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Abstract: An efficient iterative timing recovery via steepest descent of low-density parity-check
(LDPC) decoding metrics is presented. In the proposed algorithm, a more accurate symbol timing
synchronization is achieved at a low signal-to-noise (SNR) without any pilot symbol by maximizing
the sum of the square of all soft metrics in LDPC decoding. The principle of the above-proposed
algorithm is analyzed theoretically with the evolution trend of the probability mean of the soft LDPC
decoding metrics by the Gaussian approximation. In addition, an efficiently approximate gradient
descent algorithm is adopted to obtain excellent timing recovery with rather low complexity and
global convergence. Finally, a complete timing recovery is accomplished where the proposed scheme
performs fine timing capture, followed by a traditional Mueller–Müller (M&M) timing recovery,
which acquires timing track. Using the proposed iterative timing recovery method, the simulation
results indicate that the performance of the LDPC coded binary phase shift keying (BPSK) scheme
with rather large timing errors is just within 0.1 dB of the ideal code performance at the cost of
some rational computation and storage. Therefore, the proposed iterative timing recovery can be
efficiently applied on occasions of the weak signal timing synchronization in satellite communications
and so on.

Keywords: iterative timing recovery; timing synchronization; LDPC decoding; soft metrics; steepest
descent algorithm

1. Introduction

LDPC codes can approach Shannon’s capacity with moderate decoding complexity
at low SNRs [1,2]. However, maximizing the full potential of the LDPC codes requires
accurate timing recoveries in the baseband process of the receivers. Traditionally, timing
recovery is performed independently from channel decoding. However, the metrics gen-
erated from channel decoding can generate more reliable information in iterative timing
recovery [3]. The generated information can be applied to assist timing recovery in order
to obtain accurate synchronization at very low SNRs. Traditional methods are usually
ineffective at low SNRs. Iterative timing recovery uses the metrics from the codewords
output of the channel decoding process [3]. A method with LDPC decoding hard decision
metrics (i.e., code constraint feedback) to obtain good timing recovery has been proposed
in [4]. However, it suffered from insufficient hard metrics, or unreliable satisfaction per-
centages of decoded codewords for the parity check equation for just few iterations [4,5].
Studies also suggested the use of timing recovery based on soft LDPC metrics with complex
optimization calculations [6]. Other expectation maximization (EM)-based timing recovery
methods for turbo or LDPC coding have also been suggested [7,8]. The EM-based timing
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recovery method is implemented between the detection and estimation processes, where
the expectation of symbols is calculated by a maximum a posteriori (MAP) decoder. After-
wards, the cost function is maximized to acquire excellent symbol timings. For instance,
the EM algorithm has been applied in solving the time and frequency synchronisation
in a multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing
(OFDM) system [9]. However, the function has highly complex EM steps. Several turbo
decoding-aided timing recovery, with timing recoveries incorporated into iterative de-
coding, have been proposed for blind turbo detection of synchronization parameters [10].
Here, a turbo component decoder is applied in the synchronization parameters to perform
blind joint synchronization detection and decoding with decoded metrics. In [11], syn-
chronisation is incorporated into Turbo decoding as the blind detection of synchronisation
parameters. It uses a turbo component decoder to perform blind synchronisation detection
and Turbo decoding by the decoding metrics. In [12], a new objective function is maximised
to exploit the output turbo decoder’s soft decision to improve synchronisation iteratively.
Thus, it is suited for short bursts of data transmissions at low SNRs. In [13], a Turbo soft
metric based cost function is maximized to exploit the turbo soft decision and iteratively
improve the synchronization. Thus, turbo-decoding metrics are calculated for obtaining
good timing recoveries at low SNRs. However, turbo code-based methods are highly
difficult due to complex turbo decoding. Because large sampling frequency offset can cause
huge synchronization searching calculation and delay, a sampling frequency synchroniza-
tion method to eliminate initial sampling frequency offset can also help reduce the overall
synchronization time for the coarse symbol timing recovery [14]. So the communication
receives require the iterative timing recovery to acquire rather large timing frequency and
phase offsets for good timing synchronizations. In addition, the iterative timing recovery
can be performed by the means of MAP criterion as the iterative carrier synchronization
but with much high complexity [15]. Therefore, an iterative timing recovery with high
precision and low complexity is needed for using in space communications which usually
work at low SNRs.

In this study, we mainly propose a new iterative timing recovery scheme by using
the LDPC decoding metrics to correct timing errors for better timing precision and lower
complexity. The timing recovery mechanism are modelled as an optimization problem
of maximizing the sum of the squares of selected LDPC decoding metrics for precise
estimation of timing offsets. Then, a theoretical verification is demonstrated analytically
with closed expressions of the transition trend of the probability mean of the soft decoding
metrics by the Gaussian approximation. In addition, an efficient numerical technique of
approximate stochastic gradient descent is employed to solve the above optimization prob-
lem of excellent timing recovery with rational computations. Finally, a traditional M&M
timing recovery algorithm [16] is adopted to rectify residual timing errors by using the
LDPC code words as the anticipated data needed in timing track loops. Thus, it also saves
some more bandwidth resources brought by trained data in traditional timing recovery
schemes, which endows it more pragmatic in spectrum efficient satellite communications.

