for the vector that defines the trans-
lation from camera frame {C} to IMU body frame {B}. The correlations between camera
frame {C} and IMU body frame {B} is defined by scale factor s is considered:

RWB = RWC·RCB

PWB = RWC·PCB + s·PWC
(1)

in which s represents visual scale, P(.) and R(.) represent the translation and rotation vector
between two coordinate frames, respectively. The subscript (.)WB indicates the world frame
{W} to IMU body frame {B}, The subscript (.)WC indicates the world frame {W} to camera
frame {C}, The subscript (.)CB indicates the camera frame {C} to IMU body frame {B}.
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2.2. Coordinate Frames

The transformation between the coordinate frames is shown in Figure 1. Since the
measurements of inertial and visual odometry are changed over time. However, the
absolute pose is needed in the pre-fixed reference frame. Therefore, it is assumed that the
reference frame of our system coincides with the first keyframe which is determined by
the pure visual SLAM. In this work, the GE represents the gravity in the inertial frame
{E} of earth. The gw represents the gravity in the world coordinate system {W}. The first
keyframe is assumed as a reference frame. The external parameter matrix TCB is described
as follows 4 × 4 matrix:

TCB =

[
RCB TCB
⇀
0 1

]
4×4

(2)

where RCB and TCB represent the rotation and translation matrix/vector between camera
frame {C} and body frame {B} is calibrated in advance.
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2.3. Visual Measurement Model

The ORB-SLAM2 [19,22] visual measurement model is adopted for the initial pose
estimation. The system consists of the following three parallel threads, i.e., tracing, local
mapping along with loop closing. While the tracking together with local mapping threads
is applied in the initialization stage. The tracking part is responsible for deciding whether
to treat the new frame as a key. After inserting the new key, the associated IMU pre-
integration model is calculated between two consecutive keyframes. In this work, we adopt
the conventional visual model with the visual projection function π(.), which converts
3-dimensional points {xc, yc, zc} in the camera frame into a 2-dimensional image coordinate
{u, v}.

π(XC) =

[
fu

xc
zc
+ cu

fv
yc
zc
+ cv

]
; XC = [xc, yc, zc]

T (3)

in which (cu, cv) is the principal point, ( fu, fv) is the focal length, {xc, yc, zc} are the coordi-
nates of 3D points in the camera frame.

2.4. IMU Pre-Integration

As the output of IMU and camera are at different rates, the IMU pre-integration
technology for aligning the frequency of the IMU camera is introduced. The concept of IMU
pre-integrated is pioneered in [23] and extended in [21] on the manifold space. Assumed
that there are two consecutive keyframes at time j and i, and the IMU is synchronized
with the camera and provides measurements at discrete times k. The associated IMU
position PWB, velocity vWB, and orientation RWB can be calculated by summarizing all of
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the measurements during this period (i.e., Iterating the IMU integration for all ∆t intervals
between two consecutive keyframes at times k = i and k = j):

Rj
WB = Ri

WB

j−1
∏
k=i

Exp((wk
B − bk

g − ηk
g)∆t)

vj
WB = vi

WB + gW∆tij +
j−1
∑

k=i
Rk

WB(a
k
B − bk

a − ηk
a)∆t

Pj
WB = Pi

WB + ∑(vk
WB∆t + 1

2 gW∆t2 + 1
2 Rk

WB(a
k
B − bk

a − ηk
a)∆t2)

(4)

in which ∆t is the sampling interval of IMU, with ∆tij = (j− i)∆t. The Exp(.) represents
an exponential mapping operator that maps Lie algebra so(3) to the Lie group SO(3). It
is assumed that the deviation remains unchanged in the course of pre-integration, and
the effect of measurement noise of IMU is ignored (usually considered as Gaussian noise),
wk

B, ak
B represent the angular rate and acceleration vectors in the IMU body frame, bk

(.), ηk
(.)

represent the bias of IMU (i.e., gyroscope and accelerometer) and the noise of measurement.

