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Abstract: The reduction of the effects of heat-stress phenomena on poultry health and energy
conservation of poultry farm monitoring networks are highly related problems. To address these
problems, we propose environmental perception Q-learning (EPQL) to prolong the lifetime of poultry
farm monitoring networks. EPQL consists of an environmental-perception module and Q-learning.
According to the temperature and humidity model of heat stress, an environmental-perception
module determines the transmission rate, while Q-learning adjusts the transmission rate according
to the success rate of packet transmission and the remaining energy. In real-world tests, our poultry
farm monitoring networks used only about 8% of energy in a month. The real-time information
of these monitoring networks was available on smartphones. In laboratory tests, compared with
CSMA/CA (23.67 days), S-MAC (109.37 days), and T-MAC (252.79 days) under real systems with
2000 mAh battery, the battery-life performance of EPQL (436.48 days) was better. Moreover, EPQL
reduces the packet loss rate by about 60% while simultaneously decreasing the average delay by
about 20%. Generally, based on the framework of EPQL, the implemented temperature and humidity
model of heat stress for poultry could be replaced by other models to extend its applicability range.

Keywords: poultry farm; environmental perception; heat stress; energy saving; Q-learning

1. Introduction

With the large-scale deployment of wireless sensor networks (WSNs), intelligent
algorithms are widely used to enhance equipment performance. This not only expands
our perception capability of monitoring environments but also improves the production
efficiency of equipment [1]. In poultry farm monitoring networks, the energy-saving
performances of sensor nodes are important. The research background is as follows.

(i) From a communications perspective, the RF modules of sensor nodes consume
most of the energy by transmitting and receiving data. We review and discuss the related
technology of commercialized protocols in Section 2.1.

(ii) Besides, poultry is prone to be in heat stress because of high temperature and
humidity. Heat stress seriously affects the health of poultry [2,3]. Recently, most companies
have used WSNs to monitor feeding environments and respond to unfavorable environ-
mental conditions by adjusting temperature, humidity, wind speed, and air quality [4–6].
We review and discuss the related technology of real-world monitoring applications in
Section 2.2. However, as far as we know, there is little research concerning energy-saving
schemes for poultry farm monitoring networks. Poultry farming is practiced extensively
around the world. Meanwhile, with the scale of poultry farming increasing, the number of
sensor nodes also increases. This indicates the conflict between the large data-transmission
requirements and energy-saving requirements.

This paper proposes environmental perception Q-learning (EPQL) to prolong the
lifetime of poultry farm monitoring networks. Our contributions are as follows. To save
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energy, we designed an EPQL-based poultry farm monitoring network that is characterized
by the use of professional knowledge of heat-stress phenomena. EPQL focuses on the
heat-stress phenomena of poultry to design an environmental-perception module, which
determines the transmission rate. Based on the determined transmission rate, EPQL uses Q-
learning to adjust the transmission rate according to the success rate of packet transmission
and the remaining energy. Our poultry farm monitoring networks realized energy saving
in real-world tests. The real-time information of these monitoring networks were available
on smartphones. Moreover, the laboratory tests under real systems with 2000 mAh battery
demonstrate that EPQL could effectively prolong the lifetime of poultry farm monitoring
networks.

This paper is organized as follows. Section 2 introduces related works and discusses
the research background. Section 3 presents our poultry farm monitoring network, which-
focuses on the framework and implementation of EPQL. Section 4 presents the results and
a discussion of the real-world and laboratory tests. Section 5 gives concluding remarks and
findings.

2. Related Work
2.1. Energy-Saving Protocols

Etnergy-saving protocols focus on the MAC layer. Generally, this researche falls into
two categories.

One is characterized by adjusting duty cycle and reducing energy consumption in the
idle monitoring state. By adding a TA period, timeout-MAC (T-MAC) is proposed, and
nodes compete with each other in the TA period [7]. The nodes that fail to win channels
directly enter the dormant state after TA. This reduces the overhead of idle monitoring.
Sensor-MAC (S-MAC) realizes energy efficiency as its primary goal in environmental-
monitoring sensor networks [8]. S-MAC uses periodic sleeping to achieve the low-duty-
cycle operation and prolongs the network lifetime compared with 802.11-like protocols
without sleeping. To further enhance adaptability, Zhao et al. propose an adaptive duty
cycle MAC, such as SEA-MAC, which can flexibly schedule data transmission during
hibernation. When the network experience load is very low (or very high), SEA-MAC
dynamically adjusts the work cycle, thereby reducing the inefficient work cycles (or end-to-
end delay) [9]. Based on Q-learning, Ye and Zhang propose a self-adaptive sleep/wake-up
scheduling approach (SA-Mech) [10]. This enables nodes to independently decide their
operations (i.e., sleep, listen, or transmit) in each slot and then achieves adaptive duty cycle.

