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Abstract: For technological, economic, and environmental reasons, renewable distributed generators
(RDGs) have been extensively used in distribution networks. This paper presents an effective
approach for technoeconomic analysis of optimal allocation of REDGs considering the uncertainties
of the system. The primary issue with renewable-based distributed generators, especially wind and
photovoltaic systems, is their intermittent characteristic that results in fluctuating output power and,
hence, increasing power system uncertainty. Thus, it is essential to consider the uncertainty of such
resources while selecting their optimal allocation within the grid. The main contribution of this study
is to figure out the optimal size and location for RDGs in radial distribution systems while considering
the uncertainty of load demand and RDG output power. A Monte Carlo simulation approach and
a backward reduction algorithm were used to generate a reasonable number of scenarios to reflect
the uncertainties of loading and RDG output power. Manta ray foraging optimization (MRFO),
an efficient technique, was used to estimate the ratings and placements of the RDGs for a multi-
objective function that includes the minimization of the expected total cost, total emissions, and
total system voltage deviation, in addition to enhancing predicted total voltage stability. An IEEE
118-bus network was used as a large interconnected network, along with a rural 51-bus distribution
grid and the IEEE 15-bus model as a small distribution network to test the developed technique.
Simulations demonstrate that the proposed optimization technique effectively addresses the optimal
DG allocation problem. Furthermore, the results indicate that using the proposed method to optimally
integrate wind turbines with solar-based DG decreases the expected costs, emissions, and voltage
deviations while improving voltage stability by 40.27%, 62.6%, 29.33%, and 4.76%, respectively, for
the IEEE 118-bus system and enhances the same parameters by 35.57%, 59.92%, 68.95%, and 11.88%,
respectively, for the rural 51-bus system and by 37.74%, 61.46%, 58.39%, and 8.86%, respectively, for
the 15-bus system.

Keywords: radial distribution system; renewable energy; uncertainties; distributed generators; solar
and wind systems; optimum sizing and location; manta ray foraging optimization

1. Introduction
1.1. Problem Statement

Uncertainty is a key issue in determining the best size and position for distributed gen-
erators (DGs) in electrical systems, and it is a big contributor to the problem’s complexity,
especially when it comes to load demand and renewable energy resources (RERs).

While much effort has been conducted to optimize the integration of DGs within
electricity grids, few studies accounted for uncertainty. The optimal allocation of wind
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turbine (WT) and photovoltaic (PV) systems within grids, along with the consideration
of system uncertainty, plays a key role in maintaining system reliability. Electric power
producers often employ DGs close to the load center for economic, technical, and envi-
ronmental reasons. Integration of distributed renewable energy sources such as wind and
photovoltaic within power systems has increased significantly over the last few years. Due
to the intermittent characteristics of solar irradiance and wind speed, the output power
of such systems exhibits continuous fluctuations, which contributes to the uncertainty of
electric power systems. Thus, for optimal renewable distributed generator (RDG) sizing
and location, the uncertainties of the system should be considered.

1.2. Literature Review

The fundamental purpose of DGs is to provide proper distribution network operation
with reduced system losses, improved voltage profile, and higher system reliability [1].
DGs are now a clean and cost-effective source of energy, and RER production rates have
recently fallen, despite the fact that the cost of generating electricity using traditional
generators is rapidly increasing due to the rise of the fuel cost [2,3]. Lowering energy costs,
reducing emissions, and improving voltage profiles are all advantages of a proper optimal
DG allocation [4–6]. However, because of the uncertain nature of RERs, improper DG
placement can cause system instability and voltage fluctuations [7,8]. The topic of optimal
DG integration has been discussed in a number of studies from various perspectives. The
firefly algorithm (FA) and particle swarm optimization (PSO) method were presented in [9]
to achieve techno-economic and environmental benefits in electrical distribution networks.
A PSO and hybrid enhanced gray wolf optimizer (EGWO-PSO) approach was presented
in [10] for the optimal DG allocation in order to reduce system costs, emissions, active power
losses, and voltage deviation index (VDI), as well as increase voltage stability index (VSI).
For electrical power planning with load uncertainties, the authors of [11] suggested a Monte
Carlo simulation-based bioinspired algorithm. To reduce the overall energy loss when
sizing and deploying DG units, a method known as coefficient particle swarm optimization
(CPSO) was used in [12]. In [13], the Salp swarm optimizer (SSO) was combined with the
PSO method to improve the technical–economical–environmental performance of power
plants. The authors of [14] introduced the equilibrium optimizer (EO) method, an efficient
algorithm for solving the micro-grid energy management problem and optimizing the DG
size and location within power systems. Monte Carlo simulation was employed in [15] for
optimum DG allocation. The authors of [16] suggested a bilayer optimization technique
for optimal battery energy storage system (BESS) and solar photovoltaic (SPVs) placement
in the distribution system. In [17], a solution called strength Pareto evolutionary algorithm
2 (SPEA2) was presented for tackling the DGs and capacitor placement problem with
load uncertainty. The manta ray foraging optimization algorithm (MRFOA) was proposed
in [18] for the best control and operation of distribution networks with the least amount of
lost energy. The manta ray foraging optimizer (MRFO) is a new and effective bioinspired
algorithm for engineering applications that simulates the intelligent foraging behavior of
manta rays in the environment [19]. The MRFO is used in this paper to determine the
optimal solar and wind system allocation in a network based on IEEE 118-bus, rural 51-bus,
and IEEE 15-bus systems for minimizing the expected total cost, emissions, and voltage
deviation, and enhancing voltage stability while taking into account the uncertainties of
load demand and solar and wind power generation.

