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Abstract: Radiation tolerance improvements for advanced technologies have attracted considerable
interests in space application. In this paper, the single event upset (SEU) hardened double interlocked
storage cell (DICE) D-type flip-flops (DFFs) with abacus-type time-delay cell are proposed and
successfully implemented in our test chips. The layout structures of two kinds of abacus-type time-
delay cells are illustrated, and their hardening effectiveness are verified by our simulations and heavy
ion irradiations. The systematic heavy ion experimental results show that the applied abacus-type
time-delay cells can reduce the SEU cross sections of DICE DFFs significantly, and even the SEU
immune is observed for the full “0” data pattern. Besides, an apparent test mode dependency of
the abacus-type hardened circuits is also observed. The results indicate that the nanoscale abacus
structure may be suitable for space application in harsh radiation environment.

Keywords: D flip-flop; double interlocked storage cell; single event upset

1. Introduction

The implementation of digital circuits and systems using advanced nanoscale tech-
nologies is beneficial to achieve higher density, higher performance, and less power con-
sumption than submicron techniques [1–6]. However, the integrated nanoscale circuits are
more susceptible to single event effects due to their reduced critical charges and serious
charge sharing in adjacent nodes [3,5–8]. The conventional complementary metal oxide
semiconductor (CMOS) circuits applied in nanoscale technologies experience weak radia-
tion tolerance that may put advanced electronic systems in danger [2–10]. To overcome this
problem, a few reliable and radiation-hardened units are proposed to protect the nanoscale
CMOS circuits in the radiation environments [11–32]. However, the traditional circuit-
level and system-level redundancies are not optimistic when being implemented to the
nanoscale bulk planar technologies to achieve single event upset (SEU) robustness [2,9–14].
For examples, the Quatro 10 T, Quatro 12 T, 14 T, 18 T, and double interlocked storage cell
(DICE) structures seem acceptable for their high critical charges of an upset induced by
their multiple redundant nodes, while the level of improvements are not dramatic, and
even a tendency of continuously decrease of their SEU thresholds with the shrinking of
technologies are clearly characterized by recent work, indicating that merely implementing
the SEU tolerance units to replace standard cells seems not enough [13–24]. Therefore, for
the nanoscale high-integrated circuits, the effective hardening strategies concerning both
the units and peripheral circuits are urgently needed to further improve the SEU tolerance
of the existing circuits to satisfy the mission-oriented radiation tolerance. In addition, some
of the related work with the proposal of hardened units and re-examination of simulation
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data may not be enough to support their future space application, since the actual pro-
cedure of ionizations, charge propagations, and impact ranges should be fully evaluated
rather than merely based on the circuit-level simulation results [14–20]. Hence, detailed
high-linear energy transfer (LET) heavy ion irradiation experiments are also necessary to
investigate the SEU mechanisms of nanoscale devices and verify the effectiveness of the
designed circuits, which are indispensable for the procedure of hardening design.

In this paper, the novel abacus-type time-delay cells are applied to the D-type flip-flops
(DFFs) chains to replace the standard time-delay circuits, and all of the specially designed
DFF chains are fabricated using an advanced 40 nm planar technology. The proposed
abacus-type time-delay cells are aimed at achieving high SEU response robustness. In addi-
tion, a series of heavy ion irradiation experiments are carried out to verify the effectiveness
of the abacus-type circuits and evaluate their appropriateness for space applications. The
rest of the paper is organized as follows: Section 2 of this paper details the designed DFF
chains including the layouts with diverse hardness techniques. The irradiation setups are
described in Section 3. Section 4 presents the heavy-ion irradiation results and related
discussions. Finally, in Section 5, we give the conclusions.

