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Abstract: Vision processing chips have been widely used in image processing and recognition tasks.
They are conventionally designed based on the image signal processing (ISP) units directly connected
with the sensors. In recent years, convolutional neural networks (CNNs) have become the dominant
tools for many state-of-the-art vision processing tasks. However, CNNs cannot be processed by a
conventional vision processing unit (VPU) with a high speed. On the other side, the CNN processing
units cannot process the RAW images from the sensors directly and an ISP unit is required. This
makes a vision system inefficient with a lot of data transmission and redundant hardware resources.
Additionally, many CNN processing units suffer from a low flexibility for various CNN operations.
To solve this problem, this paper proposed an efficient vision processing unit based on a hybrid
processing elements array for both CNN accelerating and ISP. Resources are highly shared in this
VPU, and a pipelined workflow is introduced to accelerate the vision tasks. We implement the
proposed VPU on the Field-Programmable Gate Array (FPGA) platform and various vision tasks are
tested on it. The results show that this VPU achieves a high efficiency for both CNN processing and
ISP and shows a significant reduction in energy consumption for vision tasks consisting of CNNs
and ISP. For various CNN tasks, it maintains an average multiply accumulator utilization of over
94% and achieves a performance of 163.2 GOPS with a frequency of 200 MHz.

Keywords: vision processing unit; neural network processing unit; image signal processing unit;
image recognition

1. Introduction

Vision processing chips have proven to be highly efficient for computer vision tasks
by integrating the image sensor and vision processing unit (VPU) together in the recent
works [1–3]. Most of them utilize a Single-Instruction-Multiple-Data (SIMD) array of
processing elements (PE) connected with the sensor directly. Consequently, they can
eliminate the pixels transmission bottleneck and execute vision tasks in a parallel way.

The vision tasks mainly consist of image signal processing (ISP) algorithms and recog-
nition algorithms [1], as illustrated in Figure 1. All the algorithms are performed on the
PE array in the VPU. On the conventional vision chips, recognition algorithms includ-
ing Speed-up Robust Features (SURF) [4], Scale-Invariant Feature Transform (SIFT) [5]
and Features from Accelerated Segment Test (FAST) [6] are usually applied. Recently,
the artificial neural networks have shown great performance on the computer vision
tasks [7–10]. Therefore, works [1,11] proposed the VPUs that try to exploit the conven-
tional PE array for self-organizing map (SOM) neural networks. However, these conven-
tional architectures are not efficient for modern neural networks. They do not contain
the multiply accumulators (MAC), which are essential to accelerate the neural network
processing [12–14]. For instance, the convolutional neural networks (CNNs) are very im-
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portant tools for vision recognition tasks [15–18], and all the conventional VPUs show poor
performance on them.
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Therefore, many new specific designs have been proposed for high-speed CNNs’
processing in the last few years, called neural network processing units (NPUs) [19].
Additionally, a lot of effort has been made to shift the NPUs closer to the sensors, such as
work [20–24] to reduce the expensive pixels transmission. However, those NPUs cannot be
connected to the sensors directly, because they cannot process the RAW images provided
by the sensors. Some essential ISP tasks, such as demosaicing, need to be executed on the
RAW images first to convert them into the proper format. Only after that can the NPUs
process them. On the other hand, high-quality pictures are required in many vision systems
rather than RAW images, such as the closed-circuit televisions and IP cameras [23]. NPUs
cannot accomplish the ISP tasks efficiently to well tune the RAW images. Therefore, an
extra ISP unit is equipped between the NPUs and sensors in those works [25]. This will
consume more power and hardware resources.

We compare the NPUs with the ISP units. There are two major differences between
them. The first one is the different hardware modules. Similar to the conventional VPUs,
the primary computing modules in the ISP units are the arithmetic logic units (ALU) with
simple functions, including addition, subtraction and logical operations [1,2,11,26,27]. In
contrast, the NPU must integrate a lot of MACs in it to accelerate the convolution computa-
tion [28–30]. Each PE in the ISP unit contains a small memory to access the data locally [31],
while the MACs in the NPU usually obtain data from the large global buffers [32]. The
second difference is in the architectures. As illustrated in works [1,7], the ISP units are a
von Neumann type, while the NPUs adopt the non-von Neumann architecture.

However, we also find that the NPUs and the ISP units have some shared requirements
for hardware resources, such as the memory and buses. Additionally, ALUs can also execute
the non-convolutional tasks in the CNNs, such as pooling, activating, quantization and
addition for a shortcut. On the other hand, the two architectures have different instructions
and data flows; therefore, they can run independently, even though they are implemented
on the same hardware resources. Moreover, the 2D SIMD framework is widely used in
both the NPUs and the ISP units. Therefore, integrating the NPU and the ISP unit into one
VPU is practicable. Additionally, a vision task can be executed on it in a pipelined way. It
will be highly efficient, with shared hardware resources and parallel operations.

We have noticed that the MAC utilization determines the efficiency of the NPU in the
vision tasks. The NPU should maintain a high MAC utilization for all the layers of CNNs
with varied strides and kernel sizes. Furthermore, since the vision chip is a power-sensitive
embedded system, the lightweight CNNs with various irregular operations will be widely
used on it. Therefore, the NPU in the vision chip should be highly flexible to process the
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lightweight CNNs without a significant loss in the MAC utilization. Work [33] proposed
a CNN accelerator with a MAC utilization of 98% for convolutional layers, but it did not
support the full-connection (FC) layers. On the contrary, work [34] is only optimized for FC
layers. Many NPUs, such as works [7,33,35], are specifically designed for the convolution
with a 3 × 3 kernel, and a lot of MACs will be idle when processing a convolution with
other kernel sizes. Additionally, most works have not considered the lightweight CNNs.
They are not efficient for some irregular operations, such as Squeeze and Excitation or
depth-wise convolution. For example, the NPU in work [36] shows a high performance for
VGG16 but suffers a loss of more than 50% in the MAC utilization for mobilenetV1 and
V2. The same problems exist in the works [37,38]. Although work [39] is designed with the
consideration of lightweight CNNs, it does not show a high MAC utilization compared
with the other works.

In this paper, we proposed a novel pipelined hybrid VPU architecture that integrates
the NPU and the ISP unit in a 2D SIMD PE array. Each PE contains four MACs and one
ALU, and a small local memory is connected to both the MACs and the ALU. Furthermore,
the NPU we designed naturally supports all kind of strides and kernel sizes, and the ALUs
can process the non-convolutional tasks. By adding a 1D Row processor, this NPU can
execute the FC and convolutional operations simultaneously.

The hybrid VPU is designed to process the image flow, and the ISP and CNN tasks
are executed for each frame sequentially. Moreover, the CNNs usually consist of sev-
eral consecutive subtasks such as convolution, pooling, activating and FC computation.
Therefore, a vision task can be regarded as a set of serial subtasks. The convolution and
FC computation are processed on the PE array and Row processor, respectively. The ISP,
pooling and activating subtasks will share the ALUs. The on-chip buffers and buses are
shared for all the subtasks. Based on the above factors, this paper proposed the pipeline
strategies with the time-shared hardware resources. The ISP of one frame can be executed
simultaneously with the CNN processing of another frame, and the subtasks in the CNN
for different layers and frames are also pipelined. The schedules to time-share the hardware
resources are applied in the pipeline strategies. By this means, the VPU can achieve a high
utilization of hardware resources and speed-up the vision tasks efficiently. Moreover, with
the local memories embedded in each PE and the buses connecting the adjacent MACs,
the VPU can load the data into the PE array along with the computation during the CNN
processing.

