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Abstract: This article presents an optimized microwave sensor for the non-contact measurement of
complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel
combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential
bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type
differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor
and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure
to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the
materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype
with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex
permittivity and material thickness. The experimental results indicated that the resonant frequency
of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response
(r2 = 0.91567), and 53 MHz/∆εr for permittivity with a linear response (r2 = 0.98903). The maximum
error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator
is 6.52%. The presented performance of the proposed sensor authenticates its application in the
non-contact measurement of samples based on complex permittivity and thickness.

Keywords: air gap; electric field; microwave sensor; non-contact; optimized

1. Introduction

Planar microwave resonator-based sensing is a developing technology to measure the
material’s thickness and complex permittivity. Material properties play a vital role in nu-
merous manufacturing applications, including biomedical, defense, and agriculture [1–5].
Different approaches are used to characterize the material thickness and complex per-
mittivity with high sensitivity [1]. These methods include free space, near-field, RF and
microwave, and transmission lines [3–6]. The resonance-based material characteriza-
tion approaches have been extensively used due to low cost, high precision, and high
sensitivity [6].

The planar microwave sensor is designed by using the complementary split-ring
resonator (CSRR), split-ring resonator (SRR), and co-planar waveguide (CPW) structure for
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measuring the material thickness and dielectric properties [7–9]. These structures feature
advantages of compactness, embedded easily between each other and with other lumped
elements [7]. The microwave resonant-based structure measures the material thickness
and dielectric properties with high sensitivity by loading the sample on the resonator’s
high field zone [10]. By loading the testing MUTs on the high e-field zone of the designed
sensor, it perturbs the resonator’s distribution field, indicating a variation in the resonance
frequency and Q-factor [11]. Such alteration in the resonance frequency and Q-factor
characterizes the material thickness and dielectric properties of the material [12,13]. The
thickness and dielectric properties of the material can be demonstrated with high sensitivity,
but it requires a high e-field zone in the resonator; the structure with high field distribution
increases the interaction between the loaded sample and sensing field of a resonator [14].

The layout of the resonator for high field generation required an interdigital struc-
ture [15]. The alignment of the interdigital design was configured as a spur-line structure
that produces a high intense e-field and efficiently interacts with the testing specimen,
resulting in increased sensitivity [16,17]. The interdigital design is interfaced with SRR and
CSRR types of the resonator for a high field generation [18,19]. The interdigital design with
an SRR array was introduced; it is based on strip lines with different gaps that generate a
high field coupling, enhancing the interaction between MUTs and resonators [20–26]. The
configuration of interdigital and spiral structures with SRR is used for creating a high field
zone [7].

The previously reported planar microwave resonator has not accurately considered
an air gap effect between the testing sample and the designed sensor. They happen mainly
during a measurement procedure, and the availability of air gaps between the sensing zone
of a designed sensor and testing specimen reduce the measurement accuracy. This issue
also arises because the tiny dots on the surface of MUTs create an air gap effect between
the resonator and testing sample, which distracts the resonator’s measurement results [27].
Various studies applied the method of compression of the MUTs with the help of clampers
to mitigate the effect of air gaps during the measurement technique [28]. However, the
non-contact analysis of the material is the best possible solution to reduce the air gap
phenomena. The upcoming wearable technology (flexible sensors) requires non-contact
analysis, especially for biomedical sensors.

In the light of the discussion above, the precise analysis of materials’ thickness and
dielectric properties with high sensitivity is essential in the microwave regime. In the
proposed work, a non-contact optimized microwave resonator is designed. It is based
on the symmetrical differential bridge-type inductor used to intensify a high e-field in
strip lines of the parallel combination of an interdigital capacitor. The developed sensor
is based on advanced features such as non-contact phenomena and measured the MUTs
even with an air gap of 0.3 mm, and simultaneously measured the thickness and dielectric
properties of materials. In addition, the optimization of the proposed microwave structure
is accomplished to achieve a high field zone and low tunable resonant frequency.