The remainder of the paper is organized as follows. In Section 2, the concept of the
timing error model is introduced. Section 3 gives the principle of the suggested iterative
timing recovery with soft LDPC decoding metrics. In this section, Gaussian approximation
method is employed to explain the evolution trend of the soft metrics, which are influenced
by the timing errors. The proposed iterative timing recovery scheme, accompanied by
the traditional M&M timing track algorithm, is stated in Section 4 for the final timing
synchronization scheme. In Section 5, the numerical simulations are given to manifest the
good performance of the proposed scheme. In this section, we also analyze the possible
reasons for the good performance of our proposed scheme and evaluate the computation
complexity. Finally, the conclusion is drawn in Section 6.
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2. Timing Error System Model

Each transmitted symbol in a binary phase shift keying (BPSK) system is composed of
N point impulse responses g(mT) from a square root raised cosine (SRRC) pulse shaping
filter with L times sampling rate, where T is the symbol interval. The signals are shaped as
sequences (bi) in the above filter, where ai ∈ {±1} is the i-th modulated symbol and bi is
the sample symbol interpolated with (L− 1) zeros between every two adjacent ai to fit the
sampling rate. τm is the timing offset to influence the m-th sample. Thus, the signal s(mT)
for transmission is given by

s(mT) =
N−1

∑
i=0

bi · g(mT + τm − iT/L). (1)

A received sequence with L-times up-sampling rate without timing offsets is ex-
pressed as

r(kT/L) = s(kT/L) + n(kT/L), (2)

where r(kT/L) is the received signal, n(kT/L) is the additional white Gaussian noise
(AWGN) from the channel, and T/L is the sampling interval. The assumed time reference
for the m-th sample at the receiver when timing errors occur differs from the corresponding
sample at the transmitter with timing offset τm. The m-th sampled signal after L times
down-sampling is presented as

r(mT) = s(mT + τm) + n(mT). (3)

Finally, r(mT) is obtained by replacing s(·) with the above expression. The resulting
equation is presented as follows.

r(mT) =
N−1

∑
i=0

bi · g(mT + τm − iT/L) + n(mT). (4)

Constant timing frequency offset and random walk [4] can be combined in our model,
because proper timing error models exist as constant timing phase offsets. The combined
equation is presented as

τm = τm−1 + T · N(0, σ2
τ) + T · υ/106, (τ0 = D), (5)

where the initial time instance is offset by constant timing phase offset D, the timing
error is disturbed by a zero mean Gaussian random variable (random walk) with vari-
ance σ2

τ denoted by N(0, σ2
τ) , and the constant timing frequency offset υ is measured in

parts per million (ppm). They should be estimated and compensated precisely for high
transmission effect.

3. Influence of Timing Errors on LDPC Decoding

The received baseband signals are raised-cosine pulses from the combination of SRRC
pulse-shaped filters located at the transmitters and receivers along with the AWGNs.
In [6], the sampling positions approached the sampled points from LDPC decoding and
corresponding analyses, which led to the increased absolute value of all LDPC decoding
metrics, i.e., log-likelihood ratios (LLRs). A similar effect of the sum of all LLR squares
under these timing errors also manifested. This phenomenon is explained below.

Given no noise, a received signal with perfect timing is properly sampled at the center
of the symmetry raised cosine signal waveform and it has the most effective amplitude.
However, under the overall timing offset as presented in Equation (5), the sampled signal
deviates from the optimal center of the waveform with less effective amplitude and it is
further deteriorate by the inter-symbol interference (ISI) by adjacent signals. At low SNR,
the influence of the ISI can also be approximately modeled as the AWGN [10]. Therefore,
the comprehensive effect of the symbol timing error causes a decreased effective SNR
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for the coded BPSK modulation system. The equivalent noise variance is the sum of the
original noise variance and the new generated equivalent noise variance caused by the
ISI. With SNR analyses in [8], more deviations from optimal sampled points cause lower
SNRs for the received signals, leading to a decrease of initial messages (i.e., LLRs) in LDPC
decoding. The final output messages in the decoding are dependent on the square of the
initial messages, because the messages in the iterations are mainly dependent on the square
of previous messages. In addition, the sum of the square of each message increases the
deviation effect. Thus, when timing offsets are introduced to reduce the effective SNRs, the
amplitude of the initial messages decreases; in turn, this reduces the LLRs and decreases
the sum of the square of all decoding messages. This process can be analyzed with density
evolution and Gaussian approximation [17,18].

Firstly, we give a typical instance of the schematic diagram of the LDPC decoding by
the iterative belief propagation (BP) [1,2] algorithm as shown in Figure 1.

C Ci Cm

V V V Vj Vn

jiu

ijv

y y y yj yn

c c c cj cn

Figure 1. Schematic diagram of the LDPC soft message propagations between the variable nodes
and check nodes in BP decoding.

From Figure 1, at an AWGN channel with zero mean and variance σ2, the logarithm
version of the LDPC decoding can be expressed as below.

• (1) Initialization
The initial soft metrics of LDPC decoding, i.e., LLRs, are expresses as

L(ci) = ln
p(xi = 1|yi)

p(xi = −1|yi)
=

2yi
σ2 , (6)

L(uij) = L(vji) = 0, (7)

where L(·) is the logarithm likelihood ratio (LLR) function and L(ci) is the initial LLR
of the codeword ci. xi and yi are the i-th decided and received signals respectively. uij
and vji are the exchanged messages between the variable node j and the check node i .

• (2) Decoding procedure

– (2.1) Update the variable nodes and perform the final decoding judgment
The decoding metrics updated in the variable nodes and final decoding judgment
can be expressed as

L(uij) = L(ci) + ∑
j′∈M(i)\j

L(vj′i), (8)

L(Qi) = L(ci) + ∑
j∈M(i)

L(vji), (9)

ĉi =

{
0 , L(Qi) ≥ 0
1 , L(Qi) < 0

, (10)

where the set of the i-th check node connected to the j-th variable node is ex-
pressed as M(i) = {j : Hj,i = 1} and Hi,j is the element of the check matrix H
with index (i, j). The symbol “\j” behind a set means the set with removal of the
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element “j”. Qi is the LDPC soft decision metrics of the i-th variable node of the
codeword ci . N is the code length. C = [c1, · · · , cN ]

T is the codeword vector and
the estimate of this vector is Ĉ = [ĉ1, · · · , ĉN ]

T . In this step, if H · Ĉ = 0(Mod2),
Ĉ is the decoding result. If Ĉ is the result or the iteration exceeds the maximum
times, the iteration is finished. Otherwise, go to next step (2.2).

