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Abstract: The use of classical symmetrical polynomial definition to synthesize fully canonical inline
filters with an asymmetrical distribution of the transmission zeros along the topology leads to the
occurrence of uneven admittance inverter in the main-line. This form introduces some limitations
to transform such topology into a ladder network. Despite circuital transformation can be used to
accommodate both technology and topology, it is usual that extra reactive elements are necessary to
implement phase shifts required to achieve the complete synthesis. This article introduces a novel
method able to determine the required phase correction that has to be applied to the characteristic
polynomials in order to equalize all the admittance inverters in the main path to the same value. It has
been demonstrated that a suitable pair of phase values can be accurately estimated using a developed
hyperbolic model which can be obtained from the transmission and reflection scattering parameters.
To experimentally validate the proposed method, a Ladder-type filter with asymmetrical polynomial
definition has been synthesized, fabricated, and measured, demonstrating the effectiveness of the
developed solution.

Keywords: asymmetrical polynomials synthesis; ladder network; main-line phase shift

1. Introduction

A general fully canonical lowpass prototype network consists of an array of N shunt-
connected capacitors which are synthesized using a circuit elements extraction method.
Fully canonical networks can be also successfully described with an inline filter topology
allowing the use of the extracted pole synthesis technique [1–4]. The equivalent lowpass
model configuration can be made of a series of dangling resonators between admittance
inverters which are constituted by a combination of resonators nodes (RN) and non-
resonator nodes (NRN) coupled to each other by means of immittance inverters Jrk as
depicted in Figure 1.

Usually, the dangling resonators are tuned to the transmission zero (TZ) and the
non-resonant node prepares the extraction of the next finite TZ of (i + 1)th dangling
resonator. It is interesting to notice that it is not possible to determine both the main-line
and the resonator admittance inverter, respectively, Jk and Jrk, but only their ratio [5]. This
useful property can lead to multiple solutions suitable for different types of technologies,
providing the same transmission and reflection responses.

In the particular case of ladder topologies, the admittance inverters in the main-line Jk
do not exist physically because they are employed in pairs as an instrument to serialize
shunt connected resonators [6]. There is a degree of freedom in setting their values, usually
to unity for the sake of simplicity; however, alternation in sign along the source-to-load
path is a necessary condition for further lowpass-to-bandpass elements transformation [7].

Depending on the filter specifications, it may occur that one Jk cannot be scaled to the
common value [1]. In this situation, the uneven admittance inverter can be moved close
to the output port (JN+1 in Figure 1), and apply an admittance redistribution in the last
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three elements of the network BN , JN+1 and BL with |JN+1| =1. This redistribution process
achieves the unitary inverter at the cost of modifying the output phase of the network.

BS B1 B2

Jr1 Jr2

b1 b2 

J2J1

BL

JN+1

JrN

BN-1
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bN-1 

BN

bN 
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Figure 1. Lowpass nodal scheme of an inline prototype filter with N transmission zeros.

Despite its simplicity and utility, the redistribution solution may not be convenient for
every network. For some filter specifications, the admittance redistribution may require
changing the impedance of the output port leading to an impedance mismatch. Moreover,
in other cases it is not applicable, such as in cross-coupled topologies [8–10], where there are
ladder networks with a source-to-load coupling embracing the whole main-line inverters.
In such scenario, it is not possible to scale the network without changing the value of the
coupling, which is not a feasible option.

To overcome this limitation, we propose a method based on the phase correction of the
characteristic polynomials of the filtering function F11(s), F22(s) and E(s). The phase modi-
fication method attains the same result as the admittance redistribution but modifying the
phases of the input and output ports simultaneously in other to equalize all the admittance
inverters in a fully canonical lowpass prototype. Unlike the admittance redistribution, a
unity terminating output admittance GL is always achieved. In addition, the differentiated
phase correction of F11(s), F22(s) may also be useful for duplexer design where one of the
most important features is the isolation between transmitter and receiver filters. In [6,7],
it is described that the loading effects in both filters can be minimized by modifying the
input phase of each filter at the antenna port to a certain specific value. Therefore, by a
proper phase correction, both conditions, homogeneous main-line admittance inverters
and the phase match for duplexers can be achieved simultaneously.

The methodology to determine the required input/output phases strongly depends
on the distribution of TZs as shown in [11] for odd-order filters. This paper extends the
methodology for any class of filter, including also even-order filters, employing a precise
mathematical model.

After describing the consequences of the uneven admittance inverter in fully canonical
networks in Section 2, the current solutions and their limitations are discussed. To over-
come this problem, the generation of asymmetrical polynomials is proposed in Section 3. In
Section 4, the space map for suitable additional phase terms to be applied to the character-
istics polynomials is explored for each case. The mathematical models and the systematic
method to implement the proposed solution is thoroughly described in Section 5 for odd
and even order filters. In Section 6, an independent experimental validation is reported.
Finally, the conclusions are presented.

2. Uneven Admittance Inverters in Inline Fully Canonical Filters with
Dangling Resonators

Generically, when the nodes in the main-line of the network are surrounded by
admittance inverters, it is possible to scale the impedance at each node to arbitrary values,
once the characteristic immittance of the inverters are set to the desired value. Basically, this
is equivalent to adjust the transformer ratios of the input and output coupling transformers
such that the total energy transferring through the node remains the same [12].

In ladder topologies, such as the one in Figure 1, homogeneous values in all main-
line admittance inverters are required to succeed in the lowpass-to-bandpass elements
transformation [7]. At each extraction iteration, the ratio of Jk and Jrk is obtained so Jk can be
set to±1. However, the value for the last inverter JN+1 is given by the remaining admittance
to be extracted, so it cannot be set freely and its value will depend on the filter specifications,
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specifically, on the TZs distribution. When the TZs are allocated symmetrically with respect
to the central resonator along the ladder topology, e.g., ΩAk = {Ω1, Ω2, Ω3, Ω2, Ω1}, all the
main-line admittance inverters, including JN+1, can be scaled to ±1 successfully during
the extraction procedure. However, if another type of TZs distribution is used, hereafter
asymmetrical TZs distribution, such as ΩBk = {Ω1, Ω2, Ω1, Ω2, Ω3}, an uneven admittance
inverter in the main-line path with a different value than the rest will be required.