1.3. Contribution of the Paper

The uncertainty of the RER output power and load demand is considered the most
challenging issue related to optimal sizing and allocation of RDGs within power grids. As
a result of the continuous increase in the penetration level of the RER to the power grids,
the problem has grown significantly, forcing the construction of a more efficient solution.
This paper is aimed at solving the optimal allocation of RDGs problem in a distribution
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system using a backward reduction technique that takes into account uncertainties due to
load demand and RER. The contributions of the paper can be summarized as follows:

• Presenting an effective backward reduction strategy to solve the optimal distribution
system problem sizing and placement,

• Addressing the issue of the load and RER output power uncertainties,
• Adopting a Monte Carlo simulation approach and backward reduction algorithm to

model electrical system uncertainty,
• Employing MRFO algorithm to solve the problem using the IEEE 118-bus, rural 51-bus,

and the IEEE 15-bus distribution systems,
• Comparing the performance of MRFO with several well-known problem-solving

algorithms.

2. Problem Formulation

Four objective functions were studied as part of a multi-objective function in this
paper [20,21]. It is worth noting that, while modeling or assessing power system uncertainty,
various scenarios must be considered. Each scenario has its own set of expected values, as
elaborated below.

2.1. Proposed Objective Functions
2.1.1. Minimizing the Total Expected Cost (ETCost)

The total annual expected cost (ETCost) includes the cost of the main substation’s
electric energy saving (ECostGrid), cost of the integrated PV (ECostPV), and cost of the WT
(ECostWT), expressed as

ETCost = ECostGrid + ECostPV + ECostWT . (1)

The detailed items of Equation (1) are defined as follows:

ETCostGrid =
Ns

∑
k=1

ECostGrid,k =
Ns

∑
k=1

CostGrid,k × πS,k, (2)

CostGrid = PGrid × KGrid, (3)

ETCostPV =
Ns

∑
k=1

ECostPV,k =
Ns

∑
k=1

πSolar,k × (aPV + bPV × PGPV), (4)

aPV =
capital cost_PV × Psr × Gr
li f e time_PV × 8760× LF

, (5)

bPV = Cost_PVO&M + Cost_PVFuel , (6)

ETCostwind =
Ns

∑
k=1

ECostwind,k =
Ns

∑
k=1

πwind,k × (awind + bwind × PGwind), (7)

awind =
capital cost_wind× Pwr × Gr
li f e time_wind× 8760× LF

, (8)

bwind = Cost_windO&M + Cost_windFuel , (9)

where aPV is the annual PV unit installment cost, and bPV is the annual PV unit’s operation
and maintenance cost. The annual WT installment cost is a2, and the annual WT operating and
maintenance cost is b2. LF is the load factor of DGs, and Gr is the annual rate of benefit (USD/h).
The cost coefficients of PV in this study were chosen to be capital cost_PV = 3985 USD/kW,
Cost_PVO&M = 0.01207 USD/kWh, and Cost_PVFuel = 0 USD/kWh. The wind cost coeffi-
cients were set to capital cost_wind = 1822 USD/kW, Cost_windO&M = 0.00952 USD/kWh,
and Cost_windFuel = 0 USD/kWh. The operational lifetime of PV and WT was assumed to
be 20 years, with KGrid = 0.096 [20].
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2.1.2. Minimizing the Total Expected Emissions (ETEmission)

Carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOx) are the most
effective pollutants resulting from fossil fuels used in thermal power plants. The proposed
objective function to minimize the emission of such toxic gases can be formulated as
follows [20]:

ETEmission =
Ns

∑
k=1

EEmissionk =
Ns

∑
k=1

πGrid,k × EGrid,k, (10)

f2(x) =
NDG

∑
i=1

EDGi + EGrid, (11)

EDGi =
(

CODG
2 + NODG

x + SODG
2

)
× PGi, (12)

EGrid =
(

COGrid
2 + NOGrid

x + SOGrid
2

)
× PgGrid, (13)

where ETEmission represents the total expected emission, and f2 is the emission reduction
from generation units. Grid NOx, SO2, and CO2 emission rates were set to 5.06 kg/MWh,
11.6 kg/MWh, and 2031 kg/MWh respectively [20].