A small correction δbi
(.) of the formerly estimated b

i
(.) could be considered to correct pre-

integrated outcomes. We can rewrite the expressions in Equation (4) as below:

Rj
WB = Ri

WB∆RijExp(Jg
∆Rij

δbi
g)

vj
WB = vi

WB + gW∆tij + Ri
WB(∆vij + Jg

∆vij
δbi

g + Ja
∆vij

δbi
a)

Pj
WB = Pi

WB + vi
WB∆tij +

1
2 gW∆t2

ij + Ri
WB(∆pij + Jg

∆pij
δbi

g + Ja
∆Pij

δbi
a)

(5)

among them, the Jacobians Jg
(.) and Ja

(.) express how the measured value change owing to

the change of deviation estimation. The biases b
i
g and b

i
a remain constant in the course of

pre-integration and can be pre-calculated at the time i. The specific Jacobians calculation is
shown in [21]. Subsequently, the ∆Rij, ∆vij and ∆Pij pre-integration values can be directly
calculated from the outputs of IMU between two keyframes, which are independent of the
gravity and the states at the time i:

∆Rij =
j−1
∏
k=i

Exp((wk
B − b

i
g)∆t)

∆vij =
j−1
∑

k=i
∆Rik(ak

B − b
i
a)

∆Pij =
j−1
∑

k=i
(∆

¯
vik∆t + 1

2 ∆Rik(ak
B − b

i
a)∆t2)

(6)

where ∆Rik, ∆
¯
vik represents the rotation and velocity increment of the i-th keyframe in k-th

interval time. Π(.) is cumulative multiplication operation, ∑(.) is accumulation operation.

3. IMU Initialization

In the present section, the initial IMU parameters are estimated, containing gravity
gw, gyroscope bias bg, visual scale s and accelerometer bias ba. To make all the variables
visible, the pure monocular visual SLAM system requires to work for a few seconds and
then wait for the several keyframes to be formed (Section 2.2). The specific process of the
estimation of IMU parameters is revealed below.

3.1. Gyroscope Bias Estimation

From the known direction of two consecutive keyframes, we can estimate the gyro
bias. It is assumed that the variation of the deviation is negligible, that is, the bias bg is a
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constant value, this constant value minimizes the difference between the relative direction
calculated via ORB-SLAM2 and the gyro integral for all pairs of continuous keyframes:

argmin
bg

N−1

∑
i=1
‖Log(∆Ri,i+1Exp(Jg

∆Rbg))
T

Ri+1
BWRi

WB‖
2 (7)

in which N represents the keyframes number. R(.)
WB = R(.)

WC·RCB is calculated from the

calibration RCB and orientation R(.)
WC. ∆Ri,i+1 denotes the gyro integration between the two

consecutive keyframes. Exp(.) and Jg
∆R respectively represents the exponential mapping

R3 → SO3 together with the Jacobian matrix. The analytic Jacobian matrices of similar
expression are exhibited in [21].

3.2. Gravity Direction Estimation

Due to the direction of gravity having a great effect on the acceleration estimation,
the direction of gravity must be refined before estimating the accelerometer bias, gravity,
and scale parameters. Particularly, a new constraint, gravity magnitude G(G ≈ 9.8), is
introduced. As revealed in Figure 2. The inertial reference frame is defined as {I} and the

world frame is defined as {W}, the gravity direction is defined as
¯
g I = {0, 0, 1}. According

to frame {W}, the direction of gravity can be calculated as follows:

¯
gw = g∗W/‖g∗W‖ (8)

from the angle θ between two direction vectors, we can calculate rotation RWI :

RWI = Exp(
¯
vθ) (9)

with
¯
v =

¯
g I×

¯
gW

‖¯g I×
¯
gW‖

, θ = a tan 2(‖¯g I ×
¯
gW‖,

¯
g I ·

¯
gW), thus the gravity vector can be described

as below:
gW = RWI gI G (10)

in which RWI can be parametrized, only two angles around axis x and y are used in frame
{I}, and the rotation around axis z has no influence in gW .

Electronics 2021, 10, x FOR PEER REVIEW 7 of 16 
 

 

I Wv g g= ×

θ

Wg
Ig

Ix

IzIy

WIR

 
Figure 2. The refinement of gravity direction. 

3.3. Improved Iterative Strategy 
As Equation (7) is a classical problem of nonlinear least square, the generally used 

solution approach is the Gauss–Newton (G-N) algorithm, which is adopted in [19]. How-
ever, this method has several drawbacks. First, large iteration increment may result in 
slow convergence. Second, this algorithm requires the H  (Hessian matrix) be positive 
definite, and invertible while the actual calculated data may not meet this requirement. 