The main innovative characters of this VPU are listed as follows:

• We integrate an NPU and an ISP unit into a VPU with shared hardware resources,
and a pipeline strategy is designed based on it to seamlessly execute the vision tasks
consisting of the ISP and the CNN processing;

• A strategy to map the various CNNs onto this VPU is proposed, including the methods
to execute irregular operations. A pipelined computing flow for the CNN processing
is used to process different layers on the PE array and the Row processor concurrently.
It can make full use of the MACs;

• A new memory architecture with two groups of buses for MACs is designed. Addi-
tionally, based on this, a data flow is proposed to pipeline the data loading and the
processing of different layers.

The rest of the paper is organized as follows. Section 2 presents the preliminary of
this work. Section 3 introduces the architecture of the proposed VPU, and the workflow
based on it is detailed in Section 4. Section 5 describes the experiments and discusses the
results. Finally, Section 6 concludes this paper.

2. Preliminary

Modern vision tasks have been focused on computer vision in recent years. Addi-
tionally, image recognition plays an important role in those tasks. In conventional vision
chips [27,31], feature extraction algorithms including SURF, FAST and SIFT are used. Since
2012, a lot of neural networks have been proposed and have shown a great performance
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for computer vision tasks, among which, the CNNs are the most widely used ones. The
CNN can be used for image recognition directly or extracting the feature vectors for other
applications such as recurrent neural networks (RNN). Additionally, the CNNs can be used
as the backbone of object detection networks such as You Only Look Once (Yolo) [40] and
Single Shot MultiBox Detector (SSD) [41]. Generally speaking, the CNNs are indispensable
in the modern vision tasks. Therefore, modern VPUs should be able to process the CNNs
efficiently and integrating an NPU is the way to achieve this goal.

Additionally, the ISP units are still essential in the vision tasks to tune the RAW images.
Although the CNNs can be used to improve the quality of the images, such as CNN-based
denoising, it is uneconomic to perform this in the vision tasks. The image recognition
is the main task in vision processing, and it should be processed with the CNN prior to
the others. Since this task can consume millions of cycles, the NPU will be kept busy
with it. Additionally, stopping the image recognition task for CNN-based denoising will
significantly increase the latency of processing an image. Therefore, the ISP units should
also be integrated in the VPU.

Meanwhile, the CNNs tasks are far more complicated than the ISP algorithms. with
the same computing resources, it can take millions of cycles to accomplish a CNN task,
while an ISP task may only cost hundreds of cycles. To deal with this imbalance, more
resources should be distributed to the NPU. Moreover, in our design, the ALUs in the ISP
units will be also used for the NPU. By this means, the VPU can achieve a high utilization
for all hardware resources.

Since the NPU is dominant in the VPU, its resources utilization will determine the
efficiency of the VPU. Additionally, the NPU should be flexible for all kinds of CNNs. The
layers of CNNs can be divided into two classes based on the dominant hardware require-
ments to process them. One class is computation-intensive layers (CILs), including the
common convolutional layers, group convolution layers and point-wise convolutional lay-
ers. The other one is memory-intensive layers (MILs), which are mainly the full-connection
(FC) layers in the CNN. The former class needs an enormous amount of computation
with high data reusability, while the latter one consumes much higher throughput with
barely shared data. Depth-wise convolutional layers are regarded as special CILs with
a slightly memory-intensive character. They have both lower data reusability and less
computation. Since the hardware requirement varies with the layers, different hardware
resources should be distributed to them dynamically in the NPU. For example, more MACs
should be used to accelerate the CILs, and more memory bandwidth should be provided
for MILs. By exploiting the characteristics of varied layers, we designed two different
processing elements clusters efficient for each class. The PE array will be used for the CILs,
and the Row processor will process the MILs. The depth-wise convolutional layers can be
computed on both clusters. The bandwidth of the external memory is allocated to each
cluster on demand, which highly improves the memory utilization.

As mentioned in the previous works, the VPUs can work independently or as the
coprocessors. They are designed to be implemented with the sensor on one chip and can
be modeled on the FPGA for a performance test. The proposed vision chip in this paper
is recommended to work as a coprocessor. It is directly connected to the image sensor
and processes the image data with instructions from the host processor. Then, it can send
the processing results to the host processor for further tasks. It should be noted that since
the VPU is supposed to connect with a fixed sensor, the size of the input images will be
constant. Additionally, the size of the PE array should be determined according to the
sensor resolution for high utilization. In this paper, the design is implemented with a 7 × 7
PE array, and the sensor resolution is recommended to be an integer multiple of 7 × 7 so
that the input pixels can be evenly distributed to the PEs. This will contribute to a high
PE utilization. In our experiments, which are discussed in Section 5, the image sensor is
modeled as 224 × 224.
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3. The Architecture of the VPU

In this section, the architecture of the proposed VPU will be detailed. The sensor is
also an essential component in the vision chip, but it is not the research point of this paper.
Therefore, the architecture of the sensor will not be discussed here, but it can be connected
with the VPU directly.

3.1. The Overall Architecture

Figure 2 shows the top-level architecture of the proposed vision processor. The main
computing core is a 7 × 7 multifunctional PE array and a Row processor with 16 MACs. A
global buffer is equipped to provide data for both the PE array and Row processor through
three register banks, Horizontal Registers Files (HRF), Vertical Registers Files (VRF) and
Row processor Register Files (RPRF). The weights for the PE array are stored in the weight
buffers, and the Row processor has a row buffer connected to it. The Huffman Coder and
Decoder Module manages the data exchange between the external memory and the global
buffer, weight buffer or row buffer with Huffman Coding. The instructions will be loaded
and cached in the instructions buffer. A Finite-State controller translates the instructions
and generates the control signals for each part of the VPU. The image sensor interface
connects the VPU and the sensor. It should be noted that the VPU can be integrate with the
image sensor in one chip [1,11,27].
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the activation unit, respectively.

3.2. The Processing Elements Array

Each PE has four MAC units and one ALU. Figure 3 shows the architecture of a PE
with two MAC units omitted. The PE array can work as a 14 × 14 MAC array and a 7 × 7
ALU array. A group of horizontal buses and a group of vertical buses are used for data
transmission in the PE array.
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Each MAC unit includes MACs, an accreg for accumulation, several general-purpose
registers and one MAC Memory. One of the inputs for MACs is fixed for weights, and the
other one obtains activations from the registers. Each MAC unit can transmit data to the
upper unit through the VDbus and to the left unit through the HRbus. The 14th column of
MAC units can exchange data directly with the HRF through the HRbus, while the seventh
column can perform this through the Hbus. The same connections are applied for the 7th
and 14th rows of the MAC units and the vertical buses. Those buses enable the PE array to
work as four 7 × 7 PE Blocks too. Each PE block can obtain data from the weigh buffer,
HRF and VRF independently. PE blocks can efficiently process output fmaps of a small
size, especially 7 × 7 fmaps. The same control signals are broadcasted all over the PE array.

The MAC unit can contain more than one MAC. Increasing the quantity of MACs in
each unit will raise the computing throughput of the PE array. The MACs in the same units
work in the same manner with different data. For brevity, we will describe this work as
one MAC in each unit. Correspondingly, the bit-width of the horizontal and vertical buses
is the same with the MAC.