2. Circuits Design

The test chip contains three DFF chains including a standard DICE DFF chain without
time-delay cells, a DICE DFF chain with Abacus-C time-delay cells, and a DICE DFF
chain with Abacus-R time-delay cells. The capacity of each DFF chain is 4000 bits. The
DICE structures are widely used in DFF designs for its high soft error tolerance. Thus, the
DICE hardened DFFs implemented in our designed test chip are used to reduce the SEU
sensitivity of the body of DFF and highlight the influence of the different time-delay cells.
The diagram of the DICE DFF with the time-delay cell is given in Figure 1. The general
layout structure of the time-delay cell consists of even inverters, which layout is shown
in Figure 2. In our work, two novel abacus-type time-delay cells Abacus-C and Abacus-R
are proposed and employed into the DICE DFF chains to further reduce the SEU cross
sections of the DICE DFFs. The basic Abacus-type inverters used in the time-delay cells are
shown in Figure 3, and the well and substrate contacts are also implemented. Then, the
3D mixed-mode based on the TCAD tools are performed to investigate the SEU sensitivity
of abacus structure. The drain current-gate voltage (Id-Vg) curves for both PMOS and
NMOS in the inverter are calibrated with the I-V data from the commercial 40 nm process
design kits. In addition, all of the simulations are performed for normal incidence with
nominal supply voltages (Vdd = 1.1 V). The charge tracks are generated by a heavy-ion
Gaussian charge distribution model under the condition of LET = 100 MeV·cm2/mg. The
pulse width is LET dependent, and the high LET (100 MeV·cm2/mg) is used to help us
to decide the delay time of circuits to achieve a high radiation tolerance. The 50 nm track
radius and 0.5 ps rise time are employed in pulse width simulations, according to the actual
characteristics of ions. The simulation results for the standard cell and abacus cell with
and without the well and substrate contacts are shown in Figure 4. The obvious mitigation
of pulse width of the 40 nm transistors can be found based on the comparisons of TCAD
simulation results. Hence, we applied the abacus-hardened structure presented in Figure 3
into the time-delay module of the DFF cells.
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Figure 1. Basic structure of the DICE DFF.

Figure 2. The general layout of the inverters of the time-delay cell.

Figure 3. The layout of abacus-type inverters of the time-delay cell.
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Figure 4. Pulse width simulations for the unhardened and abacus-hardened PMOS and NMOS
(LET = 100 MeV·cm2/mg, Vdd = 1.1 V).

Compared with the basic time-delay cells, the abacus-type time-delay cells have bene-
fits for both the stability of circuits and mitigation of ions induced single event transients
in time-delay circuits. The Abacus-C time-delay cell consists of cascaded six inverters
(four inverters at the two ends are used to drive the signals, and the two inverters with
large gate area in the middle are used to improve the capacitance of the circuit nodes to
get the signal delay), where the size of the gates in the middle two common inverters are
six times than in the four Abacus-type inverters of the both ends as Figure 5 shows, which
realizes large capacitors and increase the delay time. The channel length (L) for the NMOS
and PMOS transistors of the four Abacus-type inverters in Abacus-C cell is 40 nm. The
Abacus-R time-delay cell consists of cascaded two inverters, a 26 k Ohm resistance, and
other two inverters as Figure 6 shows. It utilized the inverter (INV)-26 k Ohm resistance
(R)-INV structure. The 26 k Ohm resistance is made of two cascaded gate blocks with
8 µm-length and 0.4 µm-width for each block in our design. The L of the transistors em-
ployed in the Abacus-R cell is 40 nm. The determination for the value of R of Abacus-R and
the structure of Abacus-C is based on the circuit-level simulation results by SPICE tools. It
is investigated that the delay module of Abacus-R and Abacus-C is around 240 ps, which is
on the basis of the pulse width induced by the transient in an inverter of 40 nm technology.
Both the extra resistances and capacitors are very useful to reduce the radiation induced
transients and increase the critical charges for the upset of the circuits. Thus, the SEU cross
sections for our abacus circuits ought to be decreased, because of the mitigated transients
and effective isolations between sensitive transistors.

Figure 5. The layout of the proposed Abacus-C time-delay cell.
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Figure 6. The left part of the layout of the proposed Abacus-R time-delay cell.

For our test chip, the data input, output, and clock ports are included in each DFF chain.
The clock signals are set to one during the static irradiation test, while the clock signals
continuously change at 40 MHz during the dynamic test. All the DFF cells are fabricated
based on the advanced 40 nm planar technology with high-k gate dielectric. Besides, the
isolation of the transistors is realized by the shallow trench isolation (STI) technique.

3. Experimental Setup

The test system with independent daughterboard and motherboard is presented in
Figure 7. The full “1” and full “0” data patterns are used in the experiments, and all of
the test modes are realized by a controllable readback frequency with error information
presenting in a real time.

Figure 7. The designed SEU test system for DFF chip.