2. Microwave Sensor Design and Operating Principle
2.1. Microwave Sensor Design

The proposed microwave sensor for measuring materials’ dielectric and thickness
properties is designed using a parallel interdigital structure and the symmetrical differential
bridge-type inductor. The fingers strip with its gap of the parallel combination of the
interdigital structure is employed to achieve a high e-field zone. A differential bridge-type
inductor is used to attain high mutual inductance. The designed sensor’s 3D geometry is
shown in Figure 1, and the equivalent circuit with its field distribution at 1.38 GHz (see
Figure 1f) resonance frequency is depicted in Figure 1d, e, respectively. The proposed
microwave sensor resonating frequency ( fr) depends on the capacitance and inductance of
the design, and can be defined as [28]:
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essentially based on the sensing zone. The interdigital capacitor is performed like a tradi-
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Figure 1. The 3D geometry of the proposed non-contact optimized microwave sensor layout: (a) front
side of the proposed design; (b) backside of the proposed design; (c) simulation-based bridge-type
structure; (d) equivalent circuit of the designed sensor; (e) strength of high intensity coupled e-field
revealing a maximum field at the center of the developed sensor; and (f) comparison of the resonating
frequency of simulated and measured prototype for unloaded MUTs.

The resonance frequency of the proposed microwave sensor is affected by the capac-
itance and inductance value, as illustrated in Equation (1). The designed sensor circuit
model defines that the alteration in coupling capacitance (CC) and parallel IDC structure
(CIDC) affect the resonating frequency; thus, it is possible to employ it as an indicator. The
total capacitance produced by the combination of CIDC and CC can be approximated as [29]:
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In Equations (2) and (3), K(k) defines an elliptical integer of the first kind, εs is the
permittivity of RF-35 substrate, and εo indicates the permittivity in free space. The le is
the length of the electrode, NE represents the number of fingers, and fW and fg define the
finger width and gap, respectively. The analysis of interdigital capacitor type structure
is essentially based on the sensing zone. The interdigital capacitor is performed like a
traditional plate capacitor, but the main benefit lies between adjacent finger strips. The gaps
between the fingers of such type of structure are enhancing the total e-field of the resonator.
The fingers of interdigital structure and its gaps provide a high electrical potential at
the surface of the designed sensor. Once the testing MUTs are loaded on the high field
zone, it distracts the entire field, which indicates a variation in the resonance frequency
and Q-factor.

The structure analysis of the designed sensor is essential based on fingers and elec-
trodes of the interdigital design. The fingers and electrodes of the IDC structure provide
a periodic electric potential at the surface after perturbing the testing sample on the high
field zone, as shown in Figure 2. The operating principle of the IDC structure is the same
as a capacitor, but the open area between the electrodes and fingers creates a high-intensity
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field zone suitable for measuring pure dielectric samples. The parallel combination of
the interdigital structure provides a high e-field zone, which detects the proximity of
testing MUTs even with a minute gap through reflection. Adjusting the gap between the
fingers and electrodes indicates a higher interaction between the testing sample and the
field [22,30].
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Figure 2. (a) Traditional plate capacitor e-field lines and (b) IDC structure capacitor e-field lines.

Similarly, the inductor is another parameter that also affects the resonating frequency
of the proposed microwave sensor. The dual wide gap slit on both sides of the IDC structure
is connected with spiral inductance, and the rings are added to enhance the confinement
of the e-field. The total inductance produced by the designed sensor is a combination of
mutual and self-inductance and can be represented as [31]:
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In Equations (4)–(6), WEFF determines the effective line width, LMS represents the
length of the metal (copper) segment, HMS denotes the height of the metal segment. Sim-
ilarly, n indicates the number of turns in the coil inductor, C1 and C2 are demonstrated
the linearized parameters for the inductance and resistance, respectively. The mutual
inductance of the designed sensor mainly depends on the gap between segments and can
be defined as [31]:
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The proposed design inductor and capacitor value are optimized to attain a lower
resonating frequency. The developed sensor interdigital structure generates a high e-
field for measuring the sample’s thickness and dielectric properties more accurately with
an air gap of 0.3 mm. The different bridge-type inductor is introduced to attain high
inductance and lower tunable resonating frequency. The inductance increases with each
circular ring included in the bridge structure, and the resonating frequency of the proposed
microwave sensor decreases, as shown in Figure 3a. In the CST software, the minimum
and maximum values of the different parameters are considered, and the setup solver
provides the optimized values of the designed sensor structure. Various parameters of the
proposed microwave sensor are optimized (see Figure 3b), as shown in Table 1 (all unit
values are mm).
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Table 1. Different optimized parameters of the proposed microwave sensor.