In this paper, an improved iterative method is proposed for improving the stability 
of convergence. In particular, an appropriate trust region μ  is added to the increment

xΔ . In the process of each iteration, it is assumed to be effective when the increment xΔ
is located in the trust region. Otherwise, it is considered to be invalid, and the iteration 
may not be converged. The improved iteration method is displayed in Algorithm 1. 

Algorithm 1 Improved iterative strategy 
1: Set the initial and radius of the trust region 0μ  
2: Solve the optimal problem:  

3: 
2 21min || ( ) ( ) || , . . || ||

2x
f x x x st D x μ

Δ
+ Δ Δ ≤J  

4: Calculate ρ ：  

5: 
( ) ( )

( )
f x x f x

x x
ρ + Δ −=

ΔJ
 

6: Update μ ，if 0.75ρ >   
7: 2μ μ=  
8: else if 0.25ρ <  
9: 0.5μ μ= .  
10: If met the iteration termination condition, i.e., 1|| ||∞ ≤g η  or 2 2|| x|| (|| || )xη ηΔ ≤ +   
11: or MAXk k≥  
12: then iteration stops;  
13: if not met, then x x x← +Δ , go back to step 2. 

According to the formula in step 2: 

2 21min || ( ) ( ) || , . . || ||
2x

f x x x s t x μ
Δ

+ Δ Δ ≤J D  (11)

We add the constraint: 2|| ||x μΔ ≤D , where μ  and D  respectively is the radius of 
the trust-region and scaling matrix. When D  is unit matrix I  or not (for example, D  is 
a diagonal matrix), the trust region is a sphere with radius μ  or ellipsoid). To facilitate 
calculation, Lagrange multiplier is utilized to convert Formula (11) into the unconstrained 
optimization problem: 

0x

Figure 2. The refinement of gravity direction.

3.3. Improved Iterative Strategy

As Equation (7) is a classical problem of nonlinear least square, the generally used
solution approach is the Gauss-Newton (G-N) algorithm, which is adopted in [19]. How-
ever, this method has several drawbacks. First, large iteration increment may result in slow
convergence. Second, this algorithm requires the H (Hessian matrix) be positive definite,
and invertible while the actual calculated data may not meet this requirement.
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In this paper, an improved iterative method is proposed for improving the stability of
convergence. In particular, an appropriate trust region µ is added to the increment ∆x. In
the process of each iteration, it is assumed to be effective when the increment ∆x is located
in the trust region. Otherwise, it is considered to be invalid, and the iteration may not be
converged. The improved iteration method is displayed in Algorithm 1.

Algorithm 1 Improved iterative strategy

1: Set the initial x0 and radius of the trust region µ0
2: Solve the optimal problem:
3: min

∆x
1
2‖ f (x) + J(x)∆x‖2, s.t.‖D∆x‖2 ≤ µ

4: Calculate ρ:
5: ρ =

f (x+∆x)− f (x)
J(x)∆x

6: Update µ, if ρ > 0.75
7: µ = 2µ

8: else ifρ < 0.25
9: µ = 0.5µ.
10: If met the iteration termination condition, i.e., ‖g‖∞ ≤ η1 or ‖∆x‖ ≤ η2(‖x‖+ η2)
11: or k ≥ kMAX
12: then iteration stops;
13: if not met, then x ← x + ∆x , go back to step 2.

According to the formula in step 2:

min
∆x

1
2
‖ f (x) + J(x)∆x‖2, s.t.‖D∆x‖2 ≤ µ (11)

We add the constraint: ‖D∆x‖2 ≤ µ, where µ and D respectively is the radius of
the trust-region and scaling matrix. When D is unit matrix I or not (for example, D is
a diagonal matrix), the trust region is a sphere with radius µ or ellipsoid). To facilitate
calculation, Lagrange multiplier is utilized to convert Formula (11) into the unconstrained
optimization problem:

min
∆x

1
2‖ f (x) + J(x)∆x‖2, s.t.‖D∆x‖2 ≤ µ

→ min
∆x

1
2‖ f (x) + J(x)∆x‖2 + λ

2 ‖D∆x‖2 (12)

here λ denotes the Lagrange multiplier, through the expansion of formula, a linear equation
can be acquired to count the increment:

