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Abstract: Using a compensator in the structure is one of the simplest ways to achieve efficient control
of a non-linear process. Unfortunately, accessing the inverse process model is not a trivial issue.
Except for some special cases, it is much easier to determine the forward process model than the
inverse one. For this reason, it would be interesting to propose an alternative solution to the well-
known feedforward control method. In this paper, a simple multi-loop concept will be introduced.
The main idea is based on the natural (but limited) robustness offered by a single PID loop and the
ability to scale up the complexity of the forward process model. The proposed structure multiplies
a single PID loop including forward models with increasing complexity to calculate the resultant
non-linear control value. This new approach produces a comparable performance to the feedforward
method but does not require access to the inverse properties of the process. The idea was evaluated
in terms of stability and robustness to parameter changes. In addition, a simulation study was carried
out using two coupled non-linear processes, i.e., the position control of a robot manipulator with
force interaction. The selection of this process was no casual choice. On the one hand, it is extremely
complex; however, on the other hand, it provides the possibility to determine both the inverse and
the forward dynamic model. This capability was helpful to perform an effective comparison of the
proposed solution with the known feedforward structure.

Keywords: model-based control; single-loop PID control; feedforward; robust non-linear control;
multi-loop structure; robot dynamics

1. Introduction

The fundamental problem in feedback control design is the ability of the control
law to guarantee the stability and robustness of the whole system. Many techniques are
currently being used to achieve this goal, but in this paper, we will limit and focus on
some approaches from the MBC (model-based control). The MBC is a large chapter of
control theory, which has a strong transfer to industrial applications [1]. The IMC (internal
model control) principle was first articulated in 1976 [2]. This idea stands in opposition
to classic control, in which a single feedback PID loop is additionally equipped with a
forward plant model. This concept is still used today in various industrial processes [3–5].
When tuning 1DOF PID or IMC structures, it is impossible to achieve good tracking and
fast disturbance rejection at the same time [6]. If the control bandwidth is fixed, better
disturbance rejection requires more gain inside the bandwidth, which can only be obtained
by increasing the slope near the crossover frequency. Since a larger slope means a smaller
phase margin, this usually comes at the expense of more overshoot in the response to
setpoint changes. This phenomenon is called interference and is treated as an obvious
drawback of the system. The introduction of the 2-degree-of-freedom (2DOF) IMC structure
enables the control system to achieve good tracking performance and fast disturbance
rejection simultaneously [7]. This feature has made 2DOF IMC widely used in modern
control problems [8–10].

A conceptually similar control approach is the well-known feedforward method.
The discipline of ’Feedforward Control’ was well defined in many scholarly papers, articles,
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and books by the late 1980s [11,12]. Both the 2DOF IMC structure and the feedforward
technique require access to the inverse process model. This is probably one of the biggest
drawbacks of these solutions, as it significantly limits the range of applications [13]. Several
analytical methods can help in determining the inverse process model. Simulation software
such as [14] can also be helpful, as it speeds up the process of designing the non-linear
compensator for the feedforward structure [15]. The effort to determine the inverse model
has become a motivation in the search for alternative solutions. At the end of the 1990s,
a very interesting concept of modifying the 2DOF IMC system appeared [16]. It was
proposed to replace the compensator with a forward process model with an additional
PID controller in the structure. This approach belongs to a group of systems called model-
following control, which significantly simplifies the design and implementation procedure
of the non-linear control system [17]. The key problem of replacing the compensator with a
single-loop PID control is its limited robustness. Since in the MFC the plant follows the
output of the model, the quality of control in the model loop is critical [18]. The complexity
of the forward model should not exceed the robustness constraints of the single-loop
control structure. This is an obvious drawback of the MFC system, as it forces us to simplify
the forward model [19] and lose knowledge of the process.

This paper proposes a method that benefits from the full knowledge of the process.
Access to the inverse process model is not required, but the scalability of the forward
model is exploited. Based on the robustness of a single loop PID control [20], a structure
is presented whose robustness increases with the number of loops applied. Each loop
calculates a portion of the non-linear control that sums to the global control value. This
approach allows linearizing the process as efficiently as the feedforward method does.

Euler–Lagrange (EL) systems [21] seem to be an interesting class of plants for the
simulation study of the proposed multi-loop structure. EL systems capture a large group
of contemporary engineering problems, especially some which are intractable with linear
control tools. For example, in Reference [22], an adaptive control scheme for general
uncertain EL systems under control input saturation is proposed. In References [23,24],
new non-linear methods of stabilizing robots are presented. Finally, a position control of a
2DOF robot manipulator with force interaction was selected for the simulation study. This
process is characterized by strong non-linearity [25] and allows both forward and inverse
models to be determined in a relatively simple manner [26]. This made the proposed
solution easily comparable to the feedforward method.