The ALU is similar to the neighborhood processors in the work [2]. Each ALU
performs an 8-bit addition, subtraction, logical and shift operations in a single cycle, and
can exchange data with the four adjacent ALUs from the left, right, upper or lower PEs.
The rightmost column of the ALUs has direct access to the global buffer. Each ALU can
exchange data with the MAC memories in the same PE. Inter-ALU data transmission is
achieved by column or by row. This enables the ALU array for mid-level ISP algorithms,
which requires data from multiple pixels to compute [2]. The data in the accregs of the
MAC units can also be sent to the ALU to execute non-convolutional tasks with different
strides.

Generally, the ALUs array is the primary computing module of the ISP unit, while the
MAC array and Row processor compose the NPU. All other resources are shared by both
the ISP unit and the NPU.
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3.3. The Row Processor

The Row processor contains a column of 16 MACs and a column of four activation
units. The 16 MACs can, respectively, obtain data from the RPRF or the Huffman Decoder
directly. There is no data connection between each MAC. The data from the row buffer
will be broadcasted to all the 16 MACs simultaneously for MIL processing. The activation
unit contains a sigmoid unit besides the ALU. Each activation unit is connected with four
MACs. They obtain data from the MACs and process them. Additionally, the results will
be stored into the global buffer by the activation units.

3.4. The Architecture of the On-Chip Memory

The global buffer is the main data memory on the chip. It consists of 28 dual-port
SRAM Banks. Those banks can be divided into several groups. Each group can be used
as an input or output buffer for the PE array or the Row processor, respectively. Since the
input data for CILs are highly reused, they have the priority to be stored in the global
buffer.

Registers files HRF, VRF and RPRF are used for data reusing in the convolution
computing introduced in Section 4. The HRF and VRF can also buffer the input during the
data loading for the PE array. There are three transmitters between the processors and the
register files, as shown in Figure 2. Those transmitters will align the input data as required.

The weight buffer and the row buffer store the shared data for the PE array and the
Row processor, respectively. The weight buffer consists of four SRAM banks. Each bank
can provide weights for the entire PE array or be fixed to a PE block. They also work in the
double buffering way.

4. The Workflow of the VPU

In this section, we will describe the workflow of the proposed vision processor. The
top level of the workflow is summarized as follows:

1. The sensor captures the RAW image data and transfers them to the ALU array;
2. The ALU array carries out the ISP tasks and stores the results to the global buffer as

input activations for the CNN processing;
3. The CNN processing tasks are then executed on the PE array and Row processor and

generate the final results of the vision processing.

4.1. The Work Flow of the ISP

When instructed to accomplish the ISP tasks, the ALU array works in the traditional
way as proposed in the previous works.

The resolution of the sensor is fixed as 224 × 224 RAW-RGB, and it sends an image
to the VPU column by column. The image sensor interface will divide a column of pixels
into several slices and transmit them to the leftmost column of PEs in the PE array. The
pixels can be stored in the MAC memories or transmitted to the rest columns in the PE
array by the ALUs. The length of the slice is variable and determined by the algorithms.
The smallest length is 14 and each MAC memory will store one pixel, which forms a
14 × 14 patch. For mid-level algorithms, a bigger length will be used.

After a patch of pixels is loaded into the PE array for ISP, the ALU will execute the
algorithms. Pixels can be transmitted to the four adjacent PEs and keep going to the
farther ones. When the algorithms are accomplished, the results can be stored in the MAC
memories for CNN processing or transferred to the global buffer. The pixels can also be
loaded back to the PE array from the global buffer for further ISP tasks.

4.2. The Strategy to Map the CNN on the VPU

As mentioned above, the CIL needs more computation resources while more data
throughput is required in the MIL. Therefore, we map the CIL on the PE array while the
Row processor executes the MIL. The input data for CIL will mainly be stored in the MAC
memories. The Row processor will consume most of the bandwidth of the global buffer.
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The depth-wise convolutional layers can be processed efficiently on both the PE array and
the Row processor.

4.2.1. The Mapping Strategy for the Computation-Intensive Layers

The computation-intensive layers in CNN contain a large number of MAC operations.
Input activations are reused to compute every output fmap. Additionally, each output
fmap has an exclusive filter shared by all the output pixels in it.

The mapping strategy is output stationary. Firstly, the output fmaps with the size
equal to or larger than 14 × 14 are considered, such as 14 × 14, 28 × 28, as illustrated
in Figure 4a–c. We divide one output feature map into several patches of 14 × 14 pixels,
and the PE array computes all the pixels of one output patch simultaneously. Each pixel
is processed by the MAC unit with the same location in a 14 × 14 matrix. For example,
Figure 4a describes the mapping strategy for the first patch of an output fmap, which is
computed on i input channels with a kernel of k × k and a stride of one. To compute the
pixel at (0,0) in the output patch, the activations at (0,0) in all i input fmaps will be stored in
the memory of the MAC unit (0,0). The same scheme is applied to the rest of the pixels in
the output patch. Finally, an input block of i × 14 × 14 activations will be stored in the PE
array, which means each input fmap is divided into patches of 14 × 14 too. Additionally,
based on this input block, the first patches in all the output fmaps can be computed as
the first output block. The other input blocks will be loaded and computed in the same
way. Each output block is computed on an independent input block. Figure 4b shows the
mapping strategy when the stride is two, and in this case, four adjacent input activations
are stored in each MAC memory. The input patch size is 28 × 28 and an input block of
i × 28 × 28 activations is stored in the PE array. This procedure can be generalized to any
stride. If the convolution stride is s, the input map will be regarded as being composed of
many grids with the size s2. Additionally, the MAC memory stores the grids of activations
in all the input maps with the same location as the coordinative output pixel. Finally, an
input block of i × (14 × s) × (14 × s) activations is stored, as shown in Figure 4c.

A shared coordinate weight from the weight buffer is broadcasted to all the MAC
units to be multiplied with the activation in every cycle. The activations in each MAC
memory can be transmitted to the left unit through the HRbus or to the upper unit through
the VDbus to accomplish the 2D convolution. The 14th column of MAC units will obtain
those adjacent activations from HRF, with a similar arrangement for the 14th row and
VRF. By repeating the 2D convolution i times, 14 × 14 output pixels of one output fmap
will be obtained. Then, a patch in the next output fmap can be computed with a different
coordinative kernel sequentially.

Secondly, when the size of output fmaps is 7 × 7, the PE array will work as four 7 × 7
PE blocks. i input channels will be divided into four groups, as shown in Figure 4d. Each
group is an input block and stored in one PE block, respectively. Each MAC memory stores
s2 × i/4 input activations and the size of each input patch is i × (7 × s) × (7 × s). A 7 × 7
output fmap is then mapped onto all four PE blocks and computed onto each input block
the same as the 14 × 14 output patch. The kernel will also be divided into four groups and
stored in four banks of the weight buffer, in accordance with the input channels. Moreover,
the seventh column of MAC units will obtain those adjacent activations from HRF through
the Hbus, with a similar arrangement for the seventh row and VRF. Therefore, each PE
block will generate a patch of 7 × 7 partial sums for the output fmap on one input block.
Finally, the four patches of partial sums will be transmitted and added together by the
ALUs to generate the integral 7 × 7 output pixels.

The weight buffer will conduct the zero-check on the weights before broadcasting
them. If a weight is zero, the weight buffer will send a skip signal instead of the weight.
Then, the PE array will skip all the operations with this weight to save energy.
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When a patch of output pixels is accomplished in the MAC array, each MAC unit will
send the pixel to the ALU connected to it for non-convolutional tasks including activating,
pooling, quantization, batch normalization, biasing and adding for a shortcut. Most of
these tasks can be finished in a few cycles, while the MAC array continues processing
the convolution layers. Since ALUs and MACs work concurrently, non-convolutional
tasks execution will be masked by the convolution computation that usually consumes
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thousands of cycles. By this means, the processing of the non-convolutional tasks will not
suspend the convolutional computation.