Parameters Abbreviation Minimum Value Optimized Value Maximum Value

fw Finger width 0.1 0.3 0.4
fg Finger gap 0.2 0.325 0.5
le Length of electrode 7.0 12.5 14.0
we Width of electrode 0.1 0.3 0.5
fl Finger length 2.0 4.0 6.0

w1 Gap between electrode 6.0 9.0 12.0
w3 Width of circular finger 0.1 0.31 0.5
g1 Gap between circular finger 0.1 0.31 0.5
g2 Gap between bridge-type structure 0.15 0.3 0.45
l Length of the proposed design – – 15
w Width of the proposed design – – 15

2.2. Operating Principle of the Design

The sensing mechanism of the designed sensor is classified into two categories based
on an alteration in the resonance frequency and Q-factor after loading the MUT on the
resonator and introducing the air gap scenario between MUT and resonator. The polypropy-
lene strips with various thicknesses represent the gap between the testing MUTs and the
resonator. The variation in the resonance frequency and Q-factor of the designed sensor is
due to loading an MUT. It was affected due to the permittivity of MUT and interrupted
e-field. The designed microwave sensing can be defined from the perturbation theory as
given below [1]:

∆ fr

fr
=

∫
vs
(∆µH1H0 + ∆εE1E0)dv∫

vs

(
µ0|H0|2 + ε0|E0|2

)
dv

(8)

∆Qr

Qr
=

∫
vs
(∆µH1H0 + ∆εE1E0)dv∫

vs

(
µ0|H0|2 + ε0|E0|2

)
dv

(9)

In Equations (8) and (9), E0 and H0 represent the e-field and m-field of the unloaded
sample, E1 and H1 define the field distribution after loading an MUT on the resonator, and
µ0 and ε0 represent the permeability and permittivity in free space. The designed sensor is
decorated only to characterize the dielectric properties of materials; thus, the terms related
to material permeability are neglected. All the tested samples are pure dielectric, and the
modified equations can be expressed as [1]:

∆ fr

fr
=

∫
vS
(∆εE1E0)dv∫

vs

(
ε0|E0|2

)
dv

(10)



Electronics 2021, 10, 3057 6 of 14

∆Qr

Qr
=

∫
vS
(∆εE1E0)dv∫

vs

(
ε0|E0|2

)
dv

(11)

In Equations (10) and (11), ∆ε and ∆µ define the permittivity and permeability of a
loading MUT on the resonator and vs is represents the volume of a sensing zone. It reveals
that once the sample is loaded on the resonator, it variates the resonance frequency and
Q-factor of the designed sensor. It is due to the permittivity, volume, and interrupted
e-field of a sample, signified through a variation in Q-factor and resonating frequency.
The high resolution of the designed sensor reveals that the sample’s position and size are
considered accurate.

The proposed microwave sensor detects the complex permittivity and thickness with
a gap of 0.3 mm between the resonator and testing MUTs. An air gap scenario is considered
an extra layer with an unknown thickness and free space permittivity after loading the
MUT on the resonator, as shown in Figure 4b. The alteration in the permittivity and
thickness of a testing sample is associated with the resonance frequencies; the air gap
between the testing MUT and sample influences the measured result. The polypropylene
strip is used for the gap between testing MUTs and resonators, as shown in Figure 4a. The
final mapping of the air gap situation between the resonator and testing sample is shown
in Figure 4b.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 15 
 

 

( )
( )

1 0 1 0
2 2

0 0 0 0

 
 

s

s

vr

r v

H H E E dvf
f H E dv

μ ε

μ ε

 Δ + ΔΔ
=
 +

 (8)

( )
( )

1 0 1 0
2 2

0 0 0 0

 
 

s

s

vr

r v

H H E E dvQ
Q H E dv

μ ε

μ ε

 Δ + ΔΔ
=
 +

 (9)

In Equations (8) and (9), E0 and H0 represent the e-field and m-field of the unloaded 
sample, E1 and H1 define the field distribution after loading an MUT on the resonator, and 𝜇଴ and 𝜀଴ represent the permeability and permittivity in free space. The designed sensor 
is decorated only to characterize the dielectric properties of materials; thus, the terms 
related to material permeability are neglected. All the tested samples are pure dielectric, 
and the modified equations can be expressed as [1]: 