For instance, let us consider a filter with TZs at ΩAk = {1.8,−2, 2.5,−2, 1.8} rad/s
and RL = 20 dB. The resulting network scheme is similar to the one depicted in Figure 1,
being the extracted filter elements listed in Table 1. In this case, the admittance inverters
are Jk = {1,−1, 1,−1, 1,−1}. Since the TZs are symmetrically distributed at each side of
ΩA3 = 2.5, their values are all unitary with alternated sign. However, with an asymmetrical
TZs distribution such as ΩBk = {1.8,−2, 1.8,−2, 2.5} rad/s, in which ΩA3 and ΩA5 have
been interchanged, the admittance inverters are Jk = {1,−1, 1,−1, 1,−0.8689}, where the
|J6| value differs from the others. The rest of the network parameters are shown in Table 1.
Different TZs sorting yields different network parameters; however, as they implement the
same filtering function, the S-Parameters for both networks coincide (Figure 2).

Table 1. Extracted elements of the 5th-order filter prototype with ΩAk and ΩBk TZs distributions.

ΩAk ΩBk

Parameters Bk bk Jrk Bk bk Jrk

Res. 1 −1.0927 −1.8 1.1768 −1.0927 −1.8 1.1768
Res. 2 3.4897 2.0 2.4193 3.3440 2.0 2.4193
Res. 3 −2.6930 −2.5 2.6548 −1.8121 −1.8 1.7911
Res. 4 3.4897 2.0 2.4193 3.5215 2.0 2.4946
Res. 5 −1.0927 −1.8 1.1768 −1.4090 −2.5 1.7951

Source −0.7388 −0.7388
Load −0.7388 −0.4553

+

S11

S21

Figure 2. S-parameters of the extracted filter using TZs distributions ΩAk and ΩBk.

As previously commented, to properly accommodate the network to the ladder topol-
ogy |JN+1|must be unitary. A simple solution consists of applying a circuital transformation
approach where the real and imaginary parts of the admittance of the last elements of the
network are redistributed. In the scenario depicted in Figure 3, the admittance expression Y
comprises the last NRN BN , the load element BL and the non-unitary coupling admittance
inverter JN+1 between them. The input admittance before and after the redistribution can
be defined as
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Y = jBN +
J2
N+1

jBL + YL
=

YL J2
N+1

Y2
L + B2

L
+ j

(
BN −

BL J2
N+1

Y2
L + B2

L

)
= Yr + jYi, (1)

Y′ =
Y′L

Y′2L + B′2L
+ j

(
BN −

B′L
Y′2L + B′2L

)
= Y′r + jY′i . (2)

Notice that J′
2

N+1 has been substituted by 1 in the equation. By equaling the real parts
Yr = Y′r of both expression, B′L can be derived as

B′L = ±

√
Y′L
Yr
−Y′2L . (3)

The NRN B′N can be obtained by equaling the imaginary parts of the admittance as

B′N = Yi +
B′LYr

Y′L
. (4)

Usually, Y′L is expected to be 1. However, it can be observed in (3) that it is only possible
if the condition Y′L ≤ 1/Yr is satisfied, i.e., Yr ≤ 1. Otherwise, BL would be imaginary
and, therefore, non-realizable. To avoid this situation Y′L can be modified at the cost of
an impedance mismatch at the output port since this will not be unitary. For the network
obtained with ΩBk TZs set, YrB and YiB are

YrB = 0.6254, (5)

YiB = −1.1243. (6)

The real part of the admittance Yr is lower than one, therefore, Y′L = 1 can be assured. The
redistributed element values can be calculated with (3) are (4) as

B′L = ±

√
1

YrB
− 1 = ±0.7739, (7)

B′5 = YiB + B′LYrB. (8)

Notice, that the admittance redistribution offers two solutions. The FIR B′L can be
either positive or negative depending on the chosen sign, both results are valid but yield
different values of B′L and B′5. Therefore, the filter designer can select the reactive element
to implement those values as a convenience.

1JN+1

Figure 3. Nodal diagram of the last three elements of the network before (left) and after (right) the
admittance redistribution. The grey elements are actually part of the network but they are irrelevant
in this scenario.

In contrast, if the TZs are ΩCk = {1.8,−1.16, 1.8,−2, 2.5} rad/s, the extraction
procedure yields the network parameters in Table 2, and the admittance inverters are
Jk = {1,−1, 1,−1, 1,−1.1693}. The real and imaginary parts of the admittance are
YrC = 1.1353 and YiC = −2.0787, respectively. The real part is greater than leading to an
impedance mismatch at the output port. To minimize it, the closest value to unity that
can be chosen is Y′L = 1/YrC = 0.8808. In this case, the FIR at load port will be zero, thus,
the new element values are B′L = 0 and B′5 = −2.0787. Although the admittance inverter
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JN+1 is now equalized and the circuital transformation can be done flawlessly, the return
loss and in-band response may present a severe deterioration because of the impedance
mismatch.

Table 2. Extracted elements of the 5th-order filter prototype with ΩCk TZs distribution.

Parameters Bk bk Jrk

Res. 1 −0.6489 −1.80 1.1761
Res. 2 1.1085 1.16 0.5833
Res. 3 −2.9532 −1.80 2.3379
Res. 4 2.0059 2.00 1.8959
Res. 5 −2.5918 −2.50 2.4198

BS −0.7353
BL −0.4519

In any case, this method forces the non-equal inverter to be the same as the rest, at the
expense of indirectly modifying the output phase of the network, i.e., θ22(s). This involves
that a phase shifter is necessary to achieve a fully synthesized filter. The works [8,13]
show how the filter response is affected when this phase shifter is neglected. Of course,
this solution is useful with stand-alone inline configurations, but it requires external
reactive elements to compensate for the extra phase, for example when parallel-connected
configurations are involved [8,9]. In a sense, the non-unitary inverter in the given topology
can be understood as a phase reconditioning issue that the filtering function does not
provide for a specific TZs distribution among the resonators.

The general polynomial synthesis method for Chebyshev filtering function is gener-
ated given the filter order [14–16], an arbitrary TZs set and RL. The filtering function and
the transfer matrix is built assuming F11(s) = F∗22(s) = F(s). If their roots are coincident
upon the imaginary axis or they are symmetrically arranged about it, then, the ith root
of F11(s) is related to the corresponding root of F22(s), where the polynomial numerator
of F22(s) is the complex conjugate of F11(s). In terms of reflection coefficient phase, it is
known that θ11(s) = θ22(s).