– (2.2) Update the check nodes and then go to step (2.1)
The decoding metrics updated in the check nodes can be represented as

L(vji) = 2 tanh−1{ ∏
i′∈K(j)\i

tanh[L(ui′ j)/2]}, (11)

and then go to step (2.1) for subsequent processing.

In Equation (11), the set of the j-th variable node connected to the i-th check node is
K(j) = {i : Hi,j = 1}.

Then, the messages from the j-th variable node and the i-th check node in LDPC
decoding (given as u− ji and vij, respectively) are symmetrical with σ2

m = 2m, where σ2
m

and m are the variance and mean value of the messages, respectively [17]. The mean value
of all messages for variables and check nodes ( mu and mv ) are updated in the iterations.
The mean values represent the probability distribution of the messages. The mean value
of the messages m(k)

v from the variable nodes to the check nodes in k-th iterations is
presented as

m(k)
v = mu0 + (dv − 1)m(k−1)

u , (12)

where m(k)
u is the mean value of messages from all check nodes and variable nodes v after

k− 1 iterations, mu0 is the mean value of the initial message L(ci), and dv is the variable
node degree. The indexes of uji and vij can be omitted for simplification, because they
are independent and identically distributed (i.i.d.). Moreover, m(k−1)

u is assigned to a zero
mean value, because initial messages from all check nodes are zero. The updated messages
coming from check nodes to variable nodes are presented similar to [6] as

F[tanh(u(k)/2)] = F[tanh(v(k)/2)](dc−1), (13)

where the indexes uji and vij are omitted because they are i.i.d., and dc is the check node
degree. F[tanh(u/2)] is presented as

F[tanh(u/2)] =
1√

4πmu

∫
R

tanh(u/2)e−(u−mu)2/4mu du, (14)

where “R” represents that the integral interval falls in the entire field of real number.
Moreover, a new function φ(x) is defined in [17] as

φ(x) =

{
1− 1√

4πx

∫
R tanh(u/2)e−(u−x)2/4xdu, x > 0

1 , x = 0
. (15)

Equation (15) is continuous and monotonically decreases on [0,+∞) with (φ(0) = 1 ,
φ(0) = 1). The mean value update of all messages from the check nodes to the variable
nodes is given by

m(k)
u = φ−1{1− [1− φ(mu0 + (dv − 1)m(k−1)

u )]dc−1}, (16)

where m(0)
u is zero, which is the initial value of mu [18].

The output messages from the variable nodes m(k)
o after k iterations are represented as

m(k)
o = mu0 + dvm(k−1)

u . (17)
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From Equation (17), m(k)
o is mainly decided by initial message mu0 and message m(k−1)

u

after k iterations. In addition, m(k)
u can be recursively calculated by Equation (16) and m(k−1)

u

with an initial value of m(0)
u = 0. Thus, m(k)

o relies on the mean value of initial message
mu0. The properties of φ(x) indicate that a larger mu0 leads to similarly larger values of
m(k)

u and m(k)
o in Equations (16) and (17), respectively; thus, m(k)

o is mainly decided by mu0.
In addition, a larger mo leads to a larger m(k)

o and sum of all message squares. It can be
explained as follows.

For the same LDPC codeword, the main code parameters, i.e., the degree distribution,
are the same. So the variable node degree dv and check node degree dc are equal for a
specific node message processing under different channel state information, or the initial
LLR represented in Equation (6). From Equation (15), the function φ(x) is continuous
and monotonically decrease on its definition domain [0,+∞) with (φ(0) = 1, φ(+∞) = 0).
Then, due to the relationship that a function and its inverse function is just mirror symmet-
rical about the function y = f (x) = x, the inversion function φ−1(y) is also decrease on
(0,+1] with (φ(0) = +∞, φ(1) = 0). So the first recursive iteration of the messages from
the check nodes to the variable nodes in Equation (16) is given as

m(1)
u = φ−1{1− [1− φ(mu0)]

dc−1}, (18)

where mu0 is the initial message and it is got from Equation (6). Obviously, due to the
monotonically decrease property of φ(·) and φ−1(·), larger mu0 causes the larger m(1)

u . For
the second recursive iterations, Equation (16) is expressed as

m(2)
u = φ−1{1− [1− φ(mu0 + (dv − 1)m(1)

u )]dc−1}. (19)

From Equation (19), other parameters being the same, the larger initial message mu0
along with the corresponding larger previous generated message m(1)

u leads to a much
larger m(2)

u than that generated from a smaller initial message. The rest can be done in the
same manner and in the higher order of recursive iterations, larger initial message mu0
surely causes larger solution result m(k)

u after k recursive iterations.
Therefore, the conclusion is true for an LDPC-coded system with an all-0-bit input.

A symmetry condition ( f (x) = f (−x)ex) is used to preserve the above conclusion for
all messages, because initial negative messages can be processed for positive ones as
follows [18]. First, the channel symmetries are given by

p(yi = q|xi = 1) = p(yi = −q|xi = −1). (20)

The sign factor of the check node message map φ
(k)
c is given by:

φ
(k)
c (b1m1, · · · , bdc−1mdc−1) = φ

(k)
c (m1, · · · , mdc−1)∏dc−1

i=1 bi, (21)

where bi belongs to {±1} sequence.
The most important sign inversion invariance property of the variable node message

map φ
(k)
v is expressed as:

φ
(k)
v (−m0, · · · ,−mdv−1) = −φ

(k)
v (m0, · · · , mdv−1), k ≥ 1. (22)

The final output message m(k)
o is dependent on the square of initial messages based on

Equations (12)–(22). The non-0-input messages, which correspond to the minus data in the
iterations, are also dependent on the square of message mi based on the symmetry prop-
erties shown in Equations (20)–(22). Thus, larger squares of initial legal LDPC codeword
messages lead to larger squares of final output messages. The sum of the above equations
amplifies this effect. Initial message amplitudes (i.e., LLRs) decrease when timing offsets
are introduced to reduce the effectiveness of SNR. The decrease reduces the cost function,
i.e., the sum of all the square of the LLRs Thus, a timing offset estimate (including timing
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phase and frequency offsets) is obtained by searching possible ranges in obtaining the
maximum cost function. Moreover, random walk has limited destructive effects, because
it is limited by oscillation quality. Therefore, optimal timing offsets are estimated and
corrected by maximizing the sum of all the square of the LLRs.