The depth-wise convolutional layers can also be processed in this manner, regarded
as the CIL with only one input fmap.

4.2.2. The Mapping Strategy for the Memory-Intensive Layers

The memory-intensive layers are mapped on the Row processor. Each MAC of the
Row processor executes an output pixel. The depth-wise convolutional layers can also be
processed on the Row processor, since they consume less computation than CILs.

When processing the depth-wise convolutional layers on the Row processor, the input
activations are stored in the global buffer and transmitted to the MACs through RPRF.
Each MAC obtains a specific input activation from the RPRF, respectively, and a shared
weight is broadcasted to all the MACs from the row buffer in each cycle, as illustrated in
Figure 5. No data transmission exists between the MACs and reusing activations takes
place in the RPRF. This mapping strategy works for the depth-wise convolutional layers
with varied stride. When an output pixel is generated, it will be sent to the activation units
that the MAC is connected to. Subsequent operations, such as activating and pooling, will
be accomplished by them.
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In the FC layers, the input activations are shared for every output pixel, while there
is no reusability in the weights. Therefore, opposite to the depth-wise convolutional
operations, the input activations of the FC layers are stored in the row buffer, while
the weights are stored in the global buffer. When processing the FC, an activation is
broadcasted to all the MACs and each MAC obtains a coordinative weight from the RPRF,
as shown in Figure 5.

The row buffer also has a zero-skipping scheme for the Row processor, such as the
weight buffer.
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4.2.3. The Irregular Mapping Conditions

When mapping the layer on the PE array, some irregular conditions may arise. This
problem causes a significant loss of MAC utilization in the early works. In this paper, the
irregular conditions are also considered to make full use of the MACs.

For the output fmaps of a size equal to or bigger than 14 × 14 with a kernel stride
of s, a MAC memory needs to store s2 × i input activations. However, this cannot be
achieved when s2 × i is greater than the capacity of the MAC memory, which is assumed
as m. In this case, the input channels will be divided into d s2 × i/m e groups. Each group
will be loaded into the PE array and computed independently to obtain the partial sums
for all output pixels. The partial sums will be transferred to the global buffer or external
memory similar to the output pixels. Additionally, after all the groups of input channels
are computed, the partial sums will be reloaded into the PE array and added by the ALUs
to generate the integral output pixels. For the output fmaps 7 × 7 in size, s2 × i/4 input
activations need to be stored in each MAC memory. Additionally, if s2 × i/4 is greater than
m, the input channels will be divided into d (s2 × i/4)/m e groups and each group will be
computed in order, similarly.

These actions may cause extra access to the external memory. However, when the
capacity of MAC memory is large enough, such conditions will rarely happen. According
to our survey, when the MAC memory is 512 Bytes, it can satisfy the storage requirement
for input activations in 81% of the CILs in the tested CNNs.

The Row processor is flexible, with different lengths of the output pixels column. The
output map or vectors can be divided into many groups of 16 pixels. There will be only one
group that is less than 16. Therefore, the irregular mapping problem in the Row processor
is negligible.

Since the sensor resolution is fixed to 224 × 224 in this work, the sizes of the fmaps
in most CNNs are supposed to be multiples of 14 × 14. In spite of this, other sizes of
fmaps can also be mapped on the PE array, such as 13 × 13, with a loss of only 13.8% in
the MAC utilization.

The other irregular operations used in the lightweight CNNs, such as the group
convolution, channel shuffle, Squeeze and Excitation and channel concatenation, can also
be mapped on this architecture. For example, the channel shuffle can be performed by
changing the loading and storing order of the input fmaps. The squeeze and excitation
operation contains global average pooling, FC and channel-wise multiplication. The global
average pooling can be performed by shifting and adding the results in the ALU array,
and one ALU will conduct the final averaging. The channel-wise multiplication can be
regarded as a 1 × 1 depth-wise convolution. The channel concatenation can be realized by
jumping to the address of the required input fmaps when loading data. Additionally, the
shortcut is loading the former layers into the PE array and adding them to the new ones.

4.3. The Computing Flow for the CNN Processing

The CNN processing is executed on both the PE array and the Row processor with
different computing flows.

4.3.1. The Computing Flow on the PE Array

When processing a convolutional layer with a kernel of i × k × k and stride of s on
the PE array with an input block, the steps listed below will be taken. A small array of four
MAC units is taken as a model for brevity, and it can compute four output pixels in a fmap
concurrently. (x,y) refer to the data in row x and column y of the fmap. An input block is
already stored in the MAC memories.

Step 1: Each MAC obtains activations (0,0), (0,s), (s,0) and (s,s) in the first input fmap
from the local MAC memory, respectively, and performs the first convolution computation
with a shared weight, as illustrated in Figure 6a.
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Step 2: Each MAC will obtain the activations (0,1), (0,s + 1), (s,1) and (s,s + 1) from local
memory when s is greater than one, or from the right MAC unit through the HRbus/Hbus
when s is one, as illustrated in Figure 6b. As mentioned in Section 3, activations (0,0) to
(0,s − 1) are only stored in MAC unit (0,0), and the location of other activations can be
deduced by analogy. Consequently, each MAC will obtain the activations (0,s), (0,s × 2),
(s,s) and (s,s × 2) from the right MAC unit. The second convolution will be computed here.

Step 3: Repeat step two until each MAC finishes the computation of (0,k− 1), (0,s + k − 1),
(s,k − 1) and (s,s + k − 1). Thus far, the first row of the 2D convolution is finished
with k cycles.

Step 4: Each MAC obtains the activations (1,0), (1,s), (s + 1,0) and (s + 1,s) from local
memory when s is greater than one, or from the lower MAC unit through the VDbus/Vbus
when s is one, as illustrated in Figure 6c. The same as in step two, activations (0,0) to
(s − 1,0) are only stored in MAC unit (0,0). Then, begin to compute the second row
of convolution.

Step 5: Repeat steps two and three to finish the second row of the 2D convolution.
Step 6: Repeat steps four and five until the kth row of the 2D convolution is fin-

ished. Thus far, the 2D convolution on the first input fmap for these four output pixels is
accomplished with k × k cycles.

Step 7: Move to the second input fmap in the MAC memories and start from steps
one to six. Another k × k cycles are taken to finish the 2D convolution on the second
input fmap.

Step 8: Repeat the above steps to the last fmap of the input block, and four output
pixels, (0,0), (0,1), (1,0) and (1,1), are generated with k × k × i cycles.

At last, these four output pixels will then be sent to the ALU to execute tasks such
as pooling, RELU, quantization and addition for a shortcut. In the meantime, the MACs
are repeating the above steps to compute the output pixels at (0,0), (0,1), (1,0) and (1,1) of
another fmaps on the same input block with weights from another kernel. This procedure
will go on until an entire output block is generated. On the other hand, if more than one
input block is stored in the PE array, the MACs can also compute the output pixels, (0,14),
(0,15), (1,14), (1,15), in the same fmap on another input block with the same kernel.

When processing the depth-wise convolution, only steps one–six are taken to compute
one output fmap, since only a 2D convolution on one input fmap is required.

The above-mentioned computing flow can be generalized to the whole PE array or
four PE blocks. This can guarantee the highly efficient usage of the MACs.



Electronics 2021, 10, 2989 13 of 25

4.3.2. The Computing Flow on the Row Processor

The computing flow on the Row processor is relatively simple. The Row processor
will compute a column of 16 output pixels simultaneously.