2. Multi-Loop Approach

Figure 1a shows a typical structure with the compensator located outside the feedback
loop. Based on the current setpoint y0, the compensator M−1

n generates the control value
un. The benefit of this technique especially appears when M−1

n represents the inverse
non-linearities of the process P [27,28]. As noted in the previous section, there is only
a small class of processes for which the analytical determination of the compensator is
possible. This problem does not occur for the determination of the forward process model
Mn [29]. The question is, having access to Mn, are we also able to generate un? The answer
depends on the complexity of the non-linearity of Mn and the robustness of the single-loop
PID control. The solution may be a model-following control structure shown in Figure 1b.
The control value un is the product of a single-loop PID control with the forward model
Mn in the structure.

The classic single-loop PID control shows some natural robustness to variations of
process parameters and structures [30]. This property is widely used to generate non-linear
control. However, exceeding the limits of robustness results in control quality degradation.
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Figure 1. The well-known feedforward structure (a) and the model-following control (MFC) system (b).

It would be interesting to multiply the robustness of PID control by increasing the
number of loops. To do this, let us assume that the forward process model Mn has scalable
complexity (1):

M1 = M̃1(1 + ∆1)
M2 = M̃1(1 + ∆1) + M̃2(1 + ∆2)
...
Mi = M̃1(1 + ∆1) + M̃2(1 + ∆2) + ... + M̃i(1 + ∆i)
...
Mn = M̃1(1 + ∆1) + M̃2(1 + ∆2) + ... + M̃i(1 + ∆i) + ... + M̃n(1 + ∆n)

(1)

where Mi are non-linear parts of the whole process model Mn. Additionally, M̃i represents
the linear components of the model and corresponding ∆i multiplicative perturbations.
As will be shown in the simulation section, the non-linear forward process model Mn can
be presented in the form of a gradation of complexity Mi. If this condition is met, a multi-
model structure can be introduced which is composed of classic PID loops (Figure 2). The
mechanism of the proposed system is very simple and is based on a stepwise linearization
that finally leads to the determination of a global non-linear control variable un. Starting
from the first loop, the R1 is the controller of the simplest model M1, generating the first
component of the non-linear value u1. The measured model variable y1 is also the setpoint
value for the second loop in which M2 is included. The R2 follows the y1, generating
an additional corrective value next to the u1, which finally forms the control value u2.
Each following loop generates the additional non-linear component of the control value ui.
The number of loops used is determined by the complexity of the model Mn. The individual
Mi models should be prepared to benefit as much as possible from the natural robustness
of a single PID loop. Please note that using an over-complex model Mi may lead to a
degradation of the control quality yi, which will automatically degrade the next loop.

yn = y0
R1Mn

1 + R1M1

n
∏
i=2

(1 + Ri Mi−1)

n
∏
i=2

(1 + Ri Mi)
(2)

The proposed multi-loop structure is based on a multiplication of the single-loop PID
control. This greatly simplified the stability and robustness analysis, which is presented in
the next subsection. Equation (2) describes the transfer function of the multi-loop structure
in Figure 2.
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Figure 2. The general form of the multi-loop linearization concept.

2.1. Stability

The system under consideration is composed, in general, of n-loops that contain the
non-linear components of the process model Mi and corresponding PID controllers Ri that
generate the non-linear control values. The proper operation of the proposed method is
provided by satisfying the stability condition. Looking at the multi-loop structure, it is clear
that its basic component includes a single PID loop. Thus, it can be expected that the global
stability of the Figure 2 structure will depend on the local stability of each loop. We will
assume that the models Mi are linear and time-invariant. The stability conditions of the
last loop are based on the analysis of the error en, which can be described as en = yn−1− yn,
where yn−1 = un−1Mn−1 and yn = (un−1 + enRn)Mn. After the respective transformation,
we obtain

en =
un−1(Mn−1 −Mn)

1 + MnRn
(3)

Let the elements of Equation (3) be given in a rational form: un−1 = n1
d1

, Rn = n2
d2

,
Mn−1 = n3

d3
, Mn = n4

d4
. Substituting into (3) yields

en =
n1d2(n3d4 − n4d3)

d1d3(d2d4 + n2n4)
(4)