4. Proposed Iterative Timing Recovery

The i-th message, (i.e., LLRi) in LDPC decoding [2] is presented as

LLRi = log Λ(xi|r) + E(xi|xj,j 6=i), (23)

Λ(xi|r) = log
p(xi = 1|r)

p(xi = −1|r)=
2yi

σ2
ch

, (24)

where r is the received signal vector with element yi, σ2
ch is the variance of channel noise, xi is

the decision of the i-th element of r, p(xi = 1|r) or p(xi = −1|r) is the posterior probability
of the decision of the received signal r, and E(xi|xj,j 6=i) is is the extrinsic information
brought by other variable nodes with relation to parity check constraint. E(xi|xj,j 6=i) is
updated for each LDPC decoding iteration from the parity check nodes. Correct LLRs
are crucial in ensuring proper LDPC decoding. Based on the analyses and conclusions
presented in Section 3, an efficient timing recovery can be developed as follows. First, an
object function Ψ(τ, υ) related to the timing phase and frequency offsets, τ and υ (measured
in ppm), is defined as

Ψ(τ, υ) =
K

∑
i=0

[Λ(xi|r, τ, υ) + E(xi|xj,j 6=i, τ, υ)]2, (25)

where Λi is Λ(xi|r, τ, υ), and K is the LDPC codeword length. Thus, the optimal ((τ, υ))
can be iteratively searched and updated by solving the optimization function given by

(τopt, υopt) = arg max
τ∈[−T/2,T/2],υ∈Freq.Region

Ψ(τ, υ). (26)

To illustrate the objective function Ψ(τ, υ), a curve of it with respect to (τ, υ) after 3
LDPC iterations is calculated and shown in Figure 2, where the LDPC code (1944, 972)
in Draft IEEE 802.11n [19] is selected at Eb/N0 of 0.5 dB. Based on the above numeric
simulations, the object function Ψ(τ, υ) in Equation (25) is symmetrical and approximately
convex to its variable, i.e., (τ, υ). It indicates that the function Ψ(τ, υ) has a maximum
value located at the position without any timing offset. Other cases are the same under
different LDPC codes and Eb/N0, where one global optimum value and some local ones
are featured in the plots. Therefore, this being the case, the optimal estimation of (τ, υ) can
be obtained by maximising the function Ψ(τ, υ).

Thus, gradient descent algorithm (steepest descent) can be applied in solving Equation (26)
similar to [13]. Afterwards, a two-dimensional gradient descent algorithm is carried out to
iteratively search and update (τ, υ) for Equation (26). An approximate gradient descent
algorithm is used to implement the iterative timing recovery, because the object function
Ψ(τ, υ) is discontinuous without direct analytic expressions. The iterative timing recovery
process is discussed below.

Firstly, E(xi|xj,j 6=i, τ, υ) in Equation (25) is considered constant to (τ, υ). E(xi|xj,j 6=i, τ, υ)
and (τ, υ) are set to zero for the 1st iteration (i.e., no message from the check nodes to the
variable nodes) and hide in the change of Λ(xi|r, τ, υ) in other iterations of the subsequent
derivations. Thus, E(xi|xj,j 6=i, τ, υ) can be omitted in approximate derivations of Ψ(τ, υ) to
(τ, υ). The omission is calculated as

∂Ψ(τ, υ)

∂τ
= 2

K

∑
i=0

[Λi + E(xi|xj,j 6=i, τ, υ)]
∂Λi
∂τ

, (27)
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∂Ψ(τ, υ)

∂υ
= 2

K

∑
i=0

[Λi + E(xi|xj,j 6=i, τ, υ)]
∂Λi
∂υ

. (28)
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Figure 2. Typical plot of Ψ(τ, υ) (τ, υ) with LDPC code (1944, 972) by 3 decoding iterations.

The received signal Λi, or mainly the variable yi, is affected by the timing offset
parameters (τ, υ) based on Equations (23) and (24). So the approximate derivation of
Ψ(τ, υ) to (τ, υ) can be represented as

∂Ψ(τ, υ)

∂τ
= 2

K

∑
i=0

[Λi + E(xi|xj,j 6=i, τ, υ)]
∂yi
∂τ
· 1

2σ2 , (29)

∂Ψ(τ, υ)

∂υ
= 2

K

∑
i=0

[Λi + E(xi|xj,j 6=i, τ, υ)]
∂yi
∂υ
· 1

2σ2 . (30)

By similar techniques in [13], given normalized parameters, the received signal yi can
be approximately modeled as follows:

yi = 1− c1sgn(τ)τ − c2isgn(υ)υ + n(ti), (31)

where the amplitudes of the transmitted signals are normalized as “1”, n(ti) is the chan-
nel noise at that time instance, and “sgn” is the sign function in mathematics. Here,
the approximate transition trend of Ψ(τ, υ) to (τ, υ) is used to incorporate a more ac-
curate value into positive constant c1 and c2, which can be determined in simulations.
Equations (29) and (30) is then approximately calculated as

∂Ψ(τ, υ)

∂τ
≈ 2(

2
σ2

ch
)(−c1)

K

∑
i=0

[Λi + E(xi|xj,j 6=i, τ, υ)]sgn(τ), (32)

∂Ψ(τ, υ)

∂υ
≈ 2(

2
σ2

ch
)(−c2)