Each depth-wise output fmap will be regarded as a 1D array and divided into several
slices of 16 pixels. For the depth-wise convolution with a kernel of k × k, the first MAC in
the Row processor will obtain k2 input activations (0,0), (0,1) . . . (0,k − 1), (1,0) . . . (1,k − 1)
. . . (k− 1,k− 1) sequentially from RPRF. Similarly, the second MAC will obtain activations
(s,0) . . . (s + k − 1,k − 1). This can be generalized to all of the other MACs in the Row
processor. A shared weight from the row buffer is broadcasted to all the MACs in each
cycle. The output pixels will be sent to activation units to finish the other necessary tasks.

For the FC layers, each MAC performs the computation of one output pixel. They will
sequentially obtain the weights from RPRF or the Huffman Decoder. Additionally, shared
input activations are broadcasted to all the MACs in each cycle. The output pixels are also
sent to the activation units for other tasks, including the quantization and sigmoid.

4.3.3. The Pipeline Strategy in the CNN Computing Flow

The pipeline strategy is designed in the computing flow to process the different layers
simultaneously on both the PE array and the Row processor.

The pipeline scheme for the CIL and the MIL is discussed first. The latter ones in the
CNNs are the FC layers.

The PE array and the Row processor work independently. Hence, one can directly
process the output of the other one. Since the CILs and the FC layers are usually executed
serially in the CNN, when the former layers are being processed, the latter ones will
have to wait. This can cause low MAC utilization. To solve this, this paper employs a
multiple-inferences pipeline to make full use of the MAC. When the Row processor is
computing the FC layers of the Nth inference, the PE array will be processing the CILs of
the (N + 1)th inference. This is very efficient when the FC layers are used at the end of the
CNN as classifier.

The FC operation is also used in the other stages of CNN, such as the Squeeze-and-
Excitation operation in the MobilenetV3, which contains two FC operations. The first
FC operation is performed on the outputs fmaps of the depth-wise convolutional layer.
Additionally, the outputs of the second FC operation are used for the next point-wise layer.
In this case, the depth-wise convolutional layers will be processed on the PE array. The
FC operations in the Nth inference will be processed on the Row processor immediately
after the output fmap of the depth-wise convolutional layer is generated, as illustrated
in Figure 7. Meanwhile, the PE array will jump to the next inference and process the
CILs in it. After the FC operations are accomplished, the PE array will jump back to the
Nth inference and process with the outputs of the second FC operation. The channel-wise
multiplication will be conducted then. It should be noted that the PE array will not suspend
the computation of one output block to jump between inferences. It will accomplish the
entire output block and jump after then. This is because the input activations for this output
block are already loaded, and this policy will eliminate the data throughput overhead
for jumping.
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There is also a pipeline scheme for the depth-wise convolutional layers. The Row
processor’s priority is to process the FC layers. Additionally, the depth-wise convolutional
layers will be processed on the Row processor when it is free, and otherwise on the PE
array. A depth-wise convolutional layer is always between two CILs. It processes the
output fmaps of the former CIL and generates the input fmaps for the next layer. Therefore,
when the former CIL is processed on the PE array, its partial output fmap can be processed
by the Row processor for the depth-wise convolutional layers at the same time.

However, the Row processor may not keep pace with the PE array during this proce-
dure. Assuming the numbers of input and output channels for the CIL are A and B, the
size of the output fmaps is C2, and the kernel size is D2 × A. When processing on the PE
array with P MACs, the number of required cycles is C2 × B × D2 × A/P. Additionally,
for the following depth-wise convolutional layer with stride S and kernel F2, it requires
C2 × B × F2/(S2 × R) cycles when processed on the Row processor with R MACs. The
padding and full MAC utilization are assumed here. If C2 × B × D2 × A/P is smaller than
C2 × B × F2/(S2 × R), the RP cannot process the depth-wise convolutional layer in time
to generate the input fmaps for the next layer. Under this circumstance, the depth-wise
convolutional layer will be processed on both the PE array and the Row processor patch by
patch. The PE array can suspend the computation of the former CIL for the depth-wise
convolutional layer, which will be detailed in Section 4.4. The pseudocode in Figure 8
shows the above policy.
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Using the pipeline schemes, the VPU can process the CNN consisting different kinds
of layers with very high MAC utilization. Furthermore, other hardware resources, such as
ALUs, on-chip memories and buses, are also fully used. Therefore, the VPU can achieve a
high-power efficiency.

4.4. The Data Flow

The data transmission for ISP and the CNN processing is different and independent.
It is also concurrent with the computing flow.

4.4.1. The Data Flow for the ISP

The leftmost column of ALUs in the PE array will receive the RAW image data from
the sensor column by column and transmit them to the ALUs in the right columns in each
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cycle. Then, the image data are stored in the Regs or MAC memories and processed for
low-, mid- and high-level ISP algorithms. Each ALU can access the data from four neighbor
ALUs (up, down, right and left) directly. The ALU array can process multiple image data
with the spatial correlation property for the ISP tasks. Intermediate data can be stored in
the MAC memories. Once the results of the ISP on a slice are obtained, they are transferred
to the global buffer or external memory. Additionally, if those results are needed in further
ISP tasks, they can be loaded back to the rightmost column of the ALUs from the global
buffer and transmitted to the left.

4.4.2. The Data Flow for the CNN Processing

The global buffer provides the input data and stores the output data for both the PE
array and the Row processor during the CNN processing. On the other hand, the PE array
and the Row processor can also directly obtain the input data from the external memory
through the Huffman Decoder.

The PE array will load the input data into MAC memories and reuse them hundreds of
times, while the Row processor will process on the input data directly. Since the data flow
for the latter is very obvious and runs highly in concert with the workflow in Section 3,
we will only detail the data flow in the PE array for convolution here. We propose a
pipelined data flow so that the PE array can load the input activations while computing the
convolution continuously. Specifically, the data flow in the PE array will work as follows.

When loading the input activations to PE array for the CILs or the depth-wise con-
volutional layers, two columns of activations can be, respectively, transferred to the 14th
column of MAC units through the HRbus and to the seventh column through the Hbus
directly. Then, the activations will be shifted to the left columns through the HRbus in
each cycle to load an input patch. The same scheme is applied to load another patch in the
vertical direction with the VDbus and the Vbus. When the activations reach the predefined
MAC units that we have illustrated in Section 3, they will be stored in the MAC memories.

As illustrated above, the MAC units will send the results of convolution to the con-
nected ALUs for non-convolutional tasks. The ALU array will then process them and send
the final output pixels to the global buffer column by column. If the next layer is an MIL,
the data will be read by the Row processor. ALUs can also send the pixels back to the MAC
memories if required. The MAC units can also send the results to the global buffer through
horizontal buses or back to the MAC memories, if no non-convolutional tasks are required.

4.4.3. The Pipeline Strategy in the Data Flow

As illustrated in Section 3, the above buses are also used for data transmission when
computing the 2D convolution with a kernel size larger than one. However, data transmis-
sion to the left or to the upper MAC units for computation will never happen simultane-
ously. This means there is always at least one group of buses free for data loading in each
cycle. Additionally, when the MAC obtains data from the local memory, all the buses are
free.

Generally, with a filter size of k × k and stride of s, in each k2 cycle for convolution
computation, there will be k × s cycles on the horizontal buses and k2 + s2 − k × s cycles
on the vertical buses free for data loading. Therefore, the PE array can load new input
activations along with the computation on the activations already loaded, as shown in
Figure 9. In particular, the data loading for the next input block can be synchronous with
the computation on the current input block. Additionally, the old input patch will be
replaced immediately after its last computation.