( )
( )

1 0
2

0 0

              
s

Svr

r v

E E dvf
f E dv

ε

ε

 ΔΔ
=


 (10)

( )
( )

1 0
2

0 0

   S

s

vr

r v

E E dvQ

dQ E v

ε

ε

 ΔΔ
=


 (11)

In Equations (10) and (11), ∆𝜀 and ∆𝜇 define the permittivity and permeability of a 
loading MUT on the resonator and 𝑣௦  is represents the volume of a sensing zone. It 
reveals that once the sample is loaded on the resonator, it variates the resonance frequency 
and Q-factor of the designed sensor. It is due to the permittivity, volume, and interrupted 
e-field of a sample, signified through a variation in Q-factor and resonating frequency. 
The high resolution of the designed sensor reveals that the sample’s position and size are 
considered accurate. 

The proposed microwave sensor detects the complex permittivity and thickness with 
a gap of 0.3 mm between the resonator and testing MUTs. An air gap scenario is 
considered an extra layer with an unknown thickness and free space permittivity after 
loading the MUT on the resonator, as shown in Figure 4b. The alteration in the 
permittivity and thickness of a testing sample is associated with the resonance 
frequencies; the air gap between the testing MUT and sample influences the measured 
result. The polypropylene strip is used for the gap between testing MUTs and resonators, 
as shown in Figure 4a. The final mapping of the air gap situation between the resonator 
and testing sample is shown in Figure 4b. 

 
Figure 4. (a) Designed sensor under testing with polypropylene strip between the testing specimen 
and resonator and (b) dimension of the mapping air gap scenario between MUT and resonator. 
Figure 4. (a) Designed sensor under testing with polypropylene strip between the testing specimen
and resonator and (b) dimension of the mapping air gap scenario between MUT and resonator.

Figure 4b represents the different heights (h1, h2, h3), where h1 is the substrate thickness,
h2 denotes the air gap thickness, and the sample thickness is represented by h3. According
to the definition of the capacitor, C = εA/d = ε(2h.)/(2i0), the variable 2i0 defines the d,
and 2h represents the variable A in the capacitance expression, as shown in Figure 4b. The
total capacitance of an MUT with an air gap on the proposed design can be represented as
follows [27]:

CMUT with air gap =
εo(h2)

2i0
+

ε1(h3 − h2)

2i0
+

εo(h0 − h3)

2i0
(12)

3. Fabrication of the Proposed Design

The proposed microwave sensor is fabricated by using the photolithographic process,
as shown in Figure 5. First, a substrate (RF-35) with a height of 0.76 mm and coated with
a copper layer of 35 µm thickness on both sides is taken, as shown in Figure 5a. The
film’s backside contains the circular fingers inductor and interdigital structure covered
with the negative photoresist uniformly. The film is passed through the heated feed rollers
for removing vacuum, as shown in Figure 5b. The designed sensor mask is generated
by transferring the circular fingers inductor and interdigital structure decoration onto a
photographic film with the backing of a photoresist. The prepared cover is examined
sensibly without any flaw and placed on the substrate, as shown in Figure 5c. The film
with the mask is prebaked in a hotplate at 120 ◦C for 120 min. This is just for densification
of the photoresist layer through evaporating the coating solvent in a hotplate. The entire
design is exposed to ultra-violet (UV) light to convey the pattern, as shown in Figure 5c.
Finally, with the help of an etchant solution, the unwanted copper is removed gradually,
and the photoresist layer is also appropriately removed via acetone. The proposed design
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is excited by using the SMA connectors at the input and output ports of the microstrip line,
as shown in Figure 5d. The designed microwave sensor’s good conductivity and reliability
can be verified during the measurement process by encapsulating both connectors with UV
light. In the designed microwave sensor, the microstrip line is utilized to attain a 50-ohm
characteristic matching impedance.
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Figure 5. Fabrication steps of the proposed prototype: (a) RF-35 substrate with copper decoration
on both sides; (b) photoresist layer on the backside of the film; (c) patterned mask on the film with
UV light exposure for moving design on the substrate; (d) the proposed microwave sensor with
SMA connectors.