K

∑
i=0

[Λi + E(xi|xj,j 6=i, τ, υ)]sgn(υ) · i. (33)
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Equations (32) and (33) can be further simplified by uniting all fixed variables or
constants into the negative value C1 and C2, respectively, as

∂Ψ(τ, υ)

∂τ
≈ C1

K

∑
i=0

[Λi + E(xi|xj,j 6=i, τ, υ)]sgn(τ), (34)

∂Ψ(τ, υ)

∂υ
≈ C2

K

∑
i=0

[Λi + E(xi|xj,j 6=i, τ, υ)]sgn(υ) · i. (35)

Thus, the calculation complexity can be reduced by Equations (34) and (35), because
we use the adaptive parameter update algorithm, which just needs the approximate trend
of the gradient rather than the more accurate numerical results. So the adaptive timing
parameter correction along with the iterative LDPC decoding jointly contribute the good
features of both good performance and low complexity.

Finally, according to the principles of the adaptive algorithms, (τ, υ) can be estimated
and updated with the following Equations (36) and (37) as

τ(n+1) = τ(n) − λ1[∂Ψ(τ, υ)/∂τ](n), (36)

υ(n+1) = υ(n) − λ2[∂Ψ(τ, υ)/∂υ](n), (37)

where λ1 and λ2 are step parameters for iteratively updating (τ, υ), respectively, yi in
Equation (31) decodes LDPC codes, and the superscript (n) demotes the (n)-th iter-
ation. The partial derivation function ∂Ψ(τ, υ)/∂τ and ∂Ψ(τ, υ)/∂υ are computed in
Equations (34) and (35). The initial parameter pair (τ(0), υ(0)) can be set as the zero vector
(0, 0). The other constants can be verified in the simulations.

In addition, a conventional first-order PLL-based structure with a decision-directed
Mueller–Müller timing error detector (M&M TED) [6] can also be used as a supplement
like [4] to implement the iterative timing tracking. At each iteration, the M&M TED is
executed by provided with more accurate symbols decoded by the LDPC decoder and the
re-sampled received signals, which are compensated with the optimal estimate of timing
phase and frequency offset by our proposed algorithm. Finally, according to the above
analyses, the whole timing recovery is designed in Figure 3.

yi

opt opt
T T Freq gion

K

i i j j i

i

K

i i j j i

i

C E x x

C E x x i

n n n

n n n

Figure 3. Block diagram of the whole timing recovery system by the proposed scheme via steepest
descent of LDPC decoding metrics and the M&M timing track.

In the whole timing recovery system shown in Figure 3, there are two loops to execute
the timing recovery, i.e., Loop1 and Loop2. The Loop1 is performed at first by our proposed
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iterative timing recovery via steepest descent of LDPC decoding metrics to obtain large
scale timing phase and frequency offset estimations, which are used to compensate the
error of the received signal yi by Equation (31) stored in the buffer in Figure 3. The main
steps of the procedure are calculated by Equations (34)–(37) to obtain the final optimized
goal denoted in Equation (26). So this loop mainly performs the timing capture, especially
at low SNRs. After Loop1, the selector switches the working mode to Loop2. Then, random
walk and residual timing errors are corrected by a M&M algorithm with the reference
LDPC decoding feedback, which works as the timing track.

According to the above iterative timing recovery scheme, the computational com-
plexity can be analyzed as follows. Here, we just calculate the additional computations
other than the compulsory LDPC decoding. It is assumed that L iterations of timing offset
estimation and compensation in the length-K LDPC code are required for the satisfied
symbol timing recovery. From Equations (34) and (35), there are K additions in the top
equation and K additions and K multiplications in the bottom equation, which sum up as
2K additions and K multiplications. The coefficients of C1 and C2 in Equations (34) and (35)
are empirical parameters and they can be incorporated into the step size of λ1 and λ2 in
Equations (36) and (37). So the calculation of them can be neglected. Then, there are two
multiplications and two subtractions (equal to additions in computational complexity) in
the update of timing offset estimates in Equations (36) and (37). The step size parameters
are decided by the practical occasions, which can be neglected, when compared with the
above calculation. Moreover, there are three multiplications and three additions in the
update of yi in Equation (31), plus 1 division (equal to multiplication) in the calculation
of Λi, i.e., L(ci), in Equation (6). Therefore, the total computational complexity, except
from the necessary LDPC decoding, are approximate (2K + 5)L additions and (K+6)L
multiplications. By later simulations, since the required iterations of the timing recovery
are limited, i.e., L ≤ 6, the total computational complexity is acceptable in practice.

5. Simulation Results and Analyses

To verify the effectiveness of the proposed scheme, numerical simulations of a LDPC
coded BPSK system in an AWGN channel are carried out in this section. The LDPC code
(1944, 972) [19] is adopted in the simulations with a maximum of 20 decoding iterations.
Generally, the performance is often weighed by bit-error-rate (BER). So Monte Carlo
simulations of LDPC decoding will run until either a specified number (e.g., 10 in high
SNR and 50 in low SNR) of error frames occur or a total 1 million trials have been run. We
choose the above simulation parameters of iteration stop judgment for LDPC decoding by
compromising the result reliability and calculation efficiency and also the more practical
experiments in some powerful work stations. The SRRC shaped and matched filters both
have a roll-off factor of 0.3 and 13 taps. Several timing offset estimation iterations are
used. The timing phase and frequency offsets are set over ±0.5 T (e.g., 0.3 T and T is
the sampling period) and ±500 ppm (e.g., 300 ppm). The parameter σ/T of the random
walk is 0.5%, which is similar to that used in [5]. The step size parameters λ1 and λ2
in Equations (36) and (37) are chosen as 0.2 and 0.5, respectively. Finally, the parameter
analyses and the BER performances by the proposed iterative timing recovery are simulated
and shown as follows.