However, if the prescribed TZs are distributed asymmetrically along the network in a
ladder topology, the phase terms θ11(s), θ22(s) are expected to be different in order to com-
ply with the extraction of all homogeneous admittance inverters in the network. In other
words, if the TZs of the filter are asymmetrically distributed, asymmetric characteristic
polynomials are required. For the sake of clarity, in Figure 4a there is a measure of a B28Rx
seventh-order filter with an asymmetrical TZs distribution. It is observable in Figure 4b
that input and output phases are not equal. This occurrence can be clearly seen in the OoB
regions, where the difference between θ11(s) and θ22(s) is directly the offset between both
traces.

In this section, the phenomenon has been addressed from the admittance redistribution
which is equivalent to the modification of the phase of the characteristic polynomials
(defined symmetric by nature). However, as it will be further discussed in the next section,
this solution can be understood as a particular case belonging to a more general solutions
map provided by the use of asymmetric polynomials.
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Figure 4. Magnitude (a) and phase (b) response of a 7th-order B28-Rx filter with a clearly differenti-
ated input and output phases in the out-out-band region.

3. Asymmetrical Polynomial Definition

The procedure for the definition of the asymmetrical polynomials to deal with asym-
metrically distributed TZs filter networks is based on the work in [17]. The relation between
modified scattering parameters and Chebyshev characteristic polynomials is given by:

S11(s) =
F11m(s)
Em(s)

, S22(s) =
F22m(s)
Em(s)

,

S21(s) = S12(s) =
Pm(s)
Em(s)

.

(9)

where the subscript m refers to modified characteristic polynomials that are defined as follows:

F11m(s) =
F(s)
εR

√
Ψ
Φ ,

F22m(s) =
(−1)N F∗(s)

εR

√
Φ
Ψ ,

Em(s) =
E(s)√

ΨΦ
.

(10)

The parameters Ψ and Φ are complex constants which absolute value is |Ψ| = |Φ| = 1.
With the angles associated with these new variables (ψ, φ), the phase of F11m and F22m can
be modified. Both phase terms are bounded together and linked to the phase of Em(s).

Ψ = ejψ, Φ = ejφ. (11)

The lowpass prototype network synthesis is carried out by means of successive extractions
from the [ABCD] polynomial matrix as described in [4,12]. The procedure requires N
recursive steps. For a two-port network having the terminals normalized to unity, the
network [ABCD] matrix is built as follows:

[
ABCD

]
=

1
jP(s)/ε

[
A(s) B(s)
C(s) D(s)

]
(12)

The extracted pole sections are made of a non-resonant node and resonant node pairs
(NRN-RN). At each iteration k, the extraction will be performed at a normalized finite
frequency jΩk

i , being k = 1...N the iteration number, and i = 1...N the resonator position.
The extracted elements must be removed from the ABCD matrix in (12) which is updated
after every step. Using the classic two-port [S] matrix to [ABCD] matrix transformation
formulas with normalized characteristic impedance, the polynomials A(s), B(s), C(s), and
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D(s) in (12) may be directly expressed in terms of the coefficients of modified characteristic
polynomials F11m(s), F22m(s) and Em(s):

A(s) =
(Em(s) + F11m(s))(Em(s)− F22m(s)) + P2

m(s)
2Em(s)

,

B(s) =
(Em(s) + F11m(s))(Em(s) + F22m(s))− P2

m(s)
2Em(s)

,

C(s) =
(Em(s)− F11m(s))(Em(s)− F22m(s))− P2

m(s)
2Em(s)

,

D(s) =
(Em(s)− F11m(s))(Em(s) + F22m(s)) + P2

m(s)
2Em(s)

,

Pm(s) =
P(s)

ε
.

(13)

Adopting the equations in (13) the extraction process can be carried out as usual [12]. If
Ψ and Φ are properly defined, it is expected that the extraction process will yield the last
inverter JN+1 to a unitary value. However, the definition of the asymmetrical polynomial
depends directly on the chosen values for Ψ and Φ.

4. Phase Determination

With the aim to find out the definition of ψ and φ that yields |JN+1| = 1, a space
map of solutions has been obtained by sweeping both variables, i.e., input and output
phase correction, and carrying the extraction of elements in every case. The space map
of solutions results in a particular geometric pattern that, as it will be developed through
this section, will be different for odd- and even-order networks. For odd-order filters, the
suitable phase values are like an equilateral hyperbola while they describe an ellipse in the
case of even-order filters. Although both are different, they belong to the same group of
geometric shapes, conic sections. They can be defined as non-degenerate curves shape that
can be obtained when a plane intersects one or two right circular cones [18]. They can be
differentiated by the eccentricity e, a constant value that characterizes the shape of a curve.
When it is greater than 1, the geometric shape corresponds to a hyperbola, conversely if
0 < e < 1, the result is an ellipse. In the following, the method to find all suitable phase
values for both cases is described.

4.1. Odd-Order Ladder Filters

To fully characterize a network, for each TZs array Ωtzi, a double phase sweep has
been conducted doing nψ × nφ complete circuital extractions from the network ABCD
matrix, where the effect is located to the last admittance inverter, being nψ and nφ the
individual number of sweeps in ψ and φ variables, respectively.

The JN+1 value evolution is obtained as a function of (ψ, φ). Both parameters have
been swept in a range from −180◦ to 180◦. The values for the pair (ψ, φ) yielding
JN+1 = 1± 0.001 describe a map that can be fitted with the parametric equation of a
conjugate hyperbola as shown in Figure 5a,b, respectively.
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Figure 5. (a) Horizontal hyperbola and (b) vertical hyperbola representation. The black trace
represents those combinations of φ, ψ that yields |JN+1| = 1. For illustration purpose all |JN+1|
values that fit in 1± 0.001 have been plotted. The red traces corresponds to the asymptotes. The point
(ψ0, φ0) is the origin and (ψ′0, φ′0) the origin of another hyperbola with a 180◦ shift in both directions.