4. Experimental Results and Discussion

The proposed microwave sensor operates at 1.38 GHz resonance frequency and
precisely measures pure dielectric material’s thickness and complex permittivity. The
designed sensor is decorated with a centralized IDC structure to generate a high e-field
zone and differential bridge-type inductance for a lower tunable resonating frequency,
as shown in Figure 6a–l. Each circular finger of the designed sensor illustrates that the
total inductance increases and the resonant frequency of the proposed microwave sensor
decreases, as shown in Figure 3a. The developed sensor analyzed the thickness and
complex permittivity of a sample, which is explained below.
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Figure 6. Proposed microwave sensor with e-field distribution at the lower tunable resonant fre-
quency; (a) designed sensor without a circular finger; (b) with one circular finger; (c) with two circular
fingers and one bridge-type structure; (d) with three circular fingers and two bridge-type structure;
(e) with four circular fingers and three bridge-type structure; (f) with five circular fingers and four
bridge-type structure; (g) e-field at 1.74 GHz; (h) 1.55 GHz; (i) 1.52 GHz; (j) 1.49 GHz; (k) 1.46 GHz;
and (l) 1.38 GHz.

4.1. Analysis of Complex Permittivity with Air Gap Scenario

The measurement analysis of the proposed design is based on the dielectric constant
and dielectric loss tangent of the MUTs, loaded on the centralized IDC structure. The
thickness of each sample remains constant during the measurement analysis of complex
permittivity. This is because under specific thickness, the field interaction of the resonator
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with the sample saturates, and the alteration in the sensor response is not considered. Once
the permittivity of MUTs such as rogers RO3003 (ε′r = 3 and tanδ = 0.001), FR4 (ε′r = 4.3
and tanδ = 0.025), and mica (ε′r = 6) are loaded on the high e-field distribution zone of the
centralized IDC structure, the resonance frequency of the designed sensor changes. Such
changes in the resonance frequency of the resonator determine the relative permittivity
of MUTs. The real and imaginary permittivity of all the testing samples can be calculated
from the following expression:

εr = ε′r − jε′′ r (13)

A curve fitting technique is employed to investigate the relationship between shifting
in the resonance frequency and loaded MUTs permittivity, as expressed in Equation (14).

ε′r = 80.53217∆ f 2
r − 3.33755∆ fr + 0.04647 (14)

In Equation (14), ∆fr represents the alteration of the resonance frequency with different
MUTs loaded on the resonator. The polypropylene strips are introduced between the
testing MUT and resonator with varying thicknesses from 0.01–0.3 mm, as shown in
Figure 7a–f. The designed sensor sensing accuracy is 97% for estimating the relative part
of the permittivity with an excellent correlation coefficient (r2 = 0.97765). The dielectric loss
tangent of each testing MUTs is calculated from Equation (15).

tan δ = ε
′′
r /ε′r (15)
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with varying air gaps ranging from 0.01–0.3 mm; (a) FR4 MUT; (b) rogers RO3003 (Rog) MUT; (c) mica MUT curve fitting
technique analysis with error bars for the triplicate measurement of testing MUTs with varying air gap scenario; (d) FR4;
(e) rogers RO3003; and (f) mica.

The Q-factor of the proposed design can be influenced by the dielectric loss tangent
and relative permittivity of the testing MUTs. The Q-factor of the proposed design for the
unloaded sample can be calculated from the following expression (Equation (16))

Q =
fr

∆ fr( fupper − flower)
(16)
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The intercept point between all the testing MUTs can be calculated using the curve
fitting technique between the inverse Q-factor and dielectric loss tangent of the loaded
MUTs, as expressed in Equation (17).

Q−1 = Slope(tan δ) + 0.00744
)

(17)

The slope expression is generated from several sets of expressions. It is due to the
different relative permittivity of the MUTs loading on the centralized IDC structure. The
curve fitting is implemented again between the different slopes expression and relative
permittivity of the testing MUTs, as illustrated in Equation (18).

Slope = 0.00575(ε′r)− 0.00278 (18)

tan δ = |Q
−1 − 0.00744|/0.00575(ε′r)− 0.00278 (19)

Finally, the dielectric loss tangent of all testing MUTs is verified from Equation (19).
The designed sensor’s sensing accuracy is 92% for estimating the dielectric loss tangent of
the testing specimen with an excellent correlation coefficient (r2 = 0.92694).