Besides, there are some research lines that focus on reducing the frame-collision
probability, decreasing the number of retransmissions, and avoiding the wasted energy
of continuously retransmitting frames. Nur et al. propose a distributed MAC protocol
(i.e., DCD-MAC) by taking advantage of spatial reusability from directional communica-
tions [11]. DCD-MAC synchronizes transmission and reception for each pair of parent and
child nodes. This is effective to minimize collisions in order to save energy. Except for
applying micro-cycles and adaptive micro-cycle duty-cycle mechanisms, Xu and Wang
propose MDA-SMAC [12]. This protocol includes binary exponential backoff algorithms to
reduce data latency and energy consumption. Nguyen et al. propose the energy-efficient
QoS-based congestion-control scheme (named eqCC), which uses the remaining battery
level, monitors queue length, and estimates throughput to adjust the data-transmission
rate [13]. This is effective to save energy and maintain high QoS levels. Kumar and Kim pro-
pose contention-free TDMA scheduling algorithms (named cf-TDMA) based on multiple
RF channels [14]. This can eliminate collisions and overhearing to reduce energy consump-
tion while simultaneously supporting concurrent communications. Masud et al. propose
an improved traffic-class-prioritization-based carrier sense multiple access/collision avoid-
ance (TCP-CSMA/CA) scheme for prioritized channel access [15]. This kind of channel
access assigns a distinct and prioritized backoff period range to each traffic class in every
backoff, which can effectively reduce delay, packet loss rate, and energy consumption.
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As previously reviewed, ensuring two or more objectives (like saving energy and im-
proving throughput) in the universal commercialized fields is difficult. From a requirement
perspective, these commercialized protocols consider the demands of various fields. The
discussions of these schemes are given in Table 1.

Table 1. The discussions of the commercialized protocols, which consider the demands of vari-
ous fields.

Name/Reference Discussions

T-MAC [7]
S-MAC [8]
SEA-MAC [9]
SA-Mech [10]

Adjusting duty cycle with sleeping in a periodic or non-periodic
manner is effective to improve the efficiency of channel utilization.
However, channel competition is unavoidable when the network’s
throughput increases. Simply put, in a unit of time, with the number of
frames to be sent increasing, frame collision becomes more serious.

DCD-MAC [11]
MDA-SMAC [12]
eqCC [13]
cf-TDMA [14]
TCP-CSMA/CA [15]

There are different methods to reduce the frame-collision probability
and avoid wasted energy of retransmissions. In principle, these
methods are usually based on some assumptions or additional
hardware. However, there are many uncertain factors in the real-world
applications, such as time shifts in low-cost nodes, mutual interferences
in the densely deployed node regions, the sink-node-region congestion
in the star topology, and so on.

2.2. Monitoring Applications

Recently, there have been some new monitoring applications to save energy, such as
monitoring of crops, greenhouses, smart offices, forest fires, farmlands, animal behaviors,
and so on.

One kind of research focuses on data features. Ahmedy et al. propose smart agricul-
ture monitoring networks (SAMNs) instead of multi-hop networks for large geographical
greenhouse monitoring [16]. This kind of SAMN is characterized by constantly monitor-
ing higher sensitivity crops and occasionally monitoring lower sensitivity crops, thereby
reducing the average energy consumption and average delay. Li et al. propose a data-
compression technique for multi-parameter farmland WSN [17]. This technique takes
advantage of continuity in time and spatial variation of parameter data in farmlands,
thereby reducing the data-transmission quantity and reducing energy consumption.