2.1.3. Minimizing the Expected Voltage Deviation (EVD)

The expected total voltage deviation ETVD of a radial distribution network (RDN) is
expressed as follows [20,21]:

ETVD =
Ns

∑
L=1

EVDL =
Ns

∑
L=1

πS,L ×VDL, (14)

where

VD =
n

∑
k=1
|Vk − 1|. (15)

2.1.4. Enhancing the Expected Voltage Stability Index

The sum of the expected voltage stability indexes (ETVSI) can be formulated as

ETVSI =
Ns

∑
L=1

EVSIL =
Ns

∑
L=1

πS,L ×VSIL, (16)

VSIn = |Vn|4 − 4(PnXnm −QnRnm)
2 − 4(PnXnm + QnRnm)|Vn|2. (17)

2.1.5. Proposed Multi-Objective Function

The above objective functions were integrated into a multi-objective function. The
weight approach method was utilized to prioritize the goals to be achieved. Furthermore,
the objectives should be normalized on the basis of their base value (without WT and
PV), to eliminate scaling concerns and make the objective function dimensionless. The
multi-objective function F is given by Equation (18).

F = Ω1F1 + Ω2F2 + Ω3F3 + Ω4F4 (18)

where Ω1, Ω2, Ω3, and Ω4 are the weighing factors that should satisfy Equation (19).

|Ω1|+ |Ω2|+ |Ω3|+ |Ω4| = 1 (19)

where, Ω1 = Ω2 = Ω3 = Ω4 = 0.25 [20].
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The respective normalized objective functions in Equation (18) are calculated as follows:

F1 =
ETCost

ETCostbase
(20)

F2 =
ETEmission

ETEmissionbase
(21)

F3 =
ETVD

ETVDbase
(22)

F4 =
1

ETVSI
(23)

2.2. System Constraints

The above multi-objective function is solved subject to the below constraints.

2.2.1. Equality Constraints

The active and reactive powers flow in RDN are included in the equality constraints,
which can be written as follows:

PGrid +
NPV

∑
j=1

PPV,j +
NWT

∑
j=1

PWT,j =
NT

∑
j=1

Ploss,j +
NB

∑
j=1

PL,j. (24)

QGrid +
NT

∑
j=1

QWT,j =
NT

∑
j=1

Qloss,j +
NB

∑
j=1

QL,j. (25)

2.2.2. Inequality Constraints

The inequality constraints can be given as follows:

Vmin ≤ Vj ≤ Vmax. (26)

NWT

∑
j=1

QWT,j ≤
NB

∑
j=1

QL,j. (27)

In ≤ Imax,n n = 1, 2, 3 . . . , NT. (28)

where, Vmin and Vmax are the lower and the upper voltage limits.

3. Uncertainty Modeling of PV, Wind Turbine, and Load Demand

The continuous probability density function (PDF) is used to consider the uncertainty
in load demand, WT, and PV systems.

3.1. WT Uncertainty Modeling

Wind speed uncertainty can be modeled using the Weibull PDF given by Equation (29) [22].

fv(v) =
(

β

α

) ( v
α

)(β−1)
exp

[
−
( v

α

)β
]

0 ≤ v < ∞. (29)

The scaling and shaping factors for Weibull PDF are α, β that were set to α = 10.5 and
β = 2.6. A 1000 Monte Carlo wind speed distribution scenario utilizing Weibull PDF is
depicted in Figure 1.
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Figure 1. Weibull PDF (α = 10.5, β = 2.6) for WT generator and a 1000 Monte Carlo scenario for wind speed distribution.

The output power of a WT is a function of wind speed expressed as follows [22]:

Pω(vω) =


0 f or vω < vωi| vω > vω

Pωr

(
vω−vωi
vωr−vωi

)
f or (vωi ≤ vω ≤ vωr)

Pωr f or ( vωr ≤ vω ≤ vωo)

, (30)

where, Pωr is the rated output power of the WT, and vωi = 3 m/s, vωo = 25 m/s, and
vωr = 16 m/s are the cut-in, cut-out, and rated speed of the WT, respectively.

For each wind scenario, the probability of wind speed is computed using Equation (31).

τwind, L =
∫ vmax

L

vmin
L

fv(v) dv, (31)

where vmin
L and vmax

L mark the beginning and end of the interval of wind speed for the L-th
scenario, and τwind,L is the probability of WT speed being in the L-th scenario.

3.2. PV Uncertainty Modeling

The lognormal PDF can be used to specify the solar irradiance uncertainty [23].

fG(G) =
1

G σs
√

2π
exp

[
− (ln G− µs)

2

2σs2

]
f or G > 0, (32)

where µs, and σs represent the mean and standard deviation of the random variables, which
were set to 5.5 and 0.5, respectively [23].

The solar irradiation scenarios using the Monte Carlo simulation are shown in Figure 2.
The output power of a PV array as a function of irradiance can be calculated as

follows [22]:

Ps(G) =

 Psr

(
G2

Gstd × Mc

)
f or 0 < G ≤ Mc

Psr

(
G

Gstd

)
f or G ≥ Mc

, (33)

where Mc represents a certain irradiance point which is set to 120 W/m2, and Gstd is the
standard solar irradiance which is equal to 1000 W/m2 [23].
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Figure 2. Solar irradiation scenarios for PV units (without zero irradiance).