The partial curves of Ψ(τ, υ) to (τ, υ), and the Ψ(τ, 0) to τ and Ψ(0, υ) to υ, with two,
four, and six iterations at Eb/N0 of 1.5 dB are shown in Figures 4 and 5, respectively. The
timing phase offsets within 0.1 T occur near the optimal position (Figure 4).The closeness
to the optimal position is mainly due to the property of the raised cosine waveform by
the SRRC-shaped and matched filters, where τ within 0.1 T slightly reduces the effective
amplitude of the received signals. Furthermore, the influence of υ on Ψ(τ, υ) changes
dramatically (Figure 5). The largest frequency error discrimination occurs within 20 of
the optimal point. Thus, approximately 6 iterations are enough for the timing recov-
ery to distinguish the ideal sampling point. Further from this simulation, the effective
search ranges for the timing phase and frequency offsets are chosen as (−0.5 T, 0.5 T) and
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(−500 ppm, 500 ppm). This may be the deficiency of the proposed timing recovery, where
traditional timing recovery should be performed at first to guarantee the residual timing
offsets fall into the range of this requirement. However, the proposed timing recovery can
obtain much better estimation precision.
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Figure 4. Partial curves of Ψ(τ, 0) to τ with two, four, and six iterations.
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Figure 5. Partial curves of Ψ(0, υ) to υ with two, four, and six iterations.

Here, we define the normalized mean square error (NMSE) simulations for (τ, υ) as
NMSEτ and NMSEυ in Equations (38) and (39) as
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NMSEτ = [(τ − τ̃)/τ]2, (38)

NMSEυ = [(υ− υ̃)/υ]2, (39)

where (τ, υ) are real timing phases and frequency offsets, whereas (τ̃, υ̃) are their estimates.
Moreover, the estimated timing error parameter pair (τ̃, υ̃) involves an average of 50 times
calculation. Meanwhile, the true timing error parameter pair (τ, υ) for test cannot be the
vector with any element zero to make sense of Equations (38) and (39) avoiding from
divided by zero. Then, the NMSEτ and the NMSEυ with four, six, and eight iterations at
different SNRs are simulated and shown in Figure 6 as follows.
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Figure 6. NMSE of the timing phase and frequency estimation with an average of 50 times for each
Eb/N0.

The NMSEυ in Figure 6 is smaller than NMSEτ , because the influence of υ on object
function Ψ(·) exerts more control than τ (Figure 6).

Therefore, a total of six iterations are enough for timing recovery (Figure 6). In
our scheme, 6 timing recovery iterations are simulated and compared with the ideal
code performance. The bit or frame error ratio (BER/FER) of the scheme with the above
parameters is shown in Figure 7.

The performance of the LDPC coded system, which suffered from large timing errors,
is within 0.1 dB of the ideal code performance (Figure 7). The LDPC coded system performs
well at low SNRs (i.e., below 1 dB) without any pilot symbols. The cost is trivial, because the
complexity linearly grows with the LDPC code length. In addition, incremental operations
are limited.
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Figure 7. BER/FER of the proposed method with 6 iterations. The LDPC (1944, 972) decoding is
performed with maximum iterations of 20.

Finally, our algorithm is more stable than the algorithm in [4] because our algorithm
employs soft decisions, whereas [4] uses hard decisions as code constraint feedback. Hard
decisions yield false judgments when even decoded bits are reversed falsely, which involves
computing the same parity check equation. In comparison, no similar case of false judgment
exists in our algorithm. Therefore, our scheme shows rational complexity and excellent
performance similar to [4]. However, our algorithm is more stable in timing recoveries
especially at low SNRs.

The complexity increment for the timing recovery scheme can be analysed in the com-
parison between the original scheme with traditional timing recovery and LDPC decoding,
and the proposed scheme with the iterative timing recovery, the residual timing recovery
and LDPC decoding. The traditional scheme performs the timing recovery and LDPC de-
coding separately. It has one timing tracking calculation for each sample and several LDPC
decoding iterations. However, under the same condition and LDPC decoding iterations,
our scheme has the same LDPC decoding computations and timing tracking calculation,
including some extra calculations of iterative timing recovery. By Equations (34)–(37), and
given iteration number Ni, there are about Ni · [2(2K− 1) + 2] additions and Ni · (K + 2)
multiplications of additional computations in our scheme. Actually, with the gradual
correction of timing errors by the proposed iterative timing scheme, the equivalent SNR is
improved too. So the iteration number of LDPC decoding can be significantly reduced by
sharp reduction of the decoding iterations. So it also magnificently cut down the computa-
tional complexity for the whole iterative system. However, it is difficult to illustrate this
procedure analytically due to the nature of iterative process, which is closely related to the
initial input signals and nonlinear iterative calculation. So the computational complexity
cost of the proposed scheme is determined by initial input parameters and precision re-
quired in the joint decoding and demodulation. Thus, it can only be evaluated by numerical
methods dependent on random input modulated signals.