Similarly, the frequency detection resolution (FDR) of the designed sensor is 7.2 MHz/∆εr.
FDR is the measurement analysis of the sensitivity for each change in the permittivity of a
testing MUT. The developed sensor’s normalized sensitivity (S%) is 0.51% for measuring the
high permittivity MUT with an air gap of 0.3 mm. The performance of the designed sensor is
compared with several previous reported works based on the air gap scenario, normalized
sensitivity, and FDR, as expressed in Table 2. The difference between the measured |S21| and
simulation of the proposed microwave sensor is low, and it exhibits a small error ratio for
measuring all the testing MUTs. The performance of the designed sensor based on the error
ratio is represented in Table 3.

Table 2. Proposed microwave sensor comparison based on complex permittivity analysis with previously reported literature.

References fr (GHz) ε′r Range S (%) FDR (MHz) Maximum Gap (mm) Sensing Accuracy

[1] 2.47 3.25–6.2 1.7 40 0 –
[3] 2.45 2.09–6.92 0.5 10 0 –
[28] 2.35 2.2–10.5 3.98 290 0 99.9% and 99.7%
[32] 2.0 2.2–10.2 3.3 225 0 –
[33] 5.79 1.6–6.15 4.3 373 0 99% and 97%
[34] 3.6 2.43–10.2 1.2 210 0 –
[35] 2.18 2.2–10.7 3.59 245 0 –
[36] 1.8 2.2–10.5 3.39 63 0 99% and 87%

Proposed design 1.38 3–6 0.51 7.2 0.3 97% and 92%

Table 3. Measurement analysis of the designed sensor based on error ratio for the different permittivity MUTs.

Sample Reference ε′r Extracted ε′r Reference tanδ Extracted tanδ Error (%)

FR4 3.0 ± 0.2 3.05 0.025 0.0237849 3.86
Rogers 4.3 ± 0.15 4.25 0.001 0.0015649 4.49
Mica 6.1 ± 0.2 6.15 – – 6.52

4.2. Analysis of Thickness with Air Gap Scenario

The proposed microwave sensor also investigated the effect of thickness variation
with an air gap, as shown in Figure 8a–c. Mica is selected as a testing MUT with a constant
dielectric constant for accurate analysis of the thickness effect on the designed sensor’s
resonance frequency. Mica has a wide variety of thicknesses ranging from 0.1–0.5 mm, as
shown in Figure 8a. The previous mechanism is implemented to analyze the thickness
parameter; all the testing samples are loaded on the centralized IDC structure with high
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e-field distribution. The resonance frequency of the designed sensor changes by perturbing
the mica sample with the varying thickness in the high e-field zone.
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MATLAB programming is used to find the polynomial interpolation for evaluating
the relationship between resonance frequency (fr) and frequency shifting (∆fr) against the
variation in the gap between the designed sensor and mica thicknesses. The polynomial
interpolation between the measured resonance frequency and frequency shifting of mica
MUTs against the various gap variations is shown in Figure 8b,c, which can be defined as:

fr(tm) = 1.965t4
m − 385.87536t3

m + 8587.50688t2
m − 47, 812.53646tm + 1.171 (20)

∆ fr(tm) = −7.2t4
m + 56.1t3

m − 162t2
m + 150tm + 0.522 (21)

Equation (20) defines that if the tested variable is the resonating frequency, then the
polynomial interpolation between the measured sample with a varying air gap can be
graphically depicted in Figure 8b. Similarly, Equation (21) exhibits the relationship between
the total variation in the resonance frequency and mica thickness after loading it on the
designed sensor with varying air gaps, as explained in Figure 8c.

The variables such as resonance frequency and frequency shifting are known variables;
the thickness of the sample is the unknown variable. The thickness of each MUT can be
numerically estimated by taking a polynomial interpolation between the tested frequency
shifting and unknown variables as given below:

tm = 90.74796∆ f 4
r − 1115.23079∆ f 3

r + 5129.18723∆ f 2
r − 7903.95738∆ fr − 1.95455 (22)

The proposed microwave sensor determined the thickness and complex permittivity of
a material with a varying gap between the testing MUT and resonator simultaneously. The
comparison of the designed sensor with the previously reported work based on different
performance characteristics is illustrated in Table 4.