The probability of solar irradiation can be calculated using Equation (34) [23].

τsolar, m =
∫ Gmax

n

Gmin
n

fG(G) dG, (34)

where Gmin
n and Gmax

n are the starting and ending points of the solar irradiance interval in
the n-th scenario.

3.3. Load Demand Uncertainty Modeling

The normal distribution PDF can be used to simulate the uncertainty in the load
demand as shown below [24].

fd(Pd) =
1

σd
√

2π
exp

[
− (Pd − µd)

2

2σd
2

]
, (35)

where the standard and mean deviation values are σd and µd, respectively. Pd represents
the load normal distribution’s probability density. Figure 3 shows the Monte Carlo sce-
narios of load demand formed with a normal distribution PDF (σd = 10, µd = 70, and
sample size = 1000).
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To calculate the load demand probability and expected load scenarios, the following
equations are used [24]:

τd, i =
∫ vmax

d,i

vmin
d,i

1
σd
√

2π
exp

[
− (Pd − µd)

2

2σd
2

]
dpd, (36)

Pd, i =
1

τd, i

∫ Pmax
d,i

Pmin
d,i

Pd

σd
√

2π
exp

[
− (Pd − µd)

2

2σd
2

]
dpd, (37)

where Pmin
d,i and Pmax

d,i represent the border limits of interval i.

3.4. Backward Reduction Algorithm

The authors of [21] demonstrated how to use the backward reduction technique to
reduce possibilities. The probabilities associated with various scenarios are shown in
Table 1. The probability of each scenario, the solar irradiation, the wind speed, and the
percentage of loading are listed in the table.

Table 1. Reduced created scenarios, with associated uncertainties.

Scenario πs (Scenario Probability) Irradiance of PV (W/m2) Speed of WT (m/s) Loading %

S1 0.0010 825.1 5.7 82.1
S2 0.0030 665.8 8.1 85.9
S3 0.1050 311.2 9.3 72.8
S4 0.0060 80.3 4.6 58.2
S5 0.0040 744.2 7.1 75.4
S6 0.1040 201.8 7.7 68.4
S7 0.0110 585.5 4.3 73.8
S8 0.0470 360.5 10.6 63.7
S9 0.0330 406.5 8.2 78.1
S10 0.0010 909.6 5.7 64.5
S11 0.0530 250.6 13.6 66.1
S12 0.1210 133.4 8.8 72.9
S13 0.0160 504.8 8.8 64.4
S14 0.0100 455.6 10.3 65.4
S15 0.4850 0 10.3 72.1

4. Optimization Algorithms

The manta ray foraging optimizer (MRFO) is a new bioinspired optimization technique
which was introduced in 2020 for solving engineering applications [19]. Manta rays are
aquatic animals with two pectoral fins and a flat body. They are able to swim freely, as if
they were birds. They also feature a pair of vertical lobes protruding from their massive
terminal jaws. They do not have sharp teeth; therefore, they eat plankton (microscopic
animals) [19]. The MRFO is similar to other optimizers that are based on developing the
exploration and exploitation stages. For solving distinct optimization issues, three foraging
strategies, i.e., chain foraging, cyclone foraging, and somersault foraging, can be used to
define the development [25–27]. The mathematical models of the three foraging strategies
are described below.

4.1. Chain Foraging

Manta rays may be able to identify plankton through MRFO and swim toward it. A
larger concentration of plankton in a location results in a better identification process. The
mathematical model of chain foraging can be expressed as

xb
i (t + 1) =

 xb
i (t) + A ∗

(
xb

best(t)− xb
i (t)

)
+ ρ×

(
xb

best(t)− xb
i (t)

)
i = 1

xb
i (t) + A ∗

(
xb

i−1(t)− xb
i (t)

)
+ ρ×

(
xb

best(t)− xb
i (t)

)
i = 2, . . . , N

, (38)
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ρ = 2× A×
√
|log(A)|, (39)

where A is a random vector within the range [0, 1], xb
i (t) is the position of the i-th individual

at time t in b-th dimension, xb
best(t) is the plankton with the highest concentration, and

ρ is a weight coefficient. The position update of the i-th individual is determined by the
position xb

i−1(t) of the (i− 1)-th current individual and the position xbest(t) of the food.