(H + λI)·∆x = −g (13)

with H = JTJ, g = JT · f , and λ ≥ 0.
Where J = J(x) and f = f (x). Formula (13) can be considered as the steepest descent

algorithm when λ is small. To effectively adjust the range of trust region, the ratio between
the approximate model and actual function after each iteration was calculated in step 3, as
below:

ρ =
f (x + ∆x)− f (x)

J(x)·∆x
(14)

in which the { f (x + ∆x)− f (x)} and {J(x).∆x} respectively is the actual function together
with the approximate model. When ρ is close to 1, it indicates that the approximation
performance is good. If ρ < the threshold set to be ρ < 0.25, it represents that in contrast to
approximate reduction, the actual reduction is much smaller, so it is necessary to reduce the
trust-region radius and set it to µ = 0.5µ. If ρ is greater than the threshold set to ρ > 0.75,
it is necessary to expand the trust-region radius set to µ = 2µ.
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In step 5, there exist two-stop criteria. At first, the stopping criteria of the algorithm
should meet the following criteria:

‖g‖∞ ≤ η1 (15)

here η1 is the small value, set to η1 = 10−6, ‖.‖∞ represents an infinite norm.
Secondly, when the increment ∆x is too small, we should consider stopping the

iteration:
‖∆x‖ ≤ η2(‖x‖+ η2) (16)

in which η2 represents the relative step size, set to η2 = 10−6.
Ultimately, we also set up a protection measure to prevent infinite loops that limit the

maximum number of the iterations kMAX = 2000, when k ≥ kMAX, the iteration will be
forced to stop.

3.4. Accelerometer Bias and Scale Estimation

Following the former sections (Sections 3.1–3.3). Once the accurate gravity vector
and gyro bias are acquired, Equation (5) is applied for the pre-integration of positions and
velocities, rotate the measurement of acceleration correctly to compensate for the gyro
deviation. Subsequently, in consideration of the effect resulting from the accelerometer
deviation, the rotation vector RWI is also adjusted, which can be described via a two degree
of freedom disturbance δθ, the Equation (10) can be rewritten as below:

gW = RWI Exp(δθ)gI G ≈ RWI gI G + RWI(δθ)∧gI G

= RWI gI G−RWI(gI)
∧Gδθ

(17)

with δθ= [δθT
xy , 0]T , δθxy= [δθx, δθy

]T
.

Therefore, containing the influence of the accelerometer bias, we can get:

s·pi+1
WC = s·pi

WC + vi
WB∆ti,i+1 − 1

2 RWI(gI)× G∆t2
i,i+1δθ

+ Ri
WB(∆pi,i+1 + Ja

∆pba) + (Ri
WC −Ri+1

WC)pCB + 1
2 RWI gI G∆t2

i,i+1

(18)

In consideration of the constraints among the three consecutive keyframes, the veloci-
ties can be eliminated, and the linear relationship gets as follows:

[λ(i) ϕ(i) ζ(i)]

 s
δθxy
ba

 = ψ(i) (19)

Here, we writing N keyframes i, I + 1, I + 2, . . . , I + N − 1 as 1, 2, 3, . . . , N for clarity
of notation, thus λ(i), ϕ(i), ζ(i), and ψ(i) are calculated as below:

λ(i) = (p2
WC − p1

WC)∆t23 − (p3
WC − p2

WC)∆t12

ϕ(i) =
[

1
2 RWI(gI)× G(∆t2

12∆t23 + ∆t2
23∆t12)

]
(:,1:2)

ζ(i) = R2
WB Ja

∆p23∆t12 + R1
WB Ja

∆v23∆t12∆t23 −R1
WB Ja

∆p12∆t23

ψ(i) = (R2
WC −R1

WC)pCB∆t23 − (R3
WC −R2

WC)pCB∆t12

+ R2
WB∆p23∆t12 + R1

WB∆v12∆t12∆t23 −R1
WB∆p12∆t23 +

1
2 RWI gI G∆t2

ij

(20)

in which [](:,1:2) denotes the top two columns of the matrix. By superimposing all the
correlations between three consecutive keyframes (19), the linear system can generate
the following equations A3(N−2)×6X6×1 = B3(N−2)×1, which can be solved through the
method of singular value decomposition (SVD). In this condition, it is composed of six
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unknown variables and 3(N-2) equations, and at least four keyframes are required to solve
the system.