By this means, when the PA array starts to process a new input block, some input
patches have been already stored in the MAC memories. Additionally, the rest of the input
patches will be loaded during the processing of the first output channel. If the data loading
cannot keep pace with the computation, then compute the other output channels on the
patches already loaded. In the meantime, data loading continues until the entire input
block is loaded. Additionally, the PE array will also finish the computation of the first few
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output channels by then and be ready to compute the rest. Therefore, the PE array can
compute the CILs seamlessly, without any suspension for data loading.
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This technique also works when there are no already loaded data to compute in the
MAC memories. For example, for a CIL with a 3 × 3 filter and a stride of two, it will take
28 cycles to load two input patches 28 × 28 in size into the PE array. The computing is
not executed here and both groups of buses are used for data loading. Then, the PE array
finishes two 3 × 3 convolutions for an output channel on those two patches in 18 cycles.
Meanwhile, only 14 × 14 activations of the next input patch are loaded through vertical
buses and 12 × 14 activations of another input patch are loaded through horizontal buses.
Therefore, the PE array has no new input patch to process and has to wait. As illustrated in
the above-mentioned technique, in a case such as this, the PE array will compute the other
output channels on the two loaded patches until the third input patch is loaded. Then,
process the third input patch for the above output channels while loading the fourth input
patch. Repeat these steps until all the input patches are loaded into the PE array.

It should be noticed that more time in each k2 cycles can be used to load activations
through the vertical buses than the horizontal buses. The sequence of the patch loading on
each bus is determined in line with the transmission speeds.

4.4.4. The Fused Pipeline to Process the Depth-Wise Convolutional Layers on the PE Array

Since the depth-wise convolutional layers do not reuse the input channels, the above
technique is not effective for them on the PE array. However, each depth-wise output fmap
is computed on only one input fmap generated by the CIL. Therefore, we can insert the
computation of the depth-wise convolutional layer into the processing of the CIL.

An input patch for the depth-wise convolution will be stored in the MAC units
directly after being generated or reloaded during the processing of the CIL. The PE array
can suspend the computation of the CIL and compute this patch for depth-wise convolution
first. After this, the PE array will revert back to processing the CIL, and this patch can
be replaced by a new input patch for depth-wise convolution. This technique fused the
processing of a CIL and the following depth-wise convolutional layer. The PE array can
execute this computation when the CIL is not finished and other output fmaps have not
been generated. It can solve the data loading problems of the depth-wise convolutional
layers and keep the PE array computing seamlessly with high utilization. It also removes
the most data throughput of the external memory in the depth-wise convolutional layers.
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4.5. Techniques to Reduce the Data throughput with the External Memory

Once the input activation blocks are stored in the PE array, they will not be overwritten
by new data until the convolution computation based on them for all output fmaps is
finished. This can eliminate the repeated loading of input activations, especially from the
external memory.

A coordinative kernel needs to be stored in the weight buffer to compute one output
patch. Then, it can be overwritten by the next kernel. However, more than one input block
may be stored in the PE array. For example, the PE array can store four input blocks of
256 × 14 × 14 activations with the 1-KB MAC memories. In this case, four patches of each
output channel will be computed in succession with the shared kernel. This reuses a kernel
four times, which can highly reduce the data throughput of the external memory.

4.6. The Pipeline Strategy for the Vision Tasks

The ALUs and MAC memories are used for both the ISP and the CNN processing;
therefore, they are time-shared in the workflow. When processing the CNN, ALUs play a
very minor role, which account for only 7.6% of the total cycles. Therefore, there is plenty
of time for ISP to use the ALU array. The use of MAC memories is a priority for CNN
processing to avoid the repeated loading of the input activations. For ISP, the data will be
stored in the different memory modules with priorities in the following order: the Regs in
ALU, memories in adjacent MAC units, the global buffer and the external memory. When
the MAC memories are fully occupied by the CNN processing, ISP will skip them to the
global buffer. Generally, the MAC memories have spare spaces for most of the time during
the CNN processing. The ISP can make full use of them then. By these means, the ISP of
the current frame and the CNN processing of the last frame can be carried out concurrently.
The CNNs can use the outputs of ISP to accomplish the vision tasks in a pipelined way.
Even though the ALUs are much less than the MACs, the ISP can still keep pace with CNN
processing because the ISP tasks consume much less time.

During the CNN processing, the CIL and MIL will also be processed in parallel,
usually for different frames of images. When the CIL of the Nth frame is executed on
the PE array, the Row processor will be processing the FC layers of the (N − 1)th frame
simultaneously. Meanwhile, the ISP of the (N + 1)th frame will also be carried out on the
ALU array. The Finite-State controller arranges the pipeline with the interrupt operations.
By this means, the VPU can process the complex vision tasks seamlessly with a high
utilization of hardware resources.

4.7. The Compilation

The workflow detailed above is the accurate procedure to compile a task on the
VPU. Given a vision task with the specific ISP and CNN processing, the instructions to
execute each subtask will be generated. Then, they will be sequenced based on the pipeline
strategies. The generation of the instructions will consider the characters of both the tasks
and the resources of the VPU. The instruction contains a specific operation for each module
on the VPU. Additionally, the Finite-State controller will convert the instructions to control
the signals for each cycle.

5. Experiments and Discussion

In this section, we will describe the implementation of the design. Then, the tests with
different tasks are introduced and the performance results are reported. The comparison
with previous works and the analysis are also provided here. At last, a discussion about
this work will be presented.

5.1. The Implementation

The proposed vision processing unit is implemented with the following characters:

1. The operands of the MACs and ALUs are 8-bit wide;
2. Two MACs are used in each MAC unit;
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3. The bit-widths of both the horizontal and the vertical buses are 16;
4. The bit-width of the buses for the ALUs is 8;
5. The capacity of the MAC memory is 1 KB with a port-width of 16-bit. This means the

PE array has a total memory space of 196 KB;
6. Each bank in the global buffer is a 4-KB SRAM with 32-bit port width;
7. The weight buffer has four 2-KB SRAM banks, and the Row buffer is a 4-KB SRAM.

The proposed VPU was designed with the Verilog HDL and synthesized by the design
tools Vivado 2019.2. We implemented the VPU on the XC7K325T-2FFG900C FPGA with the
platform Genesys2. A 25 × 18 DSP module was configured as two 8 × 8 MACs. All buffers
and MAC memories were generated with the dual-port 36 Kb Block RAM. This utilization
of the DSP modules and Block RAM consumes more logic cells because the architecture
of this design does not fit the FPGA architecture completely, but it makes full use of the
expensive DSP modules and BRAMs. The FPGA resource utilization is shown in Table 1.

Table 1. The FPGA resource utilization of this work and the comparison with the previous works.