4.2. Cyclone Foraging

When manta rays find plankton in deep water, they form a lengthy foraging chain
and spiral their way to the food. Each manta ray swims in the same direction following
the manta ray in front. Manta rays, in other words, hunt in swarms, spiraling around each
other. The mathematical equation that can be used to model manta rays’ spiral-shaped
movement in 2D space is{

Xi(t + 1) = Xbest(t) + A× (Xi−1(t)− Xi(t)) + edω × cos(2πω)× ( Xbest − Xi(t))
Yi(t + 1) = Ybest(t) + A× (Yi−1(t)−Yi(t)) + edω × sin(2πω)× ( Ybest −Yi(t))

, (40)

where ω is a random number within the range [0, 1]. The mathematical model of cyclone
foraging can be defined as

xb
i (t + 1) =

 xb
best(t) + A ∗

(
xb

best(t)− xb
i (t)

)
+ µ ∗

(
xb

best(t)− xb
i (t)

)
i = 1

xb
best(t) + A ∗

(
xb

i−1(t)− xb
i (t)

)
+ µ ∗

(
xb

best(t)− xb
i (t)

)
i = 2, . . . , N

, (41)

µ = 2er1 T−t+1
T · sin(2πr1), (42)

where r1 is a rand number within the range [0, 1], T is the maximum number of iterations,
and µ is the weight coefficient.

This mechanism is primarily concerned with exploration and allows MRFO to conduct
a comprehensive worldwide search; its mathematical equation is given by

xb
rand = Lbb + A×

(
Ubb − Lbb

)
, (43)

xb
i (t + 1) =

 xb
rand + A×

(
xb

rand − xb
i (t)

)
+ µ×

(
xb

rand − xb
i (t)

)
i = 1

xb
rand + A×

(
xb

i−1(t)− xb
i (t)

)
+ µ×

(
xb

rand − xb
i (t)

)
i = 2, . . . , N

, (44)

where Ubb, and Lbb are the upper and lower limits of the b-th dimension, respectively, and
xb

rand is a random position produced in the search space. The Cyclone Foraging procedures
are shown in Figure 4.

4.3. Somersault Foraging

The position of the meal is considered a pivot in this behavior. Each manta ray swims
back and forth around the pivot, somersaulting to a new position. As a result, the manta
rays constantly update their positions on the basis of the best position discovered thus far.
The mathematical model of this process can be expressed as

xb
i (t + 1) = xb

i (t) + S ∗
(

r2 ∗ xb
best − r3 ∗ xb

i (t)
)

, i = 1, . . . , N, (45)

where S is the somersault factor that decides the somersault range of manta rays (S = 2),
and r3 and r2 are two random numbers within the range [0, 1].
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5. Simulation Results, Comparison, and Discussion
5.1. Simulation Results and Comparison

In this section, the proposed approach is utilized to find the optimal RER allocations in
two RDNs while considering the system’s uncertainty. The installation of RERs is identified
as a function of reducing the expected cost, the expected emissions, and the expected
voltage deviation, while also improving the voltage stability index. These objectives were
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integrated into a single multi-objective function in order to optimize them all at once. The
MRFO was used to combine a solar PV and WT-based DGs within the IEEE 118-bus and
a rural 51-bus systems as real distribution networks. The IEEE-15 bus system was also
modeled as a small distribution network. Figures 5–7 show the single-line diagrams of
these systems, respectively. The detailed parameters of the IEEE 118-bus, rural 51-bus, and
the IEEE 15-bus test systems were provided in [28–30], respectively. Table 2 shows the
initial power flow of these systems in the base case. The obtained results were compared
with PSO, ALO, WOA, and SCA to verify the effectiveness of the suggested MRFO. Table 3
lists the parameters of the optimization techniques considered in this paper, whereas
Table 4 lists the restrictions of the studied system, and Table 5 shows the characteristics
of the generation resources. The proposed algorithms were developed using MATLAB
software and applied to two case studies.
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Table 2. Specifications of the studied networks.

Item IEEE 118-Bus Rural 51-Bus IEEE 15-Bus

Minimum voltage (p.u.) 0.86882 @ bus 77 0.90812 @ bus 16 0.94452 @ bus 13
Excluding the slack bus,
maximum voltage (p.u.) 0.99629 @ bus 100 0.98919 @ bus 2 0.97128 @ bus 2

Total reactive load (kVAR) 17,041.068 1569 1251.179
Total active load (kW) 22,709.720 2463 1226.400
Total Reactive Loss (kVAR) 978.649 111.679 56.538
Total Active Loss (kW) 1297.869 129.550 60.668

Table 3. Parameters used in each optimization technique.

Optimizer Parameter Configuration

MRFO Tmax = 100, populations = 25.
ALO Tmax = 100, populations = 25.
WOA Tmax = 100, populations = 25.
SCA Tmax = 100, populations = 25.
PSO Tmax = 100, populations = 25, b1 = 2, b2 = 1, w = 0.7

Table 4. The limitations of the system.

Parameter Value

Limits of DG size 0 ≤ PWT, PV ≤ PL kW
Limits of power factor 0.65 ≤ PFi ≤ 1
Limits of voltage 0.90 ≤ Vi ≤ 1.05 p.u.

Table 5. Characteristics of the generation resources.