4. Experiments

The initialization method is applied in an unknown indoor environment with a self-
build mobile robot platform. The platform structure is exhibited in Figure 3, the major
components include a low-cost VI-camera (MYNT S1030-IR-120), an NVIDIA Jetson TX2, a
Xsens MTI-300, and two 12V DC batteries for power supply.
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Figure 3. Mobile robot platform: (a) MYNT binocular camera with two global shutter cameras; (b)
NVIDIA Jetson TX2 as an onboard computation resource; (c) Xsens MTi-300 as the reference system;
(d) batteries with 12V DC power.

The key parameters of MYNT S1030-IR-120 are shown in Table 2, it communicates
with NVIDIA Jetson TX2 through USB 3.0 interface. In terms of the Xsens MTI-300, it
outputs the high-frequency measurements of accelerometers and gyroscopes. In this work,
we treat it as a reference system through the post-processing operation. As the low-cost
equipment is used to collect datasets, the frequency of the IMU sensor is set to 150 Hz,
while the frequency of the camera is set to 10Hz. All of the experiments are implemented
by utilizing the computer with i7-9700 CPU (8 cores @3.00 GHz) and 16 GB RAM in the
Ubuntu 18.04 + Melodic operating system. The external parameters of the IMU and camera
are calibrated via the Kalibr tool [24] in advance which is shown in Table 3.

Table 2. Parameters of MYNT camera.

Version S1030-IR-120

Size 165 mm × 31.5 mm × 31.23 mm
Weight 184 g

Frames per Second 10–60 FPS
Resolution 752 × 480; 376 × 240

FHD 6.0 × 6.0 um
Baseline 120.0 mm

Focal length 2.1 mm
Power dissipation 1–2.7 W @ 5 v DC

IMU frequency 100–500 Hz
Exposure mode Global shutter

Measuring Depth 0.8–5 m+
Interface USB 3.0
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Table 3. Camera-IMU joint calibration parameters.

Calibration Parameters

Extrinsic : {TCB }


0.999967 0.004309 0.006957 −0.047774
0.004349 −0.999974 −0.005751 −0.002237
0.006932 0.005781 −0.999959 −0.021601
0.000000 0.000000 0.000000 1.000000


4×4

Distortion : {k1, k2, p1, p2}
{

Camera.k1 : −0.325639 Camera.p2 : 0.000137
Camera.k2 : 0.119911 Camera.p1 : 0.000158

Notes: TCB is the Camera-IMU frames transformation matrix, k1, k2 is the radial distortion coefficient and p1, p2 is
the tangential distortion coefficient.

4.1. Evaluation of the Initial Estimation

Our initialization method is first integrated into the VI-SLAM system. To evaluate
the algorithms fairly, the original algorithm with the gauss-newton algorithm [19] and
the proposed algorithms are detected on the same data set in which the mobile robot is
controlled to perform several close-loop movements in the indoor environment. Besides,
we only utilized the left camera image to test the performance of the monocular VI-SLAM
system. Figure 4a–c shows the example image frame from the laboratory dataset. The
comparison results of the initial parameter estimation are shown in Figure 5a–d, it can be
known that all estimated variables, containing gravity, gyro deviation, scale factor and
accelerometer deviation are converged to the stable values within 2 s to 11 s by using
the proposed algorithm (dotted lines), while the gauss newton algorithm (solid lines) is
converged within 6 s to 17 s. In particular, as exhibited in the Figure 5a, within 2 s, the gyro
bias in x, y, z directions converges to −0.019, 0.023, and 0.081. It is well demonstrated that
the iterative method acquired better performance. In Figure 5b,d, the characteristic curves
of accelerometer deviation and gravity oscillate seriously within five seconds. This is
owing to the mobile robot platform does not show enough excitation to the sensor kit in the
slight disturbance and stationary stages, making it difficult to distinguish between gravity
vector and accelerometer bias, but the proposed algorithm still has a good performance
in convergence speed. In Figure 5c, the visual scale factor is converged 10 s later, and the
gauss newton algorithm is converged after 17 s. In general, in the convergence speed, the
algorithm is faster than the Gauss–Newton algorithm.
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cloud map.
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Figure 5. Time-varying characteristic curves for initial estimations: (a) the gyroscope bias estimation, “gyro” denotes
“gyroscope”; (b) the gravity estimation, “gw” denotes “gravity”; (c) the estimation of the visual scale factor; (d) the
estimation of accelerometer bias, “acc” denotes “accelerometer”. The dotted line denotes the algorithm utilizing the
improved iterative method, and the solid lines are the outcomes of the algorithm based on Guass–Newton, which is
employed in the VI-ORBSLAM system. The convergence time is represented via red and green vertical lines, respectively.
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4.2. Evaluation of the Tracking Accuracy and Computational Complexity