Another kind of research is based on the specific-field models. To simultaneously
optimize energy efficiency and packet delay, Luo et al. studied the two-side tradeoff as
an optimization problem [18]. They propose a traffic prediction method to estimate the
next-period packet number and control sleep time to achieve the desired energy efficiency
and delay in real-world environments, such as green belts, greenhouses, and smart offices.
Tian et al. propose a weather-adaptive, receiver-initiated MAC protocol (WA-MAC), which
uses weather forecast information (like rainfall information) to schedule sensors in order
to avoid data loss and shorten delay in the coming time slots [19]. WA-MAC reduces idle
listening time to effectively save energy. Kang et al. propose an adaptive duty-cycled
hybrid X-MAC (ADX-MAC) protocol for energy-efficient forest-fire prediction, which can
adjust the duty cycle according to computation of forest-fire risk [20]. With increasing
forest-fire risk, the duty cycle is shortened to ensure detection of forest fires at a faster cycle
rate. Kiani et al. propose an energy-saving technique for monitoring animal behaviors
to control the transmission rate in the time-varying network topology [6]. By classifying
cow behaviors, the system reduces energy consumption. To realize easy installation and
maintenance, Valente et al. designed a cluster network based on LoRaWAN for intelligence
agriculture [21]. This network and system could measure soil and air temperature, wind
speed, gust and direction, soil water content, water tension, and so on. This information
is aggregated and analyzed in the background platform. To counter unstable network
connections, Prakosa et al. present the IoT scheme based on LoRa for real-world long-range
agriculture areas, which could monitor temperature, humidity, soil moisture, and soil
pH [22].
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As previously reviewed, there are some new monitoring systems. In general, these
systems usually make use the professional knowledge in their own field. Discussions of
these systems are given in Table 2.

Table 2. Discussions of the new energy-saving monitoring systems, which usually use professional
knowledge in their own field.

Name/Reference Discussions

SAMN [16]
Field: agriculture
Professional knowledge: distinguish the crop’s
sensitivity to select monitoring model

MFWSN [17]

Field: farmland
Professional knowledge: take advantage of
continuity in time and spatial variation of parameter
data in farmlands

a tradeoff algorithm [18]
Field: green belts, greenhouses, and smart offices
Professional knowledge: a traffic-prediction method
to estimate the next-period packet number

WA-MAC [19]

Field: the known weather-forecast-information
applications
Professional knowledge: use weather forecast
information to schedule sensors

ADX-MAC [20]
Field: detect forest fires
Professional knowledge: based on forest-fire
prediction knowledge

animal behavior monitoring WSN [6]

Field: monitor animal behaviors
Professional knowledge: classify each kind of animal
behavior and transmit the corresponding
information

cluster network based on LoRaWAN [21]
Field: intelligence agriculture
Professional knowledge: cluster network for
realizing easy installation and maintenance

LoRa system [22]
Field: smart agriculture
Professional knowledge: improve the maximum
coverage using different factors and bandwidths

Generally, these technologies use field-specific knowledge to reduce the amount of
data to be sent. This kind of technical idea is not suitable for the universal commercialized
fields. However, it is effective for field-specific applications. If the amount of data to be
sent could be reasonably reduced, and then the network performances could be improved.
Inspired by these kinds of technical ideas, we used the temperature and humidity regression
equations to reduce the amount of data to be sent in poultry farm monitoring networks.

3. Materials and Methods
3.1. Motivation

Since 1980 or earlier, the effect temperature and humidity on poultry has been stud-
ied [23]. However, as far as we know, there is little research using the related temperature
and humidity model [3,24] to prolong the lifetime of poultry farm monitoring networks.

3.2. System Overview

Figure 1a presents a poultry farm monitoring network on the top side and explains
EPQL’s framework on the bottom side. Sensor nodes are deployed in poultry farms, and
the temperature and humidity data are collected by remote cloud servers. Meanwhile,
Figure 1b provides a block diagram of sensor nodes to demonstrate the different parts of
sensor nodes and EPQL’s position in sensor nodes. A sensor node includes a CPU (i.e.,
CC2530F256 with A/D converter and RF transceiver), a temperature and humidity sensor,
GPIO, and a power supply. We describe a real application of this system in Section 4.1.
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Figure 1. Overview of a poultry farm monitoring network and environmental perception Q-learning.
(a) Poultry farm monitoring network and the framework of environmental perception Q-learning.
(b) Block diagram of a sensor node to demonstrate the position of environmental perception Q-
learning.

EPQL consists of an environmental-perception module and Q-learning, which is given
in Algorithm 1. According to the temperature and humidity model of heat stress [3], the
environmental-perception module decides the transmission rate according to the real-time
temperature and humidity data. Besides, Q-learning adjusts the transmission rate and then
reduced the energy consumption of the poultry farm monitoring network.