DG
Type

Fuel Cost
(USD/kWh)

Capital Cost
(USD/kW)

O&M Cost
(USD/kWh)

Life Time
(Year)

Rated Capacity
(MW)

Emission Factors
(lb/MWh)

NOX SO2 CO2
PV - 3985 0.01207 20 1 - - -
WT - 1822 0.00952 20 5 - - -
Grid 0.044 - - 25 25 5.06 11.6 2031

5.1.1. Case Study 1: IEEE 118-Bus System

MRFO was utilized to determine the optimal RER placements and ratings in the IEEE
118-bus system shown in Figure 5. Without any penetration of RERs, the expected cost,
emissions, voltage deviations, and the expected voltage stability index were 1633.5 USD/h,
34,842,000 kg/MWh, 4.2157 p.u., and 101.4379 p.u., respectively. In the case of optimal
insertion of WT- and solar PV-based DGs, these calculations became 975.7504 USD/h,
13,029,000 kg/MWh, 2.9794 p.u., and 106.5046 p.u., respectively. In other words, these
values are enhanced by 40.27%, 62.6%, 29.33%, and 4.76%, respectively. The optimal sites of
the PV units and the WT-based DGs were buses 72 and 64, respectively. These DGs should
be of the following optimum sizes: 2589.53 kW and 20,029.39 kW. Table 6 shows the PV unit
and WT-based DG output powers, as well as the expected values for each scenario. It can
be seen that the numbers changed in each scenario due to the differences in the RER output
power and load demand. Furthermore, it can be observed that scenario number 15 had the
highest projected expenses, expected emissions, and predicted voltage variation. This was
due to the out power of the solar PV being 0 kW. As a result, the majority of the required
power would be provided by the grid, causing these values to rise. Cost, emissions, VDs,
and the VSIs for each scenario with and without the integration of the RERs are shown
in Figures 8–11, respectively. According to these figures, the cost, emissions, and VDs
were reduced significantly in each scenario with the inclusion of RERs, while the VSI at
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each scenario was enhanced considerably. Figures 12 and 13 depict the voltage profiles
of the IEEE 118-bus system for each situation. It is obvious that the insertion of RERs
can improve the voltage profile for each scenario. Table 7 lists the statistical findings of
the objective function calculated using several optimization techniques, namely, WOA
(whale optimization algorithm) [30], PSO (particle swarm optimization) [31], ALO (ant lion
optimizer) [32], and SCA (sine cosine algorithm) [33]. It can be observed that the MRFO
surpasses other methods for solving this problem.

Table 6. The IEEE 118-bus system simulation results.

Scenario π_s Loading % Pw (kW) Ps (kW) ETCost (USD/h) ETEmission
(kg/MWh) ETVD (p.u.) ETVSI (p.u.)

S1 0.0010 82.1 4180 2136.9 1.6 26,800 0.0033 0.1045
S2 0.0030 85.9 7765 1724.5 4.2 66,600 0.0096 0.3156
S3 0.1050 72.8 9696 806 107.5 1,465,700 0.301 11.1894
S4 0.0060 58.2 2460 139.2 8.3 138,600 0.0204 0.6253
S5 0.0040 75.4 6227 1927.5 5.1 79,400 0.0118 0.424
S6 0.1040 68.4 7290 522.6 119.9 1,798,900 0.317 10.9873
S7 0.0110 73.8 2036 1516.4 18.1 313,900 0.0387 1.1417
S8 0.0470 63.7 11,735 933.8 29.9 248,000 0.1215 5.112
S9 0.0330 78.1 8056 1052.9 41.6 635,600 0.1027 3.4809

S10 0.0010 64.5 4179 2356 1.2 17,900 0.0027 0.1069
S11 0.0530 66.1 16,287 649.1 17.9 0 0.1559 5.8439
S12 0.1210 72.9 8878 345.6 137.5 2,014,500 0.3737 12.7797
S13 0.0160 64.4 8890 1307.4 13.7 167,600 0.0405 1.7251
S14 0.0100 65.4 11,281 1179.9 6.9 64,500 0.0255 1.0866
S15 0.4850 72.1 11,201 0 462.2 5,990,800 1.455 51.5818

Summation 1 975.7503 13,028,800 2.9793 106.5047
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Table 7. The statistical results in the IEEE 118-bus system with the use of several optimizers.

Optimizer Best Values Average Values Worst Values SD

MRFO 0.6820 0.7087 0.7655 0.0253
PSO 0.7097 0.7547 0.8333 0.0374
ALO 0.7323 0.7985 0.8625 0.0358
WOA 0.7745 0.8132 0.8903 0.0175
SCA 0.6942 0.7351 0.7905 0.0306
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Figure 13. Bus voltage magnitudes of the IEEE 118-bus system with RERs.