Ref [33] [38] [42] [39] [36] [43] This Work

Year 2019 2020 2018 2020 2021 2018 2021

Device Zynq
7100

XC7K
325T

XC7
Z020 XC7K325T XC7VX690T Arria 10 XC7K325T

LUT 229 K 94.7 K 29.8 K 173 K 279 K 163 K 146 K

FF 107 K 150 K 35 K 241 K 324 K / 85 K

DSP 128 516 190 704 3072 1278 212

BRAM 386 165 85.5 193.5 912 24.5 Mb 92

Test
CNN VGG16 1 VGG16 VGG16 Mobile

netV2
Mobile
netV3L VGG 16 Mobile

netV2
Mobile
netV2 VGG16 Mobile

netV2
Mobile
netV3 ShufflenetV2

Bit-width 16 8 8 8 8 Mixed 3 Mixed 16 8 8 8 8

GOPS 2 34.4 354 84.3 98 84.8 2764 891 341 161 155 149 153

GOPS/W 54.8 21.45 24.1 11.5 9.9 / / / 23.7 21.9 19.4 22.8

GOPS/DSP/f 4.48 3.43 2.07 0.70 0.60 4.50 1.15 2.00 3.81 3.66 3.52 3.60

MAC 4

Util
98.14% 86% / / / / / / 99.1% 95.2% 91.5% 93.8

Runtime
(ms) 2269 82.1 364 3.07 3.00 11.2 0.34 3.75 197 3.25 3.06 2.21

Speed
(fps) 0.44 12.18 2.75 325.7 333.3 89.3 2941 266.7 5.1 307.7 326.8 452.5

Power
(W) 0.8 16.5 3.5 8.52 8.56 / / / 6.79 7.07 7.68 6.71

1 Only the convolutional layers are tested in this work, and the equivalent performance is adopted for sparsity. 2 The operation in this table
is 8-bit and other bit-widths will be normalized to 8. 3 The bit-width in this work is mixed from 2 to 8 bits. 4 The MAC utilization of our
work is counted during CNN processing only.

5.2. The Test Methods
5.2.1. The Modeling of the 224 × 224 Sensor

We used the PCAM 5C, a color camera module, as the model of the image sensor. It
can provide an RAW10 image of 720× 1280 pixels at a maximum frame frequency of 60 fps.
Since the sensor resolution in our vision chip is fixed to 224 × 224, we designed a module
on the FPGA to divide a PCAM 5C image into fifteen 224 × 224 patches. Then, we tested
our design with an image stream of 900 fps.

5.2.2. The Quantization for CNN

We adopted the 8-bit quantization for both the weights and activations in our imple-
mentation. It causes negligible accuracy loss in the CNNs tasks [2] and is widely used
in many previous works. The static quantization scheme introduced in [44] was applied
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to pre-calculate the clipping range of the activations offline. Additionally, during the
inferences, the ALUs operated the quantization.

It should be noted that different bit-widths can also be applied on this implemen-
tation. For example, two 8-bit multiplications can be performed in parallel for 16-bit
operations [37]. Additionally, the proposed architecture can be implemented with the
MACs of various bit-width.

5.2.3. The Testbench

Since this work is the first design that can process the ISP and CNN processing
tasks simultaneously on one processing unit, there are no previous works to compare
with directly. We first ran the ISP tasks independently on the VPU and compared the
performance with other conventional VPUs. Then, various CNN processing tasks were
executed on the VPU independently and compared with the state-of-the-art NPUs. In
particular, to test the efficiency of the VPU on irregular layers in the CNN, MobilenetV2,
MobilenetV3-Large and shufflenetV2 were used as testbenches. At last, we ran a few vision
tasks consisting of a demosaic, an 8 × 8 DCT and different CNNs to test the efficiency of
the pipeline strategies we proposed.

5.3. The Experimental Results and Analysis

As mentioned in the Section 5.2.3, we ran the ISP and the CNN processing tasks,
respectively, first to test the efficiency for each task. Then, the complete vision tasks
consisting of both the ISP and the CNN processing were tested on the proposed design.
The experimental results are illustrated below.

5.3.1. The Experimental Results of the ISP

The performances of the proposed VPU on some ISP tasks are shown in Table 2 with a
comparison to the VPUs in the previous works. During these tests, the CNN tasks were
not executed, and the MAC array stayed idle.

Table 2. The comparison with other works on ISP tasks.

Ref [2] [11] [27] [1] [24] This Work

Senor Resolution 64 × 80 256 × 256 128 × 128 256 × 256 720P 224 × 224

Platform ASIC ASIC ASIC FPGA Stratix IV
EP4SGX530

XC7K325T-
2FFG900C

PE Array 8 × 10 64 × 64 32 × 128 PE,
32 RP

64 × 64 PE,
8 × 8 PPU Heterogeneous 1 7 × 7

Bit-width for PE 8 1 1 for PE,
8 for RP

1for PE,
16 for PPU 32 8

Freq (MHz) 20 50 100 50 133 200

GOPS 1.6 12 44 31 37 2 9.8 3

Runtime of

8 × 8 DCT 380 us 98 us \ \ 728 us

Median
Filter 734 us @ 3 × 3 55 us @ 8 × 8 \ 6.94 ms @ 5 × 5 0.96 ms @ 3 × 3

Power (mW) 36 630 533 \ 98.5 1152
1 Only a part of the PEs in this work can be used for ISP. 2 The performance of all PEs. 3 The performance of ALUs is accounted only in the ISP.

The computing throughput for the ISP is in proportion to the size of the PE array. The
results show that our design can process the necessary ISP algorithms efficiently. Even
though a much smaller PE array is used in our design, it shows a relative high performance
of 9.8 GOPS by increasing the working frequency. It should be pointed out that the CNN-
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based image recognition is the dominant part in the modern vision tasks, and it consumes
far more hardware resources and runtime than the ISP. Therefore, as mentioned in Section 2,
the dominant function of our design is CNN processing, and more resources are distributed
to the NPU. Although the performance of the ISP in our design is not as high as the early
works, it can accomplish the ISP tasks fast enough without delaying the CNN processing.

Some image recognition algorithms such as SIFT and SURF are tested in the listed
early VPUs, but they have been proven to be less accurate and efficient than the modern
CNNs [45]. However, none of those VPUs can be applied for the CNN processing, in
contrast to our work. Therefore, the accuracy or efficiency of the image recognition is not
comparable between our work and the early ones.

5.3.2. The Experimental Results of the CNN Processing

Table 1 shows the FPGA resource utilization and the performance of the VPU with
varied CNN tasks. The figures of the other works are also listed in Table 1 for comparison.
It should be noticed that most works can be implemented with more MACs and run with
the higher frequency to achieve better performance. Therefore, the throughput measured
with GOPS (Giga Operations Per Second) cannot indicate the performance of the NPUs
accurately. In the recent works, the GOPS/DSP is employed to evaluate the effective
performance of the computation resources and the GOPS/W is used to indicate the power
efficiency.

In this paper, since each NPU has different numbers of MACs and varied frequencies,
some normalized characters are used here to compare the performance, including the
GOPS/DSP/Frequency, the MAC utilization and the Throughput/W. To test the NPU
independently, the ISP tasks are not executed here. The images are stored in the external
DDR3 and transferred to the on-chip global buffer. It should be noted that only MAC
operations are counted in the computation performance here.

The GOPS/DSP/Frequency shows the computing performance and utilization effi-
ciency of each DSP. One multiply accumulate is regarded as two operations. One 16-bit
operation will be computed as two 8-bit operations. Works [33,38,44] show the high DSP
performance for VGG16, but they all lack the flexibility to run different CNNs. Work [33] is
optimized only for the convolutional layers and will suffer a significant performance loss
for the FC layers. Work [42] is designed based on the 3 × 3 convolver and cannot maintain
the high performance when computing the convolution with other kernel sizes such as
1 × 1 or 5 × 5. Furthermore, they are not appliable for the irregular operations widely used
in the lightweight networks. Consequently, they cannot process the lightweight CNNs
efficiently. Work [36] achieves a very high performance for VGG16 with a lower bit width.
It also considers the lightweight networks, but still shows a 74% drop in the performance
when processing the MobilenetV2. Work [43] is specifically designed for depth-wise con-
volution, but it is also restricted by the 3 × 3 multiplier array. Moreover, other irregular
operations in the lightweight CNNs are still not considered in it. Work [39] is optimized for
the lightweight CNNs, but its performance is relatively low compared with other works.
Our work has shown a very high performance on all the tested CNNs, including the FC
layers and lightweight networks. Varied kernel sizes of 1 × 1, 3 × 3, 5 × 5 and 7 × 7 are
also included in the tested CNNs, and our work maintains the high performance when
processing them.