The heavy ion irradiation tests are conducted at Heavy Ion Research Facility in
Lanzhou (HIRFL), in the Institute of Modern Physics, Chinese Academy of Sciences. At
HIRFL, the air layer is used as energy degraders to adjust beam energy, and the tests are
carried out in air with the flux of incident ions controlled at 104 ions·cm−2·s−1. The 181Ta
ions are used in our irradiation test due to their high ionization ability, and the detailed
parameters of each ion are shown in Table 1. Besides, the 0◦ to 45◦ variations of tilt angle (θ)
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are also performed to verify the actual radiation tolerance of the novel abacus-type modules.
In tilt-angle irradiation, the X-direction (along-cell irradiation) and Y-direction (cross-cell
irradiation) are also classified. Thus, the effective LET values can be calculated by:

LETe f f =
LET0

cos X cos Y
(1)

where the LETeff means the effective LET for the ions at an angle of θ (X◦, Y◦), and the LET0

denotes the initial LET of the incident 181Ta at the surface of the sensitive regions.

Table 1. The parameters of 181Ta ions and irradiation conditions.

Energies (MeV) Ranges (µm) Tilt (◦) Effective LET
(MeV·cm2/mg) Modes

1695.3 99.2 (0, 0) 78.3 Dynamic
1695.3 99.2 (0, 0) 78.3 Static
1623.8 95.3 (0, 45) 111.7 Static
1623.8 95.3 (45, 45) 158.0 Static
1668.8 97.8 (30, 0) 90.8 Static

Due to the rotation of incident angles, a coefficient for the effective fluence (Feff) of ions
in sensitive regions is required for the tilt incidence, which is related to the beam fluences
(F) counted by detectors.

Fe f f = F cos X cos Y (2)

where the Feff represents the effective fluence, and the F indicates the beam fluences counted
by detector.

4. Irradiation Results and Analysis

The SEU cross sections (σ) is calculated by the formula:

σ =
∑j j × Nj

F × N × cos X × cos Y
j = 1, 2, 3, . . . (3)

where the Nj is the number of multiple event upsets (MEU) involving j-bit errors, and N is
the total bits of each DFF chain. In our experiments, no multiple event upset (MEU) is
observed, because the interval of DFFs is around 18 µm, which is so far that the deposited
charges cannot cover two or more DFF cells to induce the MEU.

The SEU cross-sections for different data patterns and test modes are characterized,
and the evaluation results are shown in Figure 8. The downward-pointing arrows are used
to mark the limited value of no SEU event. Based on the heavy ion irradiation results,
it is found that the dramatic improvements for the SEU tolerance of both the Abacus-R
and Abacus-C chains are investigated, when compared with the standard DICE hardened
DFFs. An obvious SEU dependence on data patterns is clearly observed. Besides, for the
dynamic mode, the SEU cross sections of full “1” data present one order of magnitude
higher than the SEU cross sections of full “0” data, and for the static mode, an SEU immune
is measured for the full “0” data of the abacus hardened circuits. It is indicated that the
influence of peripheral circuits on upset occurrence can lead the discrepancy of SEU cross
sections between the static mode and dynamic mode. In dynamic mode, the SEU cross
section results are higher than that in static conditions due to the additional impacts of
the transients in peripheral circuits. The circuits are susceptible to both the reset and clock
signals in dynamic test, leading to the substantial increase of SEU cross sections. Hence,
the hardened circuits are suitable to be fully examined in the static with high-LET ions
irradiation. It is because that, during the static mode, data are stored before the irradiation
and read out after the irradiation, which can exclude some of the impacts of the additional
perturbation of transients in peripheral clock ports and reflect the actual extent of SEU
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sensitivities. Therefore, for the SEU hardened circuits, the differences of SEU cross sections
between the static and dynamic modes are non-negligible.

Figure 8. SEU cross section results for different data patterns and test modes.

Besides, for the hardening circuits, the SEU may flip the logic state of a latch but
cannot result in an error output of this flip-flop, which depends on the robust of hardening
effectiveness and the position of hardening units and presents different tolerance for full
“1” or full “0” data patterns. It is determined by the working modes of the slave and master
DFF cell, which have different sensitivity-node distributions under different data patterns.
Hence, the SEU cross sections of full “1” and full “0” indicate the size of sensitive area and
inherent radiation tolerance of slave DFF and master DFF cells. The SPICE simulations
are applied to get the SEU sensitivities of all the nodes in the DICE DFFs (Figure 1) by
injecting the current pulse into the circuit nodes. The nodes connected to the off-state
transistors are possible to upset in radiation environments. The double-exponential current
pulses, shown in the following formula, are inserted into the circuit nodes to investigate
the circuit responses:

I(t) = Ipeak

[
e−

t−t2
τ2 − e−

t−t1
τ1

]
(4)

where the Ipeak is the maximum current to be approached, t1 indicates the onset time of rise
in current, t2 indicates the onset time of fall in current, τ1 is the parameter of rise time, and
the τ2 is the parameter of fall time. The parameters are calibrated by TCAD tools, where
the τ1 and τ2 are 2 ps and 10 ps, respectively, and the value of t2 − t1 is 15 ps. And the
simulation results are shown in Table 2. Both the simulation and heavy ion test results
show that the nodes of nm0 and nm1 are more sensitive than the m0 and m1 ones. The
critical charges of nm0 and nm1 are around 5.2 fC, while the m0 and m1 can keep the
data unchanged if the LET values are >100 MeV·cm2/mg. The upset conditions in Table 2
corresponds to the state of data “1”. Therefore, the full “1” data is more likely to upset than
the full “0” data for the designed DICE DFFs.

Table 2. Critical Charge of the Sensitive Nodes in the Master Latch of the DICE-DFF.

Node Striking Position Critical Charge

nm0 or nm1 off-state PMOS 5.2 fC
nm0 or nm1 off-state NMOS No Upset

m0 or m1 off-state PMOS No Upset
m0 or m1 off-state NMOS No Upset

The occurrence of SEU is determined by the disturbance of ion induced high-density-
charge deposition and diffusion in circuits. Since the 181Ta ions used in the irradiation
have a high LET value, high-density charges are deposited in circuits and diffused to a
long distance under the electric field, and be collected by multiple adjacent transistors,
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leading the hardening layouts to lose efficacy. The Monte Carlo simulation using the
Geant4 tool is presented to further explain the radial ionization profiles of irradiated ions,
as shown in Figure 9. Charge deposition in the active regions of circuits may lead the SEU
occurred. While the charge depositions are varying from the radial distances. Thus, it is
suitable to calculate the radial ionization profiles of experimental heavy ions by Monte
Carlo method with Geant4 toolkit. The energy deposition in the sensitive regions of circuits
is different with different radial distance of ions. The average charge densities versus the
track radius are calculated and presented in Figure 9, and the mechanisms of the high-LET
181Ta ions induced failures are also illustrated in this figure. If the off-state NMOS and
PMOS transistors in DFF cell are regarded as sensitive nodes, the high-density charges
cover a large number of sensitive nodes for the 40 nm planar technology, and the impact
area can be extended when the tilt-angle incidence is implemented during the irradiation
test. Therefore, to make the influence more notable, the tilt irradiations are utilized to
further investigate the radiation tolerances and failure rates of the hardened circuits in more
serious radiation environments, and the relevant results are given in Figures 10 and 11.
For the full “0” data, no upset is measured for all of the irradiation conditions. While for
the full “1” data, the increased SEU sensitivities are verified during the tilt conditions,
especially for the joint change of tilt angles. It is found that four or more times higher SEU
cross-sections for the (45◦, 45◦) tilt angle are measured when compared with the vertical
irradiation. Though the SEU cross sections are affected by the irradiation conditions, i.e.,
the increased effective LET values in tilt irradiations have significant contributions on SEU
cross-sections, the improvements of SEU tolerance for the abacus-hardened circuits are
still significant.

Figure 9. The concentration of electron-hole pairs in device generated by the ionization of 181Ta ions
vs. the radial distance.
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Figure 10. SEU cross section results for full “0” data under (a) different irradiation tilts, and (b) different LET values.

Figure 11. SEU cross section results for full “1” data under (a) different irradiation tilts, and (b) different LET values.

5. Conclusions

In this paper, the radiation response of our proposed DFFs with novel abacus-type
time-delay cells manufactured by 40 nm planar technology are investigated, and plenty
of interesting results are observed in our specially arranged heavy ion irradiation exper-
iments. Benefiting from the changed area and location of the sensitive nodes in layouts,
the abacus-type time-delay cell possessed a superior radiation resistance, reducing the
SEU cross sections in a considerable degree, though the LET value of heavy ions is high.
Our systematic vertical and tilt-angle irradiations confirm that the degree of SEU rate
elimination is closely related to the working modes and data patterns. The improved SEU
tolerance of the abacus-type circuits indicates that more charge diffusion and deposition
in the sensitive nodes of peripheral time-delay circuits are needed to trigger an upset in
these hardened circuits. Even without the additional reinforcement, the abacus-hardened
module is appropriate for application in harsh radiation environments to further improve
the SEU tolerance of the cell-hardened circuits. Moreover, the novel abacus-type layouts are
also useful to drive the complex clock and reset networks to achieve high-reliable electronic
systems in the future.
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