A hyperbola can be completely defined by four parameters: the hyperbola type
(horizontal or vertical), the two slant asymptotes, the origin locus, and the distance from it
to the vertex of one branch (α). Whereas it is equilateral in any case, its slant asymptotes
have a slope 1 at ψ = ±φ. Through observation, it has been discerned that unitary
JN+1(φ, ψ) describes an equilateral hyperbola-like shape which origin location coincides
with ψ0 = θ11(jω1), φ0 = θ22(jωN), given by:

θ11(s) =
F(s)
E(s)

∣∣∣∣
s=jω1

(14a)

θ22(s) =
F(s)
E(s)

∣∣∣∣
s=jωN

(14b)

The general equation for equilateral hyperbolas is:

(φ− φ0)
2 − (ψ− ψ0)

2

α2 = ±1. (15)

If the LHS of Equation (15) is negative, the hyperbola aperture is vertical, and horizontal
otherwise. The hyperbola type is determined by the |JN+1| value that results from the
network synthesis considering ψ = 0◦, φ = 0◦. If |JN+1| < 1 the hyperbola is vertical and
horizontal when |JN+1| > 1.

The value of |JN+1| can be only known after performing a whole network extraction.
In filters which TZs distribution presents internal symmetry and different outer TZs such
as Ωtz = {Ω1, Ω2, Ω3, Ω2, Ω4}, the hyperbola type could be recognized a priori from
the absolute value of the input and output phases |ψ0| and |φ0| obtained using (14). If
|ψ0| > |φ0|, the hyperbola is vertical and horizontal if |ψ0| < |φ0|. However, this behavior
can only be observed in such a case. These phase terms are obtained using the normalized
frequency of the first and last TZ of the network. A phase term is greater as the TZ is closer
to the center frequency and vice versa. It also should be noted in Figure 5a, that the both
hyperbola-like shapes present periodicity every ±180◦ degrees in ψ0 and φ0 directions
regardless its aperture.

Apart from these two orientation types, there is also a third possibility, filters with TZs
distribution in such a way that it is achieved |JN+1| = 1 before correcting the polynomial
phases. Here, the vertices of both branches are located in the origin of the hyperbola,
as shown in Figure 6. This situation is given, but not exclusively, when the TZs are
symmetrically allocated along the network. As expected, the asymptote with positive and
negative slope are given by ψ = (φ− φ0) + ψ0 and ψ = −(φ− φ0) + ψ0, respectively.
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The vertices cannot be inferred directly from the function representation in any of
the previous cases. The calculation is carried out by an indirect approach that it will be
described in Section 5.1.

In the following, they are going to be under discussion to illustrate in more detail
the three possible results. In the first two cases, the horizontal and vertical hyperbolas
are shown; the third case explores filters with TZs distribution which |JN+1| = 1 with the
initial starting set-up (ψ = φ = 0). Finally, the method used to obtain the vertex location Vh
is described.

Hyperbola Types

The analysis of the three cases has been done following the same procedure. First, a
network synthesis is done without modifying the polynomials to obtain the JN+1 used to
identify the hyperbola type. Then, the phase sweep is carried out and the results are plotted.

Let us consider first a 5th-order lowpass fully canonical filter with a TZs set Ωtz1 =
{2.6,−1.6, 2.6,−2.5, 3} rad/s and RL1 = 10 dB. An initial network synthesis yields |JN+1| =
1.005503. As the admittance inverter is greater than one, the hyperbola is horizontal as
the one in Figure 5a. The center, calculated using (14), is located at ψ0 = θ11 = −27.8209◦,
φ0 = θ22 = −23.7531◦.

For the vertical case, a 5th-order lowpass fully canonical filter with a set of TZs
Ωtz2 = {1.4,−1.7, 2.6,−2, 1.8} rad/s and RL2 = 10 dB is considered. An initial network
synthesis yields |JN+1| = 0.878566, the admittance inverter is lower than 1, meaning that the
hyperbola is vertical as shown in Figure 5b. The center is located in ψ0 = θ11 = −61.5988◦,
φ0 = θ22 = −42.7635◦.

As seen in Figure 5a, the continuity in the function is interrupted at some points. This
discontinuity occurs when traces cross the asymptotes of the hyperbolic response. As
mention before, the hyperbolas shows a periodicity every ±180◦; the traces that appears
after the end of the interrupted traces belongs to another hyperbola in other region on the
map. A large number of realizations has been carried out obtaining a margin of ±45◦ for
ψ and φ around the origin point, where the continuity is assured.

Considering the absolute value of the uneven admittance inverter as a measure of the
asymmetry of the values in a certain TZs distribution, as |JN+1| tends to move away from
unity, the further the hyperbola branches are.

The third case is given in filters with symmetric TZs distribution. Let us consider a
5th-order lowpass fully canonical filter with a TZs set Ωtz3 = {1.8,−2, 2.6,−2, 1.8} rad/s
and RL3 = 10 dB. An initial network synthesis yields |JN+1| = 1. As shown in Figure 6,
the sweep yields two slopes that cross in the center point. That is, the valid pairs φ, ψ are
those that lie directly over the asymptotes. It must be also highlighted that in this case, the
area in which |JN+1| = 1± 0.001 is more extensive than previous cases. This leads to less
sensitive networks from the point of view of input/output phase shifts. This special case
corresponds to a degenerate conic section, described as two intersecting lines[19], which
particular mathematical expression is

(φ− φ0)
2 − (ψ− ψ0)

2

α2 = 0. (16)

Effectively, it can be observed in Figure 6 that there are identified pairs of angles (φ, ψ)
suited to correct the input/output phase of the network. Moreover, as the solution is not
unique, the designer has the chance to select that pair of phase values which leads to
obtaining |JN+1|=1, but at the same time considering other phase requirements as it could
be the case of avoiding loading effects in the design of duplexers or multiplexers [6].
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? °

A
°

Figure 6. Phase sweep plot when the distance to the vertex is zero. The black trace represents those
combinations of ψ, φ that yields |JN+1| = 1. For illustration purpose all |JN+1| values that fit in
1± 0.001 have been plotted.

When the network is synthesized applying the phase correction using (φ, ψ) corre-
sponding to one of the vertices, one of the reactive input/output elements will be zero
because one of the phase terms cancels the input or output phase. If the hyperbola is
vertically orientated ψ = ψ0, which is θ11, the new input phase will be zero and no reactive
element at the source port BS is necessary [1]. Conversely, if the hyperbola is found to be
horizontal, the reactive element at the output port will be zero. Besides, if different valid
(φ, ψ) pairs are used, none of the input/output reactive elements will be null.

4.2. Relationship between the Phase Map and the Admittance Redistribution Method

As was described in Section 2, the described method to equalize the inverter values
in the main-line by an admittance redistribution modifies θ22(s) without altering θ11(s).
Hence, this is equivalent to pre-modify the characteristic polynomials before the circuital
extraction with ψ = 0 and certain value for φ.