In the present section, the property of this algorithm on the VI-SLAM system accuracy
was assessed. Similar to the public dataset experiment, when our algorithm is tested on
the self-collected dataset, the visual-inertial odometry is utilized as attitude and position
feedback. The trajectories are aligned with the reference trajectory, i.e., the measurements
of Xsens MTI-300. As exhibited in Figure 6, the dotted line denotes the ground truth
trajectories, the yellow line represents the trajectory of OKVIS which is a binocular SLAM
method, and the green line and red line represent the trajectories of the gauss-newton based
algorithm (i.e., VI-ORBSLAM) and our proposed algorithm, respectively. It can be known
that the trajectories can be tracked completely by them, but the three algorithms have
different degrees of deviation. Due to the improved initialization process, the trajectory of
ours is closer to the ground truth compared with VI-ORBSLAM and OKVIS.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 6. Trajectories comparison with VI-ORBSLAM. The 2D trajectories, VI-ORBSLAM (green 
line), OKVIS (yellow line), Our system (red line), and ground-truth (dotted line). VI-ORBSLAM 
adopts gauss-newton algorithm, while our system adopts the proposed algorithm. 

The quantitative evaluation results are obtained through the calculation of Equations 
(21) and (22). Which the RMSE errors are calculated as follows: 
1) RMSE error of position: 

2
_ ( ) ( )

1

2
_ y ( ) ( )

1

2
_ ( ) ( )

1

1 ( )

1 ( )

1 ( )

N

pos x pos k pos k
k

N

pos pos k pos k
k

N

pos z pos k pos k
k

x x
N

y y
N

z z
N

=

=

=


= −


 = −


 = −








RMSE

RMSE

RMSE

  (21)

where, ( ) ( ) ( )( , , )pos k pos k pos kx y z  denote the estimation of position with x, y, z-axis, 

( ) ( ) ( )( , , )pos k pos k pos kx y z  denote the true position with x, y, and z-axis, respectively. 

2) RMSE errors of orientation: 

2
_ ( ) ( )

1

2
_ ( ) ( )

1

2
_ ( ) ( )

1

1 ( )

1 ( )

1 ( )

N

ori x ori k ori k
k

N

ori y ori k ori k
k

N

ori z ori k ori k
k

x x
N

y y
N

z z
N

=

=

=


= −


 = −


 = −








RMSE

RMSE

RMSE

  (22)

where, ( ) ( ) ( )( , , )ori k ori k ori kx y z denote the estimation of orientation with x, y, z-axis, 

( ) ( ) ( )( , , )ori k ori k ori kx y z denote the true orientation with x, y and z-axis, respectively. 
As shown in Table 4 the reported value is the median after 10 times of each test. The 

bold type represents the optimal result. The RMSE errors of position in terms of the VI-
ORBSLAM, OKVIS and our proposed algorithm are (0.150, 0.125, 0.133) (m), (0.103, 0.228, 
0.152) (m) and (0.091, 0.115, 0.123) (m). Which the position accuracy of ours is increased 
by (39.3%, 8%, 7.5%) and (11.7%, 49.6%, 19.1%) along x-axis, y-axis, and z-axis in compar-
ison with VI-ORBSLAM and OKVIS, respectively, and The RMSE errors of orientation are 

-1 0 1 2 3x/m
-0.5

0

0.5

1

1.5

2

2.5

y/
m

GROUND-TRUTH           OURS            VI-ORBSLAM              OKVIS

Figure 6. Trajectories comparison with VI-ORBSLAM. The 2D trajectories, VI-ORBSLAM (green line),
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The quantitative evaluation results are obtained through the calculation of Equations
(21) and (22). Which the RMSE errors are calculated as follows:

(1) RMSE error of position:

RMSEpos_x =

√
1
N

N
∑

k=1
(xpos(k) − xpos(k))

2

RMSEpos_y =

√
1
N

N
∑

k=1
(ypos(k) − ypos(k))

2

RMSEpos_z =

√
1
N

N
∑

k=1
(zpos(k) − zpos(k))

2

(21)

where, (xpos(k), ypos(k), zpos(k)) denote the estimation of position with x, y, z-axis,
(xpos(k), ypos(k), zpos(k)) denote the true position with x, y, and z-axis, respectively.
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(2) RMSE errors of orientation:

RMSEori_x =

√
1
N

N
∑

k=1
(xori(k) − xori(k))

2

RMSEori_y =

√
1
N

N
∑

k=1
(yori(k) − yori(k))

2

RMSEori_z =

√
1
N

N
∑

k=1
(zori(k) − zori(k))

2

(22)

where, (xori(k), yori(k), zori(k)) denote the estimation of orientation with x, y, z-axis,
(xori(k), yori(k), zori(k)) denote the true orientation with x, y and z-axis, respectively.

As shown in Table 4 the reported value is the median after 10 times of each test. The
bold type represents the optimal result. The RMSE errors of position in terms of the VI-
ORBSLAM, OKVIS and our proposed algorithm are (0.150, 0.125, 0.133) (m), (0.103, 0.228,
0.152) (m) and (0.091, 0.115, 0.123) (m). Which the position accuracy of ours is increased by
(39.3%, 8%, 7.5%) and (11.7%, 49.6%, 19.1%) along x-axis, y-axis, and z-axis in comparison
with VI-ORBSLAM and OKVIS, respectively, and The RMSE errors of orientation are
(1.356, 1.165, 1.987) (◦), (1.539, 1.374, 3.060) (◦) and (1.032, 1.134, 1.857) (◦), respectively.
Which the orientation accuracy of ours is increased by (23.9%, 2.7%, 6.5%) and (32.9%,
17.47%, 39.31%) along x-axis, y-axis, and z-axis, respectively. Obviously, the improvement
of position and orientation accuracy in the three-axis is evident. It also well confirms that
the proposed initialization method processes a positive role in the positioning accuracy of
the monocular VI-SLAM system. In addition, the CPU/memory utilization statistics and
pre-frame process time of the three algorithms are also tested, it can be known from Table 5
and Figure 7 that the proposed algorithm has the lowest CPU and Memory usage with the
smallest process times of pre-frame.

Table 4. Quantitative RMSE evaluation results of different algorithms.

VI-ORBSLAM (Monocular) OKVIS (Binocular) OURS

Pos (m) Ori (◦) Pos (m) Ori (◦) Pos (m) Ori (◦)
X 0.150 1.356 0.103 1.539 0.091 1.032
Y 0.125 1.165 0.228 1.374 0.115 1.134
Z 0.133 1.987 0.152 3.060 0.123 1.857

Table 5. Average values of CPU/memory usage and process times.

VI-ORBSLAM (Monocular) OKVIS (Binocular) OURS

CPU Usage (%) 192 175 113
Memory Usage (%) 9.1 7.3 7.0
Process Times (ms) 51 34 29
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5. Conclusions and Future Work

In the present work, we put forward a new initialization algorithm for the monocular
VI-SLAM system from the perspective of non-linear optimization. Firstly, in the initial stage,
the pure vision measurement model of ORB-SLAM is employed to make all the variables
visible. Secondly, the frequency of the IMU camera was aligned by IMU pre-integration
technology. Thirdly, an improved iterative method is put forward for estimating the initial
parameters of IMU faster. Thanks to an improved iterative strategy, our initialization
procedure provides high-quality initial seeds which contain gravity vector, gyroscope bias,
visual scale as well as accelerometer biases. Besides, a real-world dataset was collected
by self-built mobile robots to validate the proposal. The results demonstrate that this
algorithm has excellent properties in system positioning accuracy and initial parameter
convergence speed than the gauss-newton based algorithm (VI-ORBSLAM) in an indoor
environment. A limitation of this strategy is the camera-IMU external parameters are
assumed as constant values. The external parameters have an uncertain influence on
the initialization results. In future works, we will make additional online estimations of
external parameters in the initialization stage to improve the property of the system.
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