Algorithm 1 Environmental perception Q-learning

Input: learning rate a, discount factor r
1: Initialize the system of sensor node and set the Q-value table to zero.
2: For each round (one round corresponds to τ seconds)
3: Each sensor collects the temperature, T, and humidity, H, on poultry farms.
4: Use environmental-perception module in Section 3.3 and then decide the transmission rate.
5: Use Q-learning in Algorithm 2 to adaptively adjust the transmission rate.
6: End
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3.3. Environmental-Perception Module

According to the real-time temperature and humidity data, the environmental-perception
module decides the transmission rate. As shown in Figure 1a, the environmental-perception
module includes environmental model and rule base.

3.3.1. Environmental Model

The environmental model gives the temperature and humidity constraints to guaran-
tee mortality rates and egg-production rates.

First, indoor temperature and relative humidity play a significant role in mortality
rates and egg-production rates. According to real-world data, between April and August,
Bayhan et al. obtained the temperature and humidity regression equations in Equations
(1)–(3) [3]. THI is the temperature-humidity index, T is the indoor temperature (◦C), H is
the indoor relative humidity, MR is the mortality rate, EPR is the egg-production rate, and
Age is the poultry’s age. In this paper, we assume that Age = 90 days.

THI = 1.8 T − (1 − H) × (T − 14.3) + 32 (1)

MR = −2.14 + 0.0346 THI (2)

EPR = 116 − 0.256THI − 0.0528 Age (3)

Secondly, according to [3], from an egg-production-rate perspective, THI is divided
into three zones (i.e., comfort zone: THI < 70, stress zone: 75 < THI < 78, extreme-stress
zone: THI ≥ 78), and these zones correspond to different egg-production rates, such as
“>90%”. Similarly, from a mortality-rate perspective, THI is also divided into different
zones, such as 65 < THI < 70. Generally, there are mapping relationships among THI,
mortality rate, and egg-production rate.

Lastly, when the poultry-farm administrators set the expected mortality rate, Emr, and
the expected egg-production rate, Eepr, the transmission rate can be decided based on these
relationships. Equations (4) and (5) define mortality-rate state, Smr, and egg-production-
rate state, Segr, respectively. Note that comfort and stress zones in Equations (4) and (5)
mean good state and bad state, respectively. In this paper, Emr = 0.2‰, and Eepr = 90%.

Smr =

{
comfort zone MR ≤ Emr
stress zone others

(4)

Segr =

{
comfort zone EPR ≥ Eegr
stress zone others

(5)

3.3.2. Rule Base

The rule base is used to decide the transmission rate (i.e., [the lower limit of transmis-
sion rate Limitl, the upper limit of the transmission rate Limitu]). According to Smr and Segr,
there are high, medium, and low rate levels in Equations (6)–(8), respectively.

IF Sm = stress zone and Segr = stress zone
THEN high rate level (i.e., [Limitl = 2480 bps, Limitu = 5680 bps])

(6)

IF
(
Sm = comfort zone and Segr = stress zone

)
or
(
Sm = stress zone and Segr = comfort zone

)
THEN medium rate level (i.e., [Limitl = 1704 bps, Limitu = 2840 bps])

(7)

IF
(
Sm = comfort zone and Segr = comfort zone

THEN low rate level (i.e., [Limitl = 568 bps, Limitu = 1704 bps])
(8)

3.4. Q-learning

Q-learning in Algorithm 2 is a kind of reinforcement learning algorithms. As shown
in Figure 1a, Q-learning consists of three parts: compute rewards, select action, and update
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Q-Value. In this paper, action set A corresponds to various transmission rates {a1, a2, . . . ,
am . . . , aM}. am is equal to Limitl + (m − 1)(Limitu − Limitl)/M. As shown in Algorithm 2,
each node learns by trial and error. For example, one node adjusts the transmission rate
in Step 3. If the node has a better reward for saving energy in Step 1, then its behavior is
reinforced. Otherwise, its behavior is weakened.

Algorithm 2 Q-learning

Input: learning rate a, discount factor r

1:

Step 1: Compute rewards by using Equation (9). st is the current-round state (i.e., the
success rate of packet transmission PSR and the rate of the remaining energy (RER), and
at is the current-round action (i.e., the current-round transmission rate and at ∈ action set
A). The greater the reward, R(st, at), the better energy savings.

2: R(st, at) = 0.5 × PSR + 0.5 × RER (9)

3: Step 2: Wait next round (i.e., wait τ seconds) and observe the next-round state st+1.