A Keysight microwave analyzer (N9916A) is used to ensure the S-parameter of the pro-
posed microwave sensor. The Keysight was attuned before using a short, open, load, and
throughput (SOLT) method to provide the best measurement accuracy. The measurement
setup was conducted at room temperature (21.1 ◦C ± 0.02%) and humidity (49.5 ± 0.03%),
as expressed in Figure 9. The measurement results of all the loaded samples are determined
through a variation in the transmission coefficient (|S21|). The frequency range is set to
1–2 GHz for the measurement setup, and the polypropylene strips are used for an air gap
effect, as shown in Figure 9.
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Table 4. Comparison of the designed sensor based on different performance characteristics.

References ε′r tanδ Air Gap Thickness

[1] 3 3 5 5

[2] 5 5 5 3

[6] 5 5 5 3

[7] 3 5 5 3

[33] 3 3 5 3

[36] 3 3 5 3

Proposed design 4 4 4 4
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Figure 9. Measurement setup of the proposed design: (a) designed sensor under testing; (b) back
view of the designed sensor; (c) polypropylene strips between designed microwave sensor and MUT;
(d) fabricated bridge-type structure.

The linear regression analysis was performed between the loaded sample (permit-
tivity and thickness MUTs) and measured resonating frequency, prepared to calibrate the
sensor. The designed sensor indicated a linear response with a good correlation coefficient
(r2 = 0.91567 for thickness and r2 = 0.98903 for permittivity MUTs). It can be defined using
the following regression equations (Equations (23) and (24)) for thickness and permittivity
of the samples, as shown in Figure 10a,b.

fr(T) = −0.0415674αmm + 1.16344 (23)

fr(εr) = −0.05352αε′r + 1.35313 (24)
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Figure 10. (a) Linear regression graph as per change in MUTs thickness with error bar indicating an
excellent linear response (r2 = 0.91567); (b) linear regression graph as per change in MUTs permittivity
with error bar indicating an excellent linear response (r2 = 0.98903).

In Equations (23) and (24), αmm represents the thickness of the mica sample and αε′r
denotes the permittivity of loaded MUTs. Therefore, the fr of the designed sensor revealed
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high sensitivities (41 MHz/mm for thickness and 53 MHz/∆εr for permittivity sample)
towards the measurement of thickness and permittivity of the specimen, simultaneously
via a single sensor. The resolution and reproducibility of the proposed design are evaluated
using a triplicate analysis of each sample. The designed sensor reveals a minute variation
in the sample measurement, and it is estimated using the triplicate measurement analysis
for permittivity (0.05734) and thickness (0.04618) of the samples. The high reproducibility
is predictable, and it is due to the usage of a microwave analyzer (N9916A), which is
calculated more precisely by the variation in the resonance frequency (down to 5 kHz).
The linearity operation for the MUTs thickness concerning various gap variations is little
degraded, as shown in Figure 10a. This is because the resonance frequency of the de-
signed sensor is influenced by the MUTs thickness and different strips variations. The
proposed sensor’s correlation coefficient for measuring the mica thickness linear response
is r2 = 0.91567. This effect can be minimized by decreasing the gap between the MUTs
thickness and resonator. It depends on the measurement setup, and users can utilize it
according to their terms and conditions.

5. Conclusions

In this article, a non-contact optimized microwave sensor is designed and fabricated
to measure pure dielectric material’s thickness and complex permittivity with varying air
gaps. The developed sensor is based on the differential bridge-type inductor (for high
Q-factor and lower tunable resonating frequency) and centralized IDC structure for the
generation of high e-field zone to measure the thickness and dielectric properties of a
material more accurately. The designed sensor’s different parameters are optimized for the
configuration of the spur-line structure to produce a high-intensity e-field at the loaded
centralized IDC zone. The high sensitivity of the designed sensor is realized in the FDR
(7.2 MHz/∆εr) and fr (53 MHz/∆εr and 41 MHz/mm) for measuring the thickness and
complex permittivity of MUTs with varying air gaps of 0.1 mm and 0.3 mm, respectively.
The proposed microwave sensor exhibits an excellent sensing accuracy of 97% and 92%
for the real and imaginary parts of the permittivity, respectively. Moreover, the curve
fitting technique between the testing sample with varying thickness, permittivity, and
air gap exhibited an excellent accuracy, authenticating its application in the non-contact
measurement of material. The designed sensor performance affirms its application in the
non-contact measurement of complex permittivity and thickness of different pure dielectric
MUTs simultaneously.
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