The characteristic equation d1d3(d2d4 + n2n4) = 0 presents the required conditions
for the considered system to be stable. The part (d2d4 + n2n4) is a well-known stability
condition for a one-loop PID system, where polynomials are of Hurwitz-type, i.e., their
poles have negative real parts. This means that the stability of the structure in Figure 2
consists not only of the stability of the last loop but also of the stability of each of the
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models Mi, as well as of the individual control signals ui, which are described by the
equation below:

un−1 = y0
R1

1 + R1M1

n−1
∏
i=2

(1 + Ri Mi−1)

n−1
∏
i=2

(1 + Ri Mi)

f or n > 1 (5)

2.2. Robustness Analysis

Studying the robustness of control systems is not a trivial task and often involves
techniques such as [31,32]. Since the proposed solution duplicates the classic PID system,
it is helpful to focus attention on the robustness of the single-loop structure. The variation
of process parameters, caused by non-linearity or time-variant behavior, can be modeled
by additive or multiplicative perturbation [33]. We will focus on one of them, i.e., the
multiplicative perturbation, which is defined as P = P̃(1 + ∆p), where P is the non-
linear representation of the plant, P̃ the linear representation of the plant, and ∆p the
multiplicative perturbation. For such an adopted description, the robustness of the classic
one-loop structure is described by the formula [34]

∣∣∆p(jω)
∣∣

pid <

∣∣∣∣1 + R(jω)P̃(jω)

R(jω)P̃(jω)

∣∣∣∣ (6)

We could use the above formula directly if we could transform the multi-loop structure
of Figure 2 to an equivalent single-loop form. Since the first loop with model M1 is an
independent loop, we will start the transformation from the second loop. If the number of
models in the structure is n > 1, additional robustness introduced by model loops should
be considered. In Figure 3, the multi-loop structure has been transformed to the equivalent
single-loop form by introducing additional blocks G1 and G2. The transfer function for the
equivalent system has the form

yi =
R2MiG1

1 + R2MiG2
y1 f or n > 1 (7)

where

G1 =

n
∏
i=3

(1 + Ri Mi−1)

n
∏
i=3

(1 + Ri−1Mi−1)
(8)

G2 =
Ri
R2

(9)

For the modified structure shown in Figure 3, we can directly apply the robustness
condition for the single-loop system (6), which takes the form

|∆i| <

∣∣∣∣1 + R2M̃iG2

R2M̃i

∣∣∣∣ (10)

By substituting (8) and (9), we finally obtain the condition for allowable perturbations:

|∆1| <

∣∣∣∣1 + R1M̃1

R1M̃1

∣∣∣∣ f or n = 1 (11)

|∆i| <

∣∣∣∣1 + Ri M̃i

R2M̃i

∣∣∣∣ f or n > 1 (12)
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As expected, inserting additional loops increases the resulting robustness (12) of the
whole system. This property can be used to generate the non-linear component of the
control variables ui, which ultimately comprise the global non-linear control value un.

Figure 3. Model loops with a multiplicative uncertainty and its reduction to the classic PID structure.

3. Results

The main goal of the simulation study is to confirm that the proposed forward model-
based system is also capable of generating strong non-linear control value such as the
feedforward structure based on the inverse model. It was quite a challenge to select the
right process for the simulation study. A key selection criterion was the analytical ability to
determine both the forward and the inverse model. In addition, the high complexity of the
process was to illustrate the point of using a multi-loop structure with scalable forward
model complexity. A two-joint serial manipulator with force interaction was finally selected
(Figure 4).
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Figure 4. The 2DOF manipulator with force interaction.

From a position control perspective alone, an industrial manipulator is an extremely
complex process. Strong static and dynamic non-linearities and time-variant behavior
go far beyond the robustness of a single-loop PID control [35]. The additional robot
interaction with the environment introduces further non-linearities into the control sys-
tem [36]. Regardless of the method used to identify the robot’s dynamic (Euler–Lagrange
or Newton–Euler formulation) [37], the mathematical model including force interaction
with the environment has the following form:

M(q)q̈ + C(q, q̇) + G(q) + D(q̇) = τ − JT(q)F (13)

We will use a 2DOF manipulator for the simulation purposes. For this case, the ele-
ments of Equation (13) take the form

M(q) =
[
(m1 + m2)l2

1 + m2l2
2 + 2m2l1l2c2 + J1 m2l2

2 + m2l1l2c2
m2l2

2 + m2l1l2c2 m2l2
2 + J2

]

C(q, q̇) =
[
−m2l1l2s2q̇2

2 − 2m2l1l2s2q̇1q̇2
m2l1l2s2q̇2

1

]