4:

Step 3: Select the next-round action, at+1, as follows. First, search in the Q-value table, find
the maximum Q-Value (i.e., MaxQValue)), and record the index of this maximum Q-value
(i.e., MaxQValueIndex). Then, obtain the transmission rate, at+1, at+1 = A(MaxQValueIndex)
and then adjust the transmission rate.

5: Step 4: Update the Q-value table by

6: Q(st,at)← Q(st,at) + a×[R(st,at) + r×MaxQValue−Q(st,at)] (10)

3.5. Discussions

In poultry farm monitoring networks, sensor nodes are low-cost, with limited re-
sources. Thus, the energy-saving problem is a serious challenge, especially for these
low-cost nodes. Better energy-saving performance means lower maintenance costs (like
reducing the cost of purchasing the battery and manually replacing nodes). We used EPQL
to address this problem because of the following reasons, including:

First, EPQL is a software-improvement scheme, and its computational complexity is
mainly based on Q-learning. In Table 1 of [25], the computational complexity of Q-learning
is equal to O(T), and T is the total number of steps. In practice, the computation cost of
EPQL is relatively low, as shown by its limited number of multiplications and additions
in Algorithm 2. The computing performance of existing network nodes is sufficient to be
implemented without additional hardware. Moreover, we realized EPQL on the CPU of
cc2530F256.

Secondly, by continuously adjusting the transmission rate, EPQL ensures the monitor-
ing performance of the stress zone while simultaneously reducing energy consumption
of the comfort zone. These are adjusted by Q-learning in the sensor nodes. The response
process of Q-learning is real-time, and the environmental feedback that consists of PSR and
RER does not require models and complex computations. Therefore, compared with other
methods, such as using deep learning to generate transmission rates at different periods,
EPQL can be more flexible to adapt to sudden environmental changes.

Lastly, EPQL is a combination of professional knowledge and Q-learning. Due to the
use of poultry farming expertise, it could well meet the communication and energy-saving
requirements of poultry farms. The environment model in EPQL can be replaced by other
models in poultry farms or even other field models. Moreover, EPQL’s framework can still
be used.

There is a limit of EPQL. The generality of EPQL is strictly restricted by its professional
knowledge model (i.e., Equations (1)–(3)).

4. Results and Discussions
4.1. Real Test

Figure 2 presents our established set of temperature- and humidity-monitoring net-
works and provides the services of WeChat applets on Huaxing poultry farm in Henan,
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China. Sensor nodes transmitted data by using EPQL, which were installed to collect tem-
perature and humidity data in multiple chicken houses. Users could obtain the temperature
and humidity information of these chicken houses through WeChat applets. Moreover,
users could also control the operation of air-conditioning fans. It is difficult to precisely esti-
mate how much electricity is saved in real poultry-farm scenarios. Note that one uncertain
factor is that temperature and humidity in all chicken houses could be regulated by users
through air-conditioning fans. Moreover, the time-varying temperature and humidity in
one day and the uncertain control signals of air-conditioning fans could cause much more
uncertainty in monitoring networks.

Figure 2. Real-world test and WeChat applets. (a) Sensor nodes on a poultry farm in Henan, China.
(b) WeChat applets of smart poultry farms.

4.2. Laboratory Test
4.2.1. Experimental Setting

We used the SmartRF Packet Sniffer tool to capture the frame information and then
compute real results. Meanwhile, we used the star topology network with six sensor nodes
and compared EPQL with CSMA/CA, S-MAC, and T-MAC. Table 3 gives our experimental
parameters. Besides, we use Equation (11) to estimate energy consumption. All parameters
in Equation (11) come from the CC2530F256 manual, and the idle listening time, Tidle, is
given by:

E = 38 mW × Ttx + 39.5 mW × Trx + 36.5 mW × Tidle + 2.97µW × Tsleep (11)
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Tidle = TFrame − Ttx − Trx − Tsleep (12)

Table 3. Parameters used in this paper.