The filter used to exemplify the admittance redistribution with ΩBk TZs showed two
values for BL, positive or negative depending on the sign of the square root. These solutions
lead to two different circuit elements or, equivalently, two additive output phase terms
φB1 and φB2. Before the redistribution, BL = −0.4553 and the phase term is φ0 = −48.96◦.
Once the redistribution is done, B′L = ±0.7739, that yields φ′0 = ±75.4726◦. Therefore, the
additive phases can be obtained as

φB1 = φ0 + |φ′0| = 26.51◦, (17a)

φB2 = φ0 − |φ′0| = −124.43◦. (17b)

In the original synthesized filter, the last admittance inverter is |J6| = 0.8689, lower than
1. Thus, a double phase sweep of the characteristic polynomials describes the vertical
hyperbola shown in Figure 7a. It can be noted that there are two points cutting the
hyperbola (solutions for |JN+1|=1) at ψ = 0, and these two values correspond with φB1
and φB2. This result reveals that the circuital transformation done by the admittance
redistribution is actually a particular case within the hyperbola.
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?

A ?B1 = 26:51/

?B2 = !124:43/
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Figure 7. (a) Horizontal hyperbola of the filter with ΩBk TZs and (b) vertical hyperbola of the filter
with ΩCk TZs. The black trace are those combinations of φ, ψ that yields |JN+1| = 1± 0.001. The red
line across the φ axis is at ψ = 0.

On the other hand, a particular TZs distribution may lead to a situation in which
the admittance distribution is not possible unless impedance mismatch is allowed as it
was the case with TZs ΩCk = {1.8,−1.16, 1.8,−2, 2.5}. The double phase sweep of this
filter yields the phase map in Figure 7b. It can be observed that no point is cutting the
hyperbola at ψ = 0. In other words, there is no additive output phase φ that can correct the
last admittance inverter if the input phase term ψ is zero. This brings to light the cause of
the admittance redistribution method applicability limitation, and reinforce the necessity
of the asymmetrical polynomial definition in such cases.

From both phase maps in Figure 7 it can be concluded that in all networks with
|JN+1| < 1 (vertical hyperbola), the redistribution is always possible because there exist
a cutting point at ψ = 0 in both branches. However, for those networks with |JN+1| > 1
(horizontal hyperbola), it may occur that no branches crosses the line at ψ = 0. In this
case, to equalize the uneven inverter is necessary to change, at least, the input phase with a
non-zero ψ value.

4.3. Even-Order Ladder Filters

A symmetric distribution of the TZ in odd-order networks can be achieved by having
the same resonant frequencies at both halves of the network, considering the central
resonator as an axis of symmetry. Hence, even-order filters do not posses symmetry under
these terms and the unitary admittance inverters can only be achieved, without any phase
correction, by a careful selection of TZs and RL values. For example, with the network
with TZs ΩDk = {2.5,−1.3, 1.5,−2.64, 2,−1.86} rad/s and RL = 20 dB, which network
parameters are listed in Table 3, the admittance inverters are Jk = {1,−1, 1,−1, 1,−1, 1}.

Table 3. Extracted elements of the 6th-order filter prototype with a ΩDk TZs distribution.

Parameters Bk bk Jrk

Res. 1 −1.6233 −2.50 2.091
Res. 2 1.2539 1.30 0.97845
Res. 3 −2.4661 −1.50 1.827
Res. 4 3.1101 2.64 2.9667
Res. 5 −3.4831 −2.00 2.4392
Res. 6 1.2111 1.86 1.2928

BS −0.4460
BL 0.6775

In any event, the unique geometric shape that defines the input and output phases
(Ψ, Φ) providing an unitary admittance inverter for even-order filters is an ellipse. To
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illustrate the phenomenon, let us consider a 4th-order fully canonical filter with a TZs
ΩEk = {−1.8, 1.6,−2, 2.5} and RL = 20 dB, with the network parameters in Table 4 and
S-parameters in Figure 8a. The synthesis yields Jk = {1,−1, 1,−1, 1.1593}. The result of
the sweep reveals the ellipses in Figure 8b.

Table 4. Extracted elements of the 4th-order filter prototype with a ΩEk TZs distribution.

Parameters Bk bk Jrk

Res. 1 0.9234 1.8000 1.108
Res. 2 −2.3310 −1.6000 1.6192
Res. 3 1.8854 2.0000 1.8385
Res. 4 −2.4007 −2.5000 2.3224

BS 0.7782
BL −0.4700

In this case, the location of the origin at ψ0 and φ0 can be also determined using (14),
and periodicity in the ellipse every ±180◦ in both axis (ψ and φ) is observed again. The
origin in this case is located at (ψ0 = −50.3462◦, φ0 = 75.7811◦). However, unlike the
odd-order filters, the even-order do not show any variation in shape.

Besides, it can be noted that the black trace in Figure 8b never cuts ψ = 0◦. That is,
even-order filters may be susceptible to not have any output additive phase term φ that
can provide a unitary admittance inverter |JN+1| without modifying the input phase. In
consequence, it may exist network configurations in which the admittance redistribution
method is not applicable either.

+

S11

S21

(a)
? °

A
°

(?
0
,A
0
)

(?
0
0 ,A

0
0 )

(b)

Figure 8. (a) S-parameters of the network with ΩEk TZs and (b) the phase map of the ellipse with a
sweep between ±180◦.

The ellipse can be completely characterized by three parameters: the center location,
the major radius and minor radius, where the general equation is

(φ− φ0)
2

r2
φ

− (ψ− ψ0)
2

r2
ψ

= 1 (18)

To keep coherence with the rest of the text, the radii will be referred as rψ and rφ in
function of the axis in which they are defined instead of their length from the center.

5. Fast Estimation of the Phase Maps

Performing a phase map for every network is a time-consuming task, doing a sweep
from−180◦ to 180◦ in both ψ and φ with a good precision requires about 106 full extractions.
In this section, a fast and systematic method to obtain an accurate model for both shapes,
the hyperbola and the ellipse, is described.
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The proposed methods are generic so that makes it unnecessary to perform the
phase exploration each time, enabling achieving a proper solution directly with a low
computational cost.

5.1. Hyperbolic Model Estimation

As mentioned earlier, to model a hyperbola four parameters are required: the hy-
perbola type (horizontal or vertical), the two slant asymptotes, the origin locus and the
distance from it to the vertex of one branch. All of them can be obtained from the network
parameters except the vertices. The vertex is the point at each branch closest to the center.
To find its value, an indirect approach has been employed.