5.1.2. Case Study 2: Rural 51-Bus System

In this case study, MRFO was employed to identify the optimal RER locations and
ratings in the 51-bus system shown in Figure 6. Without RERs, the expected cost, emis-
sions, voltage deviation, and the expected voltage stability index were 176.0419 USD/h,
3,754,900 kg/MWh, 2.1514 p.u., and 41.9992 p.u., respectively. In the case of the op-
timal insertion of WT and solar PV-based DGs, these respective values improved to
113.4299 USD/h, 1,504,600 kg/MWh, 0.6678 p.u., and 47.6629 p.u. with a percentage
improvement of 35.57%, 59.92%, 68.95%, and 11.88%, in each respective parameter. The
optimal sites of the PV units and the WT were buses 43 and 9, respectively. The optimum
sizes of these DGs were found to be 574.58 kW and 1884.61 kW, respectively. Table 8
shows the PV and WT output powers, as well as the expected values for each studied
scenario. Similar to the above case study, the values in Table 8 changed for each scenario
due to the changes in RER generation and the variation of the load demand. It can be seen
that the highest values of the expected cost, emissions, and voltage deviation occurred
in scenario number 15, where no solar-based power is generated. The values of the cost,
emissions, VDs and the VSIs for each scenario with and without the integration of RERs
are shown in Figures 14–17, respectively. These figures reveal that the cost, emissions, and
VDs were reduced significantly in each scenario with the inclusion of RERs, along with
a considerable enhancement in the VSI. In addition, Figures 18 and 19 depict the voltage
profiles of the 51-bus system for each situation. It is obvious that the integration of RERs at
a proper location and with an optimum sizing can improve the voltage profile at each bus
for all scenarios. Table 9 shows the statistical results of the objective function calculated
using different optimization algorithms. Results in Table 9 attest to the superiority of the
proposed MRFO technique over all other optimization methods, namely, PSO, WOA, SCA,
and ALO.
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Table 8. The 51-bus system simulation results.

Scenario π_s Loading % Pw (kW) Ps (kW) ETCost (USD/h) ETEmission
(kg/MWh) ETVD (p.u.) ETVSI (p.u.)

S1 0.0010 82.1 393.4 474.4 0.1574 2460 0.0013 0.0451
S2 0.0030 85.8 730.8 82.8 0.4317 6380 0.0028 0.1393
S3 0.1050 72.8 912.5 78.9 11.9328 157,040 0.0653 4.9954
S4 0.0060 58.2 231.5 0.9057 0.9118 14,940 0.0092 0.2651
S5 0.0040 75.4 586.1 27.9 0.5107 7190 0.0037 0.1857
S6 0.1040 68.4 686.1 16.1 13.3313 194,260 0.0973 4.8225
S7 0.0110 73.8 191.6 36.7 1.8425 30,250 0.0174 0.4842
S8 0.0470 63.7 1104.4 07.3 3.4467 27,710 0.0163 2.3186
S9 0.0330 78.1 758.2 33.8 4.4574 65,000 0.0292 1.5367

S10 0.0010 64.5 393.3 23.1 0.1111 1460 0.001 0.0463
S11 0.0530 66.1 1532.8 44.1 2.6 90 0.0277 2.7232
S12 0.1210 72.9 835.5 6.7 15.6 226,480 0.1 5.661
S13 0.0160 64.4 836.7 90.3 1.5 15,890 0.008 0.7691
S14 0.0100 65.4 1061.7 261.9 0.7632 6480 0.0037 0.4917
S15 0.4850 72.1 1054.2 0 55.8 748,990 0.285 23.1788

Summation 1 113.4299 1,504,620 0.6679 47.6627
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Table 9. The statistical results in the rural 51-bus system with the use of several optimizers.

Optimizer Best Values Average Values Worst Values SD Values

MRFO 0.6226 0.6367 0.6562 0.0093
PSO 0.6478 0.7367 0.8431 0.0545
ALO 0.6318 0.7220 0.8824 0.0534
WOA 0.6530 0.7138 0.8002 0.0412
SCA 0.6418 0.6686 0.7018 0.0178

5.1.3. Case Study 3: Small 15-Bus System

In this case study, MRFO was employed to identify the optimal RER locations and
ratings within the 15-bus system shown in Figure 7. Without RERs, the expected cost,
emissions, voltage deviation, and the expected voltage stability index were 88.1005 USD/h,
1,879,200 kg/MWh, 0.5313 p.u., and 12.0005 p.u., respectively. In the case of the optimal in-
sertion of WT and solar PV-based DGs, these respective values improved to 54.8523 USD/h,
724,180 kg/MWh, 0.2211 p.u., and 13.1670 p.u., with a percentage improvement of 37.74%,
61.46%, 58.39%, and 8.86%, in each respective parameter. The optimal sites of the PV units
and the WT were buses 14 and 11, respectively. The optimum sizes of these DGs are found
to be 249 kW and 977 kW, respectively. Table 10 shows the PV and WT output powers, as
well as the expected values for each studied scenario. Similar to the above case studies, the
values in Table 10 changed for each scenario due to the changes in RER generation and the
variation of the load demand. It can be seen that the highest values of the expected cost,
emissions, and voltage deviation occurred in scenario number 15, where no solar-based
power is generated. The values of the cost, emissions, VDs, and the VSIs for each scenario
with and without the integration of RERs are shown in Figures 20–23, respectively. These
figures reveal that the cost, emissions, and VDs were reduced significantly for each scenario
with the inclusion of RERs, along with a considerable enhancement in the VSI. In addition,
Figures 24 and 25 depict the voltage profiles of the 15-bus system for each situation. It is
obvious that the integration of RERs at a proper location and with an optimum sizing can
improve the voltage profile at each bus for all scenarios. Table 11 tabulates the statistical
results of the objective function calculated using different optimization algorithms. Re-
sults in Table 11 attest to the superiority of the proposed MRFO technique over all other
optimization methods, namely, PSO, WOA, SCA, and ALO.
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Table 10. The 15-bus system simulation results.