In our former work [6], it employs similar metrics from LDPC decoding to achieve
timing synchronization at low signal-to-noise ratios. It obtains the accurate timing acquisition
with a search window based Nelder-Mead simplex algorithm [20] to maximize the sum of
the absolute values of the metrics. It obtained a little performance gain (≤0.05 dB) than our
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new proposed algorithm. However, it may encounter the problems of local convergence
of the optimization searching algorithm under limited iterations. It had to add some
more additional decision module to judge and overcome the convergence problem. In
our proposed method, it can achieve the same performance and overcome the deficiency
of local convergence of the suggested optimization brought by the iterative BP decoding.
It can be explained as follows. Due to the analyses of the influence of timing offsets on
LDPC decoding, the effect of the timing error can be modeled as the decrease of SNR in
the decoding procedure. The actual SNR can be the synthesis of the real AWGN noise
and the equivalent AWGN noise caused by the inter symbol interference (ISI) due to
the false symbol sampling. It can be improved via our proposed method in the several
timing parameter updates in Equations (36) and (37). As long as the LDPC decoding is
convergent within the range of decoding threshold, the proposed iterative timing recovery
is surely to be globally convergent too, thus guarantee the effectiveness of the proposed
timing recovery. In addition, it can also turn to the help of an additional Mueller–Müller
algorithm [16] for better symbol synchronization, where it plays a similar role of timing
synchronization tracking. Furthermore, the proposed algorithm can be further simplified
by accumulating the metrics from LDPC variable nodes with high degrees, which holds
reliable metrics in the LDPC decoding. It has been verified by numerical simulations
with the similar method, except that the calculation of Equation (25) just includes the
more reliable variable nodes of high degree. Because the results are exactly similar for the
further simplified algorithm with reduced variable node calculation, we will not repeat the
redundant result here for the purpose of saving space. In addition, the portion of the low
degree variable nodes, that do not take part in the accumulation of Equation (25), should
be less than 20% via several simulations. Otherwise, there will be too many fluctuations
to affect the approximately convex of the objective function Ψ(τ, υ) shown in Figure 2,
which greatly affect the effectiveness of the proposed iterative timing recovery. Suppose
the portion of the high degree variable nodes to the whole code length is p, the whole
complexity can be further reduced to the p of the proposed algorithm.

In our work, we mainly discuss the least complex BPSK modulation scheme. We
mainly focus on the development of iterative timing recovery itself, so we just use it
to illustrate our idea. Actually, long distances in satellite communications and the corre-
sponding low signal-to-noise rate (SNR) transmission environments require power-efficient
low-order modulation, such as BPSK, quadrature phase shift keying (QPSK) and some vari-
ations of it (e.g., offset quadrature phase shift keying (OQPSK), π/4-differential quadrature
phase shift keying (π/4-DQPSK), etc.). Our scheme can be simply modified to satisfy these
modulations, since the QPSK modulation series are actually the orthogonal implementation
of two group of BPSK, and each branch of BPSK can adopt our proposed timing recovery
scheme to accomplish the timing synchronization. The timing recovery scheme can be
further improved with the well-known Costas loops for good implementation in practice.
In these schemes, we obtain the metrics from the modulated signals in an orthogonal
manner to feed the LDPC decoder, and the timing recovery parameters are iteratively
calculated in LDPC decoding similar to those in our scheme. In addition, we also verify
the roughly convex of the sum of the squares of selected LDPC decoding metrics with
QPSK modulation similar as that shown in Figure 2. The efficient approximate stochastic
gradient descent algorithm is also feasible. The complexity growth is still acceptable since
only two branch of BPSK synchronization loops are required in the QPSK related schemes
other than one branch in our scheme. The complexity increment is rather trivial. For more
complex modulations, such as the Mary-quadrature amplitude modulation (M-QAM),
Mary-phase shift keying (M-PSK) and even the Mary-amplitude phase shift keying (M-
APSK) modulations, they can also be divided as the In-phase and Quadrature-phase mode
of amplitude-shift-keying (ASK) modulations to properly implement the proposed timing
recovery scheme. The complexities mainly lie in the metric extraction from the high-order
modulations. They can be the further works in this aspect of research for low complex
approach. Finally, due to the similar main mechanism of soft LDPC metric usage in timing
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recovery, we do not expand these contents more for purpose of concise manuscript. How-
ever, they can be simply derived and constructed for practical applications in satellite and
wireless communications.

6. Conclusions

In this paper, we presented a new iterative timing recovery method using the max-
imization of the sum of the LDPC decoding metric squares. The main contributions are
summarized as follows. First, the relationship between LDPC decoding metrics and timing
offsets is analyzed for the purpose of timing recovery. The introduce of the timing error
can be explained as the phenomenon of the decrease of effective SNR. Afterwards, an
approximate steepest gradient descent-based algorithm is proposed to maximize the sum
of the square of LDPC decoding metrics efficiently, resulting in timing recoveries with
reasonable complexity. The complexity of the algorithm is also simplified with limited
iterations. In addition, the principle of the proposed algorithm is theoretically analyzed
with the transition trend of the probability mean of the soft LDPC decoding metrics by the
Gaussian approximation, which can be effectively used to explain the mechanism of the
proposed timing recovery method. Finally, the complete timing recovery is accomplished
where the proposed scheme is combined with a Mueller–Müller (M&M) timing recovery
algorithm to perform both the timing capture and the timing track. The simulation results
indicate that the LDPC-coded BPSK system suffered from a large timing phase and fre-
quency offset of over ±0.5 T and ±500 ppm, respectively, and performs excellently within
0.1 dB of the ideal code performance with rational complexity. The global convergence of
the timing recovery can be guaranteed by the natural of BP decoding, since the proposed
method is completely merged into the decoding.

Author Contributions: Conceptualization: Y.Q., Y.S.; methodology: Y.Q., J.B.; software: Y.Q., C.L.;
formal analysis: B.J.; investigation: Y.Q., J.B., C.L.; resources: Y.Q., B.J.; data curation: J.B., C.L., B.J.;
writing—original draft preparation: Y.Q.; J.B.; writing—review and editing: J.B.; visualization: C.L.,
B.J.; supervision: J.B.; project administration: J.B.; funding acquisition: J.B., B.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China under Grant
U1809201, by Fundamental Research Funds for the Provincial Universities of Zhejiang under Grant
GK209907299001-003 , by Zhejiang Provincial Natural Science Foundation of China under Grant
LY20F010010, by 2020 Domestic Visiting Scholars Program at Higher Education Institutions of China
under Grant FX2020008 and Grant FX2020010, and by Scientific Research Fund of Zhejiang Provincial
Education Department under Grant Y201840534.