G(q) =
[

g(m1l1c1 + m2l1c1 + m2l2c12)
gm2l2c12

]

D(q̇) =
[

0.8sig(q̇1)
0.3sig(q̇2)

]
, JT(q) =

[
−l1s1 − l2s12 l1c1 + l2c12
−l2s12 l2c12

]
(14)

M(q) is the n × n inertia matrix, C(q, q̇) is the n × 1 vector of centrifugal and Coriolis
terms, G(q) is the n × 1 vector of gravitational effects, D(q̇) is the n × 1 vector of viscous
friction, τ is the n × 1 vector of actuator torques, and q̈, q̇, q are the n × 1 vectors of
acceleration, velocity, and position, respectively. The n × m matrix JT(q) is the transpose
of the Jacobian of the robot, and F is the m × 1 vector of the force that the (m-dimensional)
environment exerts at the contact point. Additionally, s12 = sin(q1 + q2), c12 = cos(q1 +
q2), m1 = 20.7 kg, m2 = 2.2 kg, l1 = 0.5 m, l2 = 0.7 m, J1 = 1.85 kgm2, J2 = 1.6 kgm2, g
is the acceleration of gravity. The above parameters represent the EDDA (experimental
direct drive arm), a real 2DOF manipulator, which has been discussed in many scientific
publications [38,39]. From a simulation point of view, the maximum torque of the direct
drives used is an important piece of information. Reluctance motors generate the torques,
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respectively, τ1 = ±250 Nm and τ2 = ±40 Nm. These constraints were introduced into the
simulation to better represent the behavior of the real process.

3.1. Preparation of Non-Linear Process Models

Access to the inverse model will help us compare the proposed system to the well-
known feedforward control. However, to simulate the structure of Figure 2, it is necessary
to determine the forward process model. Since the matrix M(q) is invertible for all q,
the Equation (13) can be easily transformed to the form

q̈ = M(q)−1[τ − C(q, q̇)− G(q)− D(q̇)− JT(q)F] (15)

Of course, the physical implementation of the model (15) requires the use of double
integration to determine the missing state variables q and q̇. This is, along with the other
methods [40], one of the most classic approaches to the practical determination of a forward
dynamic model of a robot manipulator. To demonstrate the significance of the proposed
concept with forward model scalability, we perform a simple simulation comparing the
performance of both control structures presented in Figure 1. Equation (13) was used as
an inverse model M−1

n for the feedforward system (a), while Equation (15) as a forward
model Mn was applied to the MFC structure (b).

The PID controllers have been tuned to achieve the best possible results for different
setpoint values. Equation (15) represents the process P for both feedforward and MFC
structures. Figures 5 and 6 illustrate the quality of position control for the first and
the second joint, respectively. In this comparison, the feedforward system offers a very
good quality of control. It is difficult to expect different results if the compensator M−1

n
is the perfect inverse of the process P. However, for the MFC structure, the control
quality is very poor. The reason for this is the limited robustness of a single PID loop that
contains a strongly non-linear forward model Mn. This example perfectly demonstrates
the constraints of the MFC system, which became the motivation for using a multi-loop
technique with scalable forward model complexity.

Figure 5. The performance of position control for the feedforward and MFC structure—joint 1.
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Figure 6. The performance of position control for the feedforward and MFC structure—joint 2.

Equation (15) represents the total process model. The Mi models should be chosen
in such a way that, on the one hand, good control quality in each loop is assured and,
on the other hand, the robustness of the PID control is maximally utilized. For simulation
purposes, the following gradation of model complexity was proposed:

M1 : q̈ = M(q)−1[τ − C(q, q̇)− D(q̇)]
M2 : q̈ = M(q)−1[τ − C(q, q̇)− D(q̇)− G(q)]
M3 : q̈ = M(q)−1[τ − C(q, q̇)− D(q̇)− G(q)− JT(q)F]

(16)

The forward models presented in (16) show the simplicity of practical implementation
of the proposed method. Based on the simulation, the number of required loops can be
optimally selected. In this case, it was decided to use three loops in the configuration
shown in Figure 2.