Scenario π_s Loading % Pw(kW) Ps(kW) ETCost (USD/h) ETEmission
(kg/MWh) ETVD (p.u.) ETVSI (p.u.)

S1 0.0010 82.1 203.9 205.4 0.0801 1280 0.0004 0.0125
S2 0.0030 85.9 378.8 165.8 0.2165 3250 0.0009 0.0386
S3 0.1050 72.8 472.9 77.5 5.852 77,200 0.0237 1.3783
S4 0.0060 58.2 119.9 13.4 0.4542 7500 0.0025 0.0746
S5 0.0040 75.4 303.8 185.3 0.2589 3740 0.0012 0.0513
S6 0.1040 68.4 355.6 50.3 6.5761 96,310 0.0301 1.34
S7 0.0110 73.8 99.3 145.8 0.9357 15,610 0.0048 0.1358
S8 0.0470 63.7 572.4 89.8 1.6609 13,010 0.0067 0.6332
S9 0.0330 78.1 392.9 101.2 2.2128 32,570 0.0093 0.426

S10 0.0010 64.5 203.9 226.5 0.0574 790 0.0003 0.0128
S11 0.0530 66.1 794.5 62.4 1.148 0 0.0063 0.7375
S12 0.1210 72.9 433.1 33.3 7.638 110,400 0.0317 1.5715
S13 0.0160 64.4 433.6 125.7 0.7221 8070 0.0033 0.211
S14 0.0100 65.4 550.3 113.4 0.3721 3150 0.0015 0.1343
S15 0.4850 72.1 546.4 0 26.6676 351,300 0.0983 6.4095

Summation 1 54.8524 724,180 0.2211 13.1669
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Table 11. The statistical results in the 15-bus system with the use of several optimizers.

Optimizer Average Values Best Values Worst Values SD Values

MRFO 0.6345 0.6303 0.6426 0.0030
PSO 0.7201 0.6482 0.9301 0.0676
ALO 0.6832 0.6367 0.7515 0.0357
WOA 0.6695 0.6339 0.7917 0.0444
SCA 0.6485 0.6355 0.6665 0.0107

5.2. Discussions

From the results of the above three studied systems, the key conclusion points can be
summarized as follows:

• The MFRO is an efficient algorithm for solving the allocation problem of the DGs
in distribution systems that comprise uncertainty of the load demand and power
generation from intermittent renewable energy sources.

• The cost, emissions, and VDs are significantly reduced with the inclusion of RERs,
while the VSI is significantly enhanced.

• The Monte Carlo simulation approach and backward reduction algorithm were suc-
cessfully applied for modeling electrical system uncertainty.

6. Conclusions

This paper introduced the manta ray foraging optimizer (MRFO) as an efficient
optimizer for identifying the optimal sizing and location of renewable-based DGs in
RDN. A multi-objective function comprising total cost, emission, voltage deviation, and
system stability was proposed and solved using the MRFO with consideration of the
uncertainty of solar irradiance, load demand, and wind speed. The lognormal and normal
Weibull PDFs were employed to emulate these uncertainties. Furthermore, Monte Carlo
simulation was used to generate a set of scenarios (1000 scenario), which was reduced to
15 dominant scenarios using the backward reduction method. The robustness of the
proposed optimization method was assessed through its applications on three radial
distribution networks: IEEE 118-bus, rural 51-bus, and IEEE 15-bus distribution systems.
Results show that, when considering the uncertainties and optimal insertion of solar PV-
and wind turbine-based DGs, the expected cost, emission, voltage deviation, and the
voltage stability index were improved by 40.27%, 62.6%, 29.33%, and 4.76%, respectively,
for the IEEE 118-bus case study. For the 51-bus case study, if the uncertainties were taken
into account, and the solar PV- and WT-based DGs were optimally allocated, these values
were improved by 35.57%, 59.92%, 68.95%, and 11.88%, respectively. For the 15-bus case
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study, if the uncertainties were taken into account, and the solar PV- and WT-based DGs
were optimally allocated, these values were improved by 37.74%, 61.46%, 58.39%, and
8.86%, respectively. Compared to other optimization techniques (PSO, ALO, WOA, and
SCA), the results reveal the superiority of the proposed algorithm in solving the allocation
and sizing problem of the renewable-based DGs under deterministic and probabilistic
states.
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