Since both vertices belong to the hyperbola, they will provide |JN+1| = 1. A phase
sweep has been carried out along the transverse axis, the line going from one vertex to the
other. If it is a vertical hyperbola, the transverse axis is defined in φ axis, being also the
sweeping parameter. Meanwhile, ψ is fixed and set to ψ0 = θ11. In the horizontal hyperbola
case, ψ is the sweeping parameter and φ0 = θ22. The traced curve is accurately described by
a geometric parabolic function that is continuous within the range of interest given by (19)
and (20) for the vertical and horizontal hyperbola case, respectively. To avoid confusion,
the parabola and hyperbola vertices have been denoted as Vp and Vh, respectively.

φ = ±(180◦ − |θ11|), (19)

ψ = ±(180◦ − |θ22|). (20)

For the vertical hyperbola case, the vertex of the parabola is identified by Vp(φ0, |JN+1(φ0, ψ0)|).
At equal distance to the vertex there are two |JN+1| values that are unitary and these points
meet with the hyperbola vertices. Although the curve is not exactly a parabola, the approx-
imation is valid for range close to the vertex Vp, because is where the solution usually is,
and Vp does not takes values far from one. The equation is defined as follows:

(φ− φ0)
2 = 4p(|JN+1(φ, ψ0)| − |JN+1(φ0, ψ0)|), (21)

where p is a constant that controls the parabola steepness. It can be obtained as:

p =
(φ− φ0)

2

4(|JN+1(φ, ψ0)| − |JN+1(ψ0, φ0)|)
. (22)

The φ value for calculating p should be chosen close to the vertex Vp to achieve an accurate
approximation to the curve steep. Of course, higher polynomial fit can be successfully
used to increase the range and accuracy of the approximation, but based on the conducted
experiments, the parabolic model is computationally faster, accurate enough, and facil-
itates the understanding. The hyperbola vertices can be obtained from (21) by setting
|JN+1(φ, ψ0)| = 1 and solving for φ that are the angles where the vertices are located.

φ = φ0 ± 2
√

p(1− |JN+1(φ0, ψ0)|) (23)

Using Equation (23), the vertices points of a vertical hyperbola are Vh(φ0 ± α, ψ0), where α
is define as

α = 2
√

p(1− |JN+1(φ0, ψ0)|). (24)

Considering the filter used in the previous section with TZs Ωtz1, the vertices are
located at φ = φ0 ± 35.04◦ and ψ = ψ0. As shown in Figure 9, the approximation is
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accurate around the parabola vertex. Analogously, when the hyperbola is horizontal, the
parabola function equations are calculated, as follows:

(ψ− ψ0)
2 = 4p(|JN+1(φ0, ψ)| − |JN+1(φ0, ψ0)|), (25a)

p =
(ψ− ψ0)

2

4(|JN+1(φ0, ψ)| − |JN+1(φ0, ψ0)|)
, (25b)

ψ = ψ0 ± α. (25c)

Finally, the vertices points are defined as Vh(φ0, ψ0 ± α).

? °

?
3

jJN+1j Simulated

Parabolic model

Figure 9. Comparison between the phase sweep in φ for the filter with Ωtz1 TZs and the parabolic
estimation model.

5.2. Illustrative Synthesis Example

A Chebyshev 7th-order fully canonical filter with an asymmetric TZs distribution
is presented to demonstrate the accuracy of the proposed method. The transmission
zeros are Ωtz = {2.4,−2.1, 1.7,−1.8, 2,−1.7, 1.5} rad/s and RL = 18 dB. All characteristic
polynomials are listed in Table 5.

The lowpass prototype filter resulting from the network synthesis is like the one
depicted in Figure 1 with N = 7. The extracted parameters are shown in Table 6 leading to
the transmission and reflection response, in the lowpass domain, depicted in Figure 10. In
this case, the extracted uneven admittance inverter is |JN+1| = 1.2405, meaning that the
hyperbola is horizontal as shown in Figure 11a. The center of the hyperbola, obtained with
(14), is located in C(φ = −83.6889, ψ = −45.814◦), θ22 and θ11, respectively.

+

S11

S21

Figure 10. Lowpass transmission and reflection response of the extracted network.
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Table 5. Characteristic polynomial coefficients for the filter with Ωtz TZs distribution and RL = 18 dB
for different additional phase terms.

Initial Characteristic Polynomials

deg. P(s) E(s) F11(s) F22(s)

0 78.6542 0.1852 − 0.1290j −0.0161j −0.0161j
1 43.3847 0.8449 − 0.4246j 0.1470 0.1470
2 70.4446j 1.9944 − 0.8376j −0.2183j −0.2183j
3 37.6407 3.3274 − 1.0378j 1.0165 1.0165
4 20.7380j 3.6860 − 1.0261j −0.5080j −0.5080j
5 10.7200 3.4792 − 0.5680j 1.8598 1.8598
6 2.0000j 1.7997 − 0.3115j −0.3115j −0.3115j
7 1 1 1 1

Modified Polynomials by φ = −83.6889◦, ψ = −36.6610◦

deg. Em(s) F11m(s) F22m(s)

0 0.2040 + 0.0965j 0.0064−0.0147j 0.0064−0.0147j
1 0.7885 + 0.5218j 0.1348 + 0.0586j 0.1347 + 0.0586j
2 1.7186 + 1.3137j 0.0871−0.2001j 0.0870−0.2001j
3 2.5552 + 2.3705j 0.9321 + 0.4056j 0.9321 + 0.4055j
4 2.7234 + 2.6874j 0.2027−0.4658j 0.2026−0.4658j
5 2.2232 + 2.7359j 1.7053 + 0.7420j 1.7053 + 0.7420j
6 1.1653 + 1.4064j 0.1243−0.2856j 0.1242−0.2855j
7 0.4974 + 0.8675j 0.9170 + 0.3990j 0.9169 + 0.3989j

Modified Polynomials by φ = −53.51◦, ψ = −14.18◦

deg. Em(s) F11m(s) F22m(s)

0 0.2257−0.0040j 0.0054−0.0151j 0.0054−0.0151j
1 0.9382 + 0.1179j 0.1384 + 0.0495j 0.1384 + 0.0494j
2 2.1230 + 0.4152j 0.0734−0.2055j 0.0734−0.2055j
3 3.3415 + 0.9912j 0.9572 + 0.3421j 0.9572 + 0.3420j
4 3.6328 + 1.2007j 0.1710−0.4784j 0.1709−0.4783j
5 3.2060 + 1.4660j 1.7513 + 0.6259j 1.7513 + 0.6258j
6 1.6682 + 0.7436j 0.1048−0.2933j 0.1048−0.2932j
7 0.8305 + 0.5569j 0.9417 + 0.3365j 0.9416 + 0.3365j

? °

A
°

(a)
? °

A
°

Simulation
Hiperbola model

(b)

Figure 11. Hyperbola representation of a 7th-order filter: (a) the black trace represents those com-
binations of ψ, φ that yields |JN+1| = 1 and (b) a comparison between the modeled and simulated
hyperbola. For illustration purpose all |JN+1| values that fit in 1± 0.001 have been plotted.