Since the feedforward structure will be the reference point in evaluating the perfor-
mance of the proposed system, the following inverse models will be used in the simulation:

M−1
1 : τ = M(q)q̈ + C(q, q̇) + D(q̇)

M−1
2 : τ = M(q)q̈ + C(q, q̇) + D(q̇) + G(q)

M−1
3 : τ = M(q)q̈ + C(q, q̇) + D(q̇) + G(q) + JT(q)F

(17)

3.2. Simulation Study

For simulation purposes, the Matlab/Simulink environment was used. All models
presented in (16) and (17) were implemented in C language in the form of S-Function.
To show the performance of the presented system, feedforward control was implemented
for comparison purposes. The forward models (16) were used to build and simulate the
structure from Figure 2, while the inverse models (17) allowed adequate feedforward
structures from Figure 1a to be prepared. The setpoint value for the first joint was y0 = 90◦

and for the second joint was y0 = −45◦. After 2.3 s, the setpoint value was changed to
y0 = 0◦ for both joints. The setpoint values were generated using a third-order polynomial.
This was required by inverse models (17), which need all three variables, q, q̇, and q̈, to
determine the control value.

The simulation was started from the simplest case, i.e., from models M1 and M−1
1 .

Figures 7b and 8b show the non-linear control value generated by the feedforward system
and the structure from Figure 2 (single PID loop). In this case, the models M1/M−1

1 do not
include the effects of gravity and force interaction with the environment. Switching to a
model that takes into account the effects of gravity M2/M−1

2 , the structure in Figure 2 takes
a two-loop form. For this case, Figures 9b and 10b show the comparison of the non-linear
control value. A final test was performed for the most complex models M3/M−1

3 . For the
non-linear interaction with the environment, the force vector was defined as F = [50 50]T .
In this case, the structure in Figure 2 took a three-loop form. Figures 11b and 12b show the
comparison of the non-linear control value. The small differences observed in the generated
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control signals compared to the feedforward are a result of the way the non-linear values
are determined. The feedforward method is called the direct linearization technique,
because the control value is calculated directly from the inverse model. Another approach
is used in the proposed multi-model system and is called the indirect linearization method.
In this case, the control value is computed indirectly in feedback loops.

Figure 7. Comparison of position control quality (a) and corresponding control value (b)—case M1/M−1
1 , joint 1.

Figure 8. Comparison of position control quality (a) and corresponding control value (b)—case M1/M−1
1 , joint 2.

Figure 9. Comparison of position control quality (a) and corresponding control value (b)—case M2/M−1
2 , joint 1.
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Figure 10. Comparison of position control quality (a) and corresponding control value (b)–case M2/M−1
2 , joint 2.

Figure 11. Comparison of position control quality (a) and corresponding control value (b)—case M3/M−1
3 , joint 1.

Figure 12. Comparison of position control quality (a) and corresponding control value (b)—case M3/M−1
3 , joint 2.

Finally, we should look at the control quality that can be achieved with the presented
technique. Figures 7–12a show the following of the setpoint value for the compared systems.
As might be expected, the feedforward structure follows the setpoint value y0 perfectly.
However, considering the scale of the complexity of the process, the presented approach
generates interesting results as well. The significance of using the multi-loop technique is
perfectly illustrated by comparing Figures 5 and 6 with Figures 11a and 12a. In this case
we are looking at the most complex process described by the models (13) and (15). The use
of scalable forward models (16) plugged into a three-loop structure (Figure 2) allows for a
significant improvement in control quality.

4. Conclusions

In this paper, the multi-loop structure based on the forward process models was
presented. The scalable model complexity technique makes it possible to effectively use the
natural robustness of the PID control. Based on the position control of a robot manipulator
with environment interaction, the capability of generating non-linear control values was
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compared to the feedforward structure. In this complex process, simultaneous access to the
inverse and forward model greatly simplified the simulation studies. However, it should
be noted here that the reason for using this proposed solution is when the determination of
the inverse process model is difficult or impossible, which is mostly the case.

We should look at the practical implementation of the proposed solution. The combi-
nation of multiple loops along with specially prepared models may make it seem difficult
to use this system in practice. However, as the simulation section shows, the synthesis
of the multi-model structure is not significantly challenging. Since the basic component
of the structure is nevertheless a well-known single PID loop, this greatly simplifies the
implementation and tuning process. Of course, the proposed system also requires adequate
computing power. However, this is not a critical condition. Similar to the feedforward
approach, it is also possible to calculate the non-linear control value in the off-line mode.
The proposed system is an interesting alternative to the classical compensator design, based
on the inverse model. The presented method opens new possibilities of control of strongly
non-linear processes for which determination of the inverse model is impossible.
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Abbreviations
The following abbreviations are used in this manuscript:

DOF Degree of Freedom
EDDA Experimental Direct Drive Arm
EL Euler–Lagrange Systems
IMC Internal Model Control
MBC Model-Based Control
MFC Model-Following Control
PID Proportional Integral Derivative
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