The MAC utilization is another significant figure to evaluate the hardware resources
efficiency of the NPU, since the MACs are the most important components to processing
the CNNs. The MAC utilization is computed as follows:

Number of MAC Operations In CNN
Number of MACs in VPU× Runtime× Frequency

It indicates the computing efficiency of the MACs in the CNN processing. Work [33]
can only achieve a high MAC utilization for convolutional layers. Work [38] shows a 97%
utilization for convolutional layers, but it drops to 86% when the FC layers are included. To
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some degree, the MAC utilization is in proportion to the GOPS/DSP/Frequency; therefore,
we can conclude that works [36,39] both have a low MAC efficiency for the lightweight
networks, even though it is not reported directly. In the work [42], 3 × 3 convolvers are
used for convolution with all kinds of kernel sizes. Its MAC utilization is only 11.1%
for a 1 × 1 kernel and 69.4% for a 5 × 5 kernel. Our work maintains a very high MAC
utilization for all the tested networks, including the FC layers and the irregular operations
in the lightweight CNNs. This proves that the MACs are used seamlessly with our pipeline
strategies for the computation flow during varied CNNs processing. For the common
convolutional layers with varied kernel sizes and strides, our work can even achieve a
100% utilization of the MACs. This indicates that the proposed pipeline strategies for the
data flow can load the data into the PE array without any suspension of the convolution
computing on the MACs.

The GOPS/W is a common figure of power efficiency. It is calculated as the throughput
divided by the dynamic power dissipation. It has a relation with the number of operations
to accomplish a specific task, the amount of used hardware resources and the utilization
efficiency, etc. In particular, all the FPGA resources used to implement the NPU will
contribute to the power consumption. When taking all kinds of FPGA resources, including
the LUTs, FFs, DSPs and BRAMs, into consideration, our work has utilized much fewer
resources than other works. The experiment results indicate that our design achieved a
high-power efficiency for varied CNNs. This is because our design was implemented with
much less hardware resource to achieve high computation throughput, and the utilization
efficiency is also high.

5.3.3. The Experimental Results of the Complete Vision Tasks

The complete modern vision tasks consist of the ISP and the CNN processing tasks. In
our design, those two tasks can be carried out concurrently in a pipelined way. To validate
this pipeline strategy, we ran the complete vision tasks and compared the performance
with the sum of each task running.

Table 3 shows the runtime for the vision tasks containing a demosaic, an 8 × 8
DCT and different CNNs, and it is compared with the sum of the respective runtime
for each task. The results show that executing the ISP tasks during the CNN processing
has produced negligible runtime overhead. Its runtime is far less than the sum of them
both. This indicates that the ISP tasks are accomplished during the CNN processing. A
high-power efficiency for MACs is maintained, which is only slightly lower than that of
the CNN processing. This proves that the ISP and CNN processing tasks can be carried out
simultaneously in our pipelined design.

Table 3. The performance of the proposed VPU on vision tasks.

Performance The CNN Used in the Vision Tasks

VGG16 MobilenetV2 MobilenetV3L ShufflenetV2

Runtime of the
vision tasks 197.7 ms 3.35 ms 3.24 ms 2.25 ms

Speed (fps) 5.05 298.5 308.6 444.3

Sum of
respective
runtime

198.3 ms 4.12 ms 3.83 ms 2.92 ms

GOPS/W 23.7 21.243 18.43 22.27

Power(W) 6.95 7.21 7.91 6.89

5.4. The Discussion

The aforementioned experiment results show that the proposed VPU can achieve
higher performance and efficiency on the normalized hardware resources compared with
the state-of-the-art works. Although this implementation of the proposed VPU may not



Electronics 2021, 10, 2989 22 of 25

outperform other works, it should be noted that the performance of the design can be
significantly improved with increased hardware resources, such as MACs, on-chip memory
and ALUs. The increase includes both a rise in the quantity and an extension in the bit-
width. For example, increasing the number of MACs in each unit to four or using the
MACs with a 16-bit width can both improve the performance of our design twofold.

Technically, our design has shown a performance measured with the GOPS-/DSP-
/Frequency that is only slightly lower than that in works [33,36]. That is because work [33]
exploits the sparsity in the activations and the performance is even higher than the ideal
maximum value of 15.36 GOPS. However, this technique will limit the flexibility of the
NPU for varied CNNs. Moreover, unlike other works, this architecture is difficult to expand
to the larger scale implementation with more hardware resources. Work [36] adopts mixed
bit-widths including 2-bits to 8-bits. Although this technique can improve the throughput,
lower bit-width may also cause a significant loss in the accuracy of some CNNs.

It should be noted that the only factor in the NPU that affects the accuracy of the
CNNs is the quantization. A lot of previous works have discussed the relation between the
bit-width of the activations and weights applied on the NPU and the accuracy of the CNNs.
It has been proven that the 8-bit quantization for weights and activations is efficient enough
for most CNNs. Thanks to the robustness of the CNNs against the bit-width reduction, the
8-bit quantization causes negligible loss in accuracy, usually less than 1%. Table 4 shows
the evaluation of the accuracy for the CNNs with 8-bit quantization. It must be noticed
that this relation is not among the research points in this work, since it has been thoroughly
studied in previous works.

Table 4. The evaluation of the Top-1 accuracy of CNNs with different bit widths.

Bit-Width CNNs

VGG16 MobilenetV3L MobilenetV2 ShufflenetV2

Float 32 bit 67.93% 75.2% 72.0% 69.4%

Fixed 8 bit 67.72% 74.1% 71.2% 68.5%

The design in this work has achieved a much higher performance in the CNN ac-
celeration than the image signal processing, as indicated in the experiment results. This
can be predicted on the fact that more hardware resources are distributed for the NPU
than the ISP unit. However, this character will not reduce the performance of the VPU for
most vision tasks. This is because the image recognition is the dominant task in the vision
systems and usually only a few ISP tasks are required for an image. Furthermore, CNN
processing always consumes much more time than the ISP. Therefore, as shown in Table 3,
the vision tasks are executed efficiently on this VPU. Moreover, the performance of this
VPU for ISP tasks can be significantly improved by simply adding more ALUs or replacing
the 8-bit ALUs with 16-bit ones.

It should be noted that the efficiency of processing the MobilenetV3-Large on our
work is slightly lower compared with other networks. This is because there are so many FC
operations in the MobilenetV3-Large that they consume more cycles than the convolution
operations in our design. Therefore, the PE array has to wait for the Row processor.
However, this condition happens very rarely because the use of FC operations in CNNs is
always very cautious and strictly limited.

6. Conclusions

This paper has proposed a hybrid VPU architecture, and a pipelined workflow based
on it. It not only integrates the NPU and the ISP unit into one unit with shared resources,
but also pipelines them for modern vision tasks. Furthermore, the NPU proposed here
has a high flexibility for various CNNs, especially the lightweight CNNs. It maintains the
high MAC utilization on all the testbenches. Additionally, much higher performance can
be achieved if implemented with more hardware resources. It should be noted that the
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VPU can also be applied to other vision systems, including sonar, infrared, terahertz, X-ray
and remote sensing imaging systems.
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