To characterize the hyperbola, the vertices must be provided. Considering its nature,
Vh has to be calculated using the expressions in (25). The parabolic steepness parameter
p = 6.6294× 103 is obtained using φ = φ0 + 45◦. Then, the distance from the center to the
vertices is α = 9.2096◦. The hyperbola modeled with (15) using the estimated parameters,
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matches the simulation accurately enough in those points in which |JN+1| is unitary as
seen in the comparison in Figure 11b.

Table 6. Lowpass elements of the synthesized 7th-order ladder filter with Ωtz TZs distribution and
RL = 18 dB when ψ = φ = 0◦.

Parameters Bk bk Jrk

Res. 1 −2.0663 −2.4 2.1118
Res. 2 2.9706 2.1 2.4151
Res. 3 −2.4493 −1.7 2.0115
Res. 4 2.7822 1.8 2.2187
Res. 5 −2.9497 −2 2.4700
Res. 6 2.2032 1.7 1.7362
Res. 7 −1.3197 −1.5 1.0718

Source −0.4226
Load −0.8955

The filter, with the same set of TZs and RL, has been re-synthesized applying the
proper polynomial modification in (9) and (10) using the vertex point φ = −83.6889◦

and ψ = θ11 + α = −36.6610◦. The coefficients of the modified polynomials are found in
Table 5. Since the allocation of the TZs has not been modified, the polynomial P(s) remains
the same. The values of the different extracted parameters are listed in Table 7. In this case,
the value of the last admittance inverter results in JN+1 = −0.99996 ≈ −1.

It should be noted that in this particular case, the coefficient φ = −θ22. Therefore, the
output phase after correcting polynomial F22m(s) becomes zero, i.e., the load element is
null. On the other hand, if the filter is re-synthesized with other suitable phases pair like
φ = −53.51◦,ψ = −14.18◦, the non-even admittance inverter is JN+1 = −0.99968, but now
none of the loading elements are null as seen in Table 7. The precision of both synthesis
examples results demonstrate convincingly the effectiveness of the method.

Table 7. Lowpass elements of the synthesized 7th-order ladder filter with phase correction parameters
ψ = −36.66◦, φ = −83.6889◦ and ψ = −14.18◦, φ = −53.51◦.

ψ = −36.66◦, φ = −83.68◦ ψ = −14.18◦, φ = −53.51◦

Bk bk Jrk Bk bk Jrk

Res. 1 −2.0663 −2.4 2.1118 −2.1254 −2.4 2.2058
Res. 2 2.5367 2.1 2.2317 2.7228 2.1 2.3122
Res. 3 −2.8683 −1.7 2.1767 −2.6722 −1.7 2.1010
Res. 4 2.3758 1.8 2.0502 2.5501 1.8 2.1241
Res. 5 −3.4543 −2 2.6728 −3.2181 −2 2.5799
Res. 6 1.8815 1.7 1.6044 2.0194 1.7 1.6622
Res. 7 −0.6499 −1.5 1.1598 −0.8568 −1.5 1.1195

Source −0.0800 −0.2833
Load 0 −0.2696

5.3. Ellipsoidal Model Estimation

In case of the even-order filters, the characterization of the ellipse only requires three
parameters: the center location and the major radius and minor radius (see Equation (18)).
The radii are the only parameters that cannot be obtained from the network specifications
or extracted elements.

The radii length must be obtained using a similar approach to the one described in
Section 5.1 to obtain the hyperbola vertex. However, for the ellipsoidal modeling there are
two parameters to calculate. To obtain the radii values, two parabolic estimations must
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be used as depicted in Figure 12a. The parabola for rψ is defined in the plane (|JN+1|, ψ)
given by the Equation (25a) with a steepness p (25b) in the range stated by (20). The radius
is the distance from the center to a crossing point in ψ between the ellipse and the parabola
that yields |JN+1| = 1. Its value can be computed as

rψ = ψ0 ± 2
√

p(1− |JN+1(φ0, ψ0)|). (26)

In the complementary case, the parabola that helps to estimate rφ is in the plane
(|JN+1|, φ) and it is defined by (25a). The steepness p can be calculated with (22), within a
range delimited by (19). The radius is calculated as

rφ = φ0 ± 2
√

p(1− |JN+1(φ0, ψ0)|). (27)

Let us consider the 4th-order fully canonical filter with a TZs ΩEk, which network
parameters are listed in Table 4. As was previously mentioned, the origin of the ellipse is
located at (ψ0 = −50.3462◦, φ0 = 75.7811◦). The sweep shows the ellipses in Figure 12a.
Using the proposed method, the calculated radii are rψ = 67.9811◦ and rφ = 68.4862◦. In
Figure 12b it can be seen the result of ellipsoidal model in (18) over the simulated ellipse
from the phase map.

|JN+1|

(a)

? °

A
° (?

0
,A
0
)

A

?

(b)

Figure 12. (a) Illustrative double parabolic estimation representation of the ellipsoidal model, and (b)
the result of applying the model to the filter with ΩEk (blue trace) superimposed to the result of the
phase map (black trace).

6. Experimental Validation

To validate the proposed methodology, a N = 5 order filter has been synthesized using
the procedure in [6], symmetric polynomial definition, RL = 20 dB, and allocation of the
transmission zeros in the lowpass domain Ωk = {1.7342,−1.8170, 1.2350, −2.2460, 2.4673}
rad/s. The extracted elements of the lowpass prototype are shown in Table 8. The elements
with subscript b correspond to those obtained directly from the synthesis procedure. In
this case, the last inverter JN+1 = −0.8936, from the phase point of view, Figure 13 shows
that θ11 = θ22 as expected since symmetric polynomials have been used.
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Table 8. Lowpass elements of the synthesized 5th-order ladder filter before and after JN+1 redistribution.