Parameters Values

Channel bit rate 250 kbps
Packet header length 7 bytes
Payload length 64 bytes
ACK packet’s length 10 bytes
Beacon length 6 bytes
Beacon interval 100 ms
TA duration (T-MAC) 6134 us
Sleep time(S-MAC, T-MAC) 25 ms
The TX time (i.e., Ttx) 2272 us
The RX time (i.e., Trx) 512 us
The battery’s capacity 2000 mAh
Learning rate α (EPQL) 0.1
Discount rate r (EPQL) 0.2

To compare with CSMA/CA, S-MAC, and T-MAC objectively, we used the envi-
ronmental temperature and humidity models [26–29]. This means that the temperature
and humidity data of these models were simulated in laboratory tests. Moreover, in this
manner, the temperature and humidity data in four kinds of real systems (i.e., CSMA/CA,
S-MAC, T-MAC, and EPQL real-world systems) was the same for 24 h. In our model, the
temperature ranged from 25 ◦C to 35 ◦C, and the humidity ranged from 31% to 64.5%.
We used the diurnal temperature cycle model [26–28] in Equation (13) and the humidity
model [29] in Equation (14).

temperature(t) =

{
25 + 10 cos

(
π
12 (t− 14)

)
Day : t is f rom 7 : 00 to 19 : 00

25 + [10 cos
(

π
12 (t− 14)

)
]e−

t−19
3.08 Night : t is f rom 19 : 00 to 7 : 00

(13)

humidity(t) = exp(−0.0735 × temperature(t) + 1.4) × 100% (14)

4.2.2. Performance Analysis

Figure 3 provides the energy consumption and the lifetime for a 2000 mAh battery.
In Figure 3a, the energy consumptions of CSMA/CA, S-MAC, T-MAC, and EPQL are
1520.89 J, 329.15 J, 142.41 J, and 82.47 J, respectively. Besides, in Figure 3b, the lifetimes
of CSMA/CA, S-MAC, T-MAC, and EPQL are 23.67 days, 109.37 days, 252.79 days, and
436.48 days, respectively. Generally, the energy-saving performance of EPQL is clear. The
reason is that EPQL uses the professional knowledge of [3] to construct poultry farm
monitoring networks. Note that compared with the energy consumption of EPQL in the
day (7:00–19:00), the energy consumption of EPQL in the night (19:00–7:00) decreases by
about 45%. This indicates that this knowledge is effective to improve the energy-saving
performance of poultry farm monitoring networks.
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Figure 3. Comparison of energy consumption and lifetime. (a) Energy consumption over 24 h.
(b) Lifetime of the 2000 mAh battery.

To further demonstrate the energy-saving performance of EPQL, Figure 4 gives the
detailed results of energy consumption and PSRs every 2 h. Note that Figure 4a provides
the temperature and humidity curves over 24 h, which are based on Equations (13) and (14).
According to these curves, we discuss the energy-saving performance of EPQL as follows.
From 7:00 to 13:00, EPQL often uses the low or medium rates. From 13:00 to 17:00, EPQL
usually uses the medium or high rates. Generally, even when using the high rates, EPQL
still has better energy-saving performance and better PSRs, simultaneously. Similarly, the
energy-saving performance and PSR of EPQL are also better during the night. These results
mean that Q-learning is effective to adjust the transmission rate as a distributed manner.
Generally, EPQL does not sacrifice PSRs to obtain better energy-saving performance.

Besides, to demonstrate other performances of EPQL, Figure 5 is used to give the
packet loss rate and average delay. Compared with the packet loss rates of CSMA/CA,
S-MAC, and T-MAC, EPQL decreases by about 65.9%, 66.2%, and 66.2%, respectively.
Moreover, compared with the average delays of CSMA/CA, S-MAC, and T-MAC, EPQL
decreases by about 21.2%, 22.0%, and 23.1%, respectively.
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Figure 4. Energy consumption and the success rate of packet transmission over 24 h. (a) Temperature
and humidity curves of Equations (13) and (14) over 24 h. (b) Energy consumption over 24 h.
(c) Success rate of packet transmission over 24 h.
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Figure 5. Comparison of the packet loss rate and average delay. (a) Packet loss rate. (b) Average delay.

5. Conclusions

By reducing the amount of transmission data, retransmissions, and collisions, EPQL
could prolong the network lifetime. Meanwhile, EPQL could also meet the requirement of
different transmission rates under the heat-stress effect of poultry. In practice, the perfor-
mance of EPQL is proven by real-world system results. From a poultry-feeding perspective,
EPQL could help poultry farms monitor and manage temperature and humidity with
low energy consumption, thereby controlling mortality and egg production. With the
deployment of 5G increasing, NBIoT nodes are becoming more popular. To reduce the
service charges of operators, EPQL could also be used in these nodes.

Future work includes collecting more experimental data in real-world tests, taking
into account other factors that affect poultry farming, and continuing to explore other
machine-learning algorithms.
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