Acknowledgments: The authors would like to thank National Natural Science Foundation of China
(NSFC), Zhejiang Provincial Natural Science Foundation of China (ZPNSFC), Zhejiang Provincial Ed-
ucation Department (ZPED) and Hangzhou Dianzi University for support this work and Xianghong
Tang for his active participation in discussions and expert suggestions.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

References
1. Gallager, R.G. Low-density parity-check codes. IRE Trans. Inf. Theory 1962, 8, 21–28. [CrossRef]
2. MacKay, D.J. Good error-correcting codes based on very sparse matrices. IRE Trans. Inf. Theory 1999, 45, 399–431. [CrossRef]
3. Barry, J.R.; Kavcic, A.; LcLaughlin, S.W. Iterative timing recovery. IEEE Signal Process. Mag. 2004, 21, 89–102. [CrossRef]
4. Lee, D.U.; Valles, E.L.; Villasenor, J.D.; Jones, C.R. Joint LDPC decoding and timing recovery using code constraint feedback.

IEEE Commun. Lett. 2006, 10, 189–191. [CrossRef]
5. Vallés, T.E.L.; Wesel, R.D.; Villasenor, J.D.; Jones, C.R. Carrier and timing synchronization of BPSK via LDPC code feedback. In

Proceedings of the 2006 Fortieth IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 29
October–1 November 2006; Volume 8, pp. 2177–2181.

6. Bao, J.; Zhan, Y.; Lu, J. Iterative timing recovery via soft decision metrics of low-density parity-check decoding. IET Commun.
2010, 4, 1742–1751. [CrossRef]

http://doi.org/10.1109/TIT.1962.1057683
http://dx.doi.org/10.1109/18.748992
http://dx.doi.org/10.1109/MSP.2004.1267052
http://dx.doi.org/10.1109/LCOMM.2006.1603380
http://dx.doi.org/10.1049/iet-com.2009.0747


Electronics 2021, 10, 3055 16 of 16

7. Noels, N.; Lottici, V.; Dejonghe, A.; Steendam, H. A theoretical framework for soft-information-based synchronization in iterative
(turbo) receivers. EURASIP J. Wirel. Commun. Netw. 2005, 2, 1–13. [CrossRef]

8. Herzet, C.; Ramon, V.; Vandendorpe, L. A theoretical framework for iterative synchronization based on the sum–product and the
expectation-maximization algorithms. IEEE Trans. Signal Process. 2007, 55, 1644–1658. [CrossRef]

9. Saemi, A.; Meghdadi, V.; Cances, J.P.; Zahabi, M.R. Iterative (turbo) expectation-maximisation-based time and frequency
synchronisation for multiple-input multiple-output-orthogonal frequency-division multiplexing systems. IET Commun. 2008, 7,
982–993. [CrossRef]

10. Mielczarek, B.; Svensson, A. Timing error recovery in turbo-coded systems on AWGN channels. IEEE Trans. Commun. 2002, 50,
1584–1592. [CrossRef]

11. Lehmann, F.; Kazem, A.; Salut, G. Blind turbo-detection in the presence of phase noise. IET Commun. 2009, 3, 1343–1353.
[CrossRef]

12. Freedman, A.; Rahamim, Y.; Reichman, A. Maximum-mean-square soft-output (M(2)S(2)O): A method for carrier synchronisation
of short burst turbo coded signals. IEE Proc.-Commun. 2006, 153, 245–255. [CrossRef]

13. Bao, J.; Zhao, M.; Zhong, J.; Cai, Y. Iterative timing recovery with turbo decoding at very low SNRs. In Proceedings of the 75th
IEEE Vehicular Technology Conference (VTC2012 Spring), Yokohama, Japan, 6–9 May 2012; Volume 3, pp. 1–5.

14. Kwon, K.; Kim, S.; Hwang, J.; Paik, J. Performance evaluation of synchronization method for reducing the overall synchronization
time in digital radio mondiale receivers. KSII Trans. Internet Inf. Syst. 2013, 7, 1860–1875.

15. Jeon, E.; Seo, J.; Yang, J.; Paik, J.; Kim, D. Iterative detection and ICI cancellation for MISO-mode DVB-T2 system with dual carrier
frequency offsets. KSII Trans. Internet Inf. Syst. 2012, 6, 702–721. [CrossRef]

16. Mueller, K.; Müller, M. Timing recovery in digital synchronous data receivers. IEEE Trans. Commun. 1976, 24, 516–531. [CrossRef]
17. Chung, S.Y.; Richardson, T.J.; Urbanke, R.L. Analysis of sum product decoding of low-density parity-check codes using a Gaussian

approximation. IEEE Trans. Inf. Theory 2001, 47, 657–670. [CrossRef]
18. Richardson, T.; Urbanke, R. The capacity of low density parity check codes under message passing decoding. IEEE Trans. Inf.

Theory 2001, 47, 599–618. [CrossRef]
19. IEEE Std. P802.11n Draft. Draft IEEE Standard for Local Metropolitan Networks—Specific Requirements. Annex P: LDPC Matrix

Definitions; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2006; Volume 1, pp. 1–23.
20. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder-Mead simplex method in low

dimensions. IRE Trans. Inf. Theory 1998, 9, 112–147. [CrossRef]

http://dx.doi.org/10.1155/WCN.2005.117
http://dx.doi.org/10.1109/TSP.2006.890828
http://dx.doi.org/10.1049/iet-com:20070402
http://dx.doi.org/10.1109/TCOMM.2002.803976
http://dx.doi.org/10.1049/iet-com.2008.0389
http://dx.doi.org/10.1049/ip-com:20050066
http://dx.doi.org/10.3837/tiis.2012.02.015
http://dx.doi.org/10.1109/TCOM.1976.1093326
http://dx.doi.org/10.1109/18.910580
http://dx.doi.org/10.1109/18.910577
http://dx.doi.org/10.1137/S1052623496303470

	Introduction
	Timing Error System Model
	 Influence of Timing Errors on LDPC Decoding
	Proposed Iterative Timing Recovery
	Simulation Results and Analyses
	Conclusions
	References