Parameters Bkb bkb Jrkb Bka bka Jrka

Res. 1 −1.004 1.734 1.110 −1.004 1.734 1.110
Res. 2 2.686 −1.817 2.095 2.686 −1.817 2.095
Res. 3 −1.042 1.235 0.944 −1.042 1.235 0.944
Res. 4 3.624 −2.246 2.841 3.624 −2.246 2.841
Res. 5 −1.517 2.467 1.831 −1.688 2.467 1.831

Source −0.773 −0.773
Load −0.457 −0.713

+

311(Jn+1 6= !1)
322(Jn+1 6= !1)
311(Jn+1 = !1)
322(Jn+1 = !1)

Figure 13. Input and output reflection coefficient θ11 and θ22.

The dangling resonator can only be serialized if the side inverters are equal with the
opposite sign. As was previously discussed, a possible solution consists of applying a
redistribution of the values of the last three elements of the network, the last two FIRs and
the admittance inverter coupling them, to turn the last admittance inverter unitary. This is
seen in the elements with subscript a in Table 8, where the FIR Bka for resonator 5 and the
load elements have been modified. In this case, as expected, the last inverter JN+1 = −1 so
the serialization is possible; however, a phase shift of −9.7◦ in the main-line is required
for the exact and complete synthesis. The lack of such phase shifter entails that θ11 6= θ22
leading to a phase difference θ22 − θ11 = −22.1◦.

For the sake of clarity, in Figure 14, the nodal representation of the directly synthesized
network is compared with the network once the element transformation is carried out to
achieve the JN+1 = −1. Therefore, the presence of the phase shifter in the main-line path is
mandatory to have a perfect equivalence between both networks.

1.8313

-2.4673

 -0.8936

-1.5172j -0.4575j YL = 1

1.8313

-2.4673

 -1

-1.6887j -0.7173j YL = 1

  

' 

-11.05°

Figure 14. Network with the direct synthesis of the elements resulting in JN+1 6= −1 (left), and once
the network transformation is done to achieve JN+1 = −1 (right).

To have an exact and complete synthesis of the filter, the proposed phase correction
method has been applied with ψ = −27.7◦ and φ = −89.3◦. In this case, the resulting last
inverter JN+1 = −1 as expected. The transformation to the bandpass domain results in
the very well-known Butterworth-Van Dyke equivalent circuit [6] as shown in Figure 15a,
where the value for the elements are summarized in Table 9. The frequency transformation
has been done considering f0 = 245 MHz and BW = 100 MHz.



Electronics 2021, 10, 3058 19 of 21

Table 9. Bandpass elements of the 5th-order ladder filter with phase correction terms φ = −89.3◦,
ψ = −27.7◦.

Parameters La (nH) Ca (pF) C0 (pF)

Res. 1 53.18 7.35 13.28
Res. 2 81.14 8.90 15.13
Res. 3 135.24 2.68 11.03
Res. 4 48.83 16.59 18.33
Res. 5 41.63 14.86 6.65

Source 73.3 nH
Load 4.74 pF

P1
Ca1 La1

C01

P2
Ca5 La5

C05

Ca3 La3

C03
Ca2

La2
C02 C04

Ca4

La4

LS CL

(a) (b)

Figure 15. (a) Equivalent electric circuit using the Butterworth-Van Dyke model for the designed
filter, and (b) the fabricated prototype using lumped elements.

As a proof of concept and for rapid prototyping, the filter was made in FR4 with
ENIG surface finish. The resonators were implemented with Wirewound High-Q Chip
Inductors and Multi-layer High-Q Capacitors from Johanson Technology. The estimated Q
factor for inductors and capacitors are, respectively, QL = 45 and QC = 800. The measured
transmission response, as well as the input/output reflection coefficient, are shown in
Figure 16a. The insertion losses are −0.6 dB as expected from the EM simulation, taking
into account the finite Q factor of the lumped components. The tolerances in the used
commercial values of the components are also responsible for the detuning of the upper
TZ closest to the bandpass, which at the same time results in a certain degradation of the
RL and achieved BW.

On the other hand, Figure16b shows the measured difference between the phase
of the input and output reflection coefficient ∆θ = θ22 − θ11 = −58.73◦. The response
is in a very good agreement with the specifications of the filter where the theoretical
difference is φ− ψ = θ11 − θ22 = −61.6◦. It has to be highlighted that in this case, unlike
the method based on the redistribution of the network, no phase shifters are required for
the serialization of resonators.

S11 Simulated
S21 Simulated
S22 Simulated
S11 Measured
S21 Measured
S22 Measured

(a)

"
3

3
3

(b)

Figure 16. (a) Measured and simulated filter transmission response, and input/output reflection coef-
ficient. (b) Difference between input and output measured reflection coefficient phase ∆θ = θ22 − θ11.
The simulation was carried out with ANSYS® Electronics Desktop 2021 R1. The manufactured filter was
characterized with the network analyzer N5242B PNA-X.
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7. Conclusions

The benefits of the work presented in this paper is twofold. First, it is an observa-
tion of a phenomenon and a full description of it have been provided. When using the
extracted-pole method with inline topologies, the use of symmetrical polynomials for
non-symmetrical transmission zeros distribution translates the asymmetry not only into
the resonance frequencies but also into the main-line admittance inverters strength. This
situation introduces some difficulties to serialize resonators in the case of ladder topologies.
However, they arise mainly when the ladder participates in a parallel-connected network.
In this paper, the necessity of asymmetric polynomials for asymmetric networks to over-
come phase offsets when using symmetric Chebyshev polynomials was presented and
validated. To equalize all the admittance inverters in the main-line path to the same value,
a novel method was found enabling the extraction procedure by correcting the Chebyshev
polynomials phase for inline networks. It was observed that all suitable pair of phase
values can be computed with a phase map. Additionally, we analyzed every aspect of it,
and linked to an already existing solution by proving that it is merely a particular case of a
more complex situation. Second, an algorithm was described to create a systematic and
low-computing cost solution to make a better use of such observation for the filter designer
benefit. Finally, a ladder-type filter was fabricated and measured to validate the proposed
methodology.
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