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Abstract: Channel estimation is crucial in millimeter wave (mmWave) massive multiple-input
multiple-output (MIMO) systems, especially with a few training sequences. To solve the problem
of uplink channel estimation in mmWave massive MIMO systems, a PARAFAC-based algorithm is
proposed for joint estimation of multiuser channels. The orthogonal frequency divisional multiplex-
ing (OFDM) technique is exploited to combat the frequency selective fading channels. In this paper,
the received signal at the base station (BS) is formulated as a third-order parallel factor (PARAFAC)
tensor, and then a low-complexity algorithm is designed for fast estimation of the factor matrices
related to channel parameters, thus leading to joint estimation of multiuser channel parameters via
one-dimensional search. Moreover, the Cramér–Rao Bound (CRB) results for multiuser channel
parameters are derived for evaluation. Theorical analysis and numerical results reveal that the
algorithm performs well with a few training sequences. Compared with existing algorithms, the
proposed algorithm has clear advantages both in estimation accuracy and computational complexity.

Keywords: mmWave; massive MIMO; multiuser; sparsity; PARAFAC

1. Introduction

As a key technology for 5G wireless communications, millimeter wave (mmWave)
massive multiple-input multiple-output (MIMO) has received significant attention in recent
years [1,2]. mmWave techniques provide the ability of fast speed data delivery and wide
bandwidth [3], making them valued in information ages. The large number of spatial
degrees of freedom created by the massive MIMO contribute to high user throughput
and high spectral efficiency for extended mobile broadband (eMBB). Furthermore, mas-
sive MIMO can be used to efficiently support ultra-reliable low-latency communication
(URLLC) and massive machine-type communication (mMTC) in the various types of Inter-
net of Things (IoT) connectivities [4–6]. In mmWave massive MIMO systems, large antenna
arrays implemented at the base station (BS) and mobile station (MS) are utilized to supply
adequate beamforming gains, which offers a compensation for high signal attenuation at
mmWave frequencies [7–9]. In such a context, the number of radio frequency (RF) chains is
much smaller than that of antennas due to lower hardware cost and power consumption.
Considering the RF limitations, the hybrid analog/digital precoding scheme [10–14] is
widely adopted to provide larger precoding gains. However, the overall channel state
information is hard to observe because of massive antennas and hybrid precoding struc-
tures. In practice, mmWave channels exhibit the characteristic of broad-band frequency-
selective fading (FSF) owing to the large bandwidth and distinct multipath delays [15].
While the whole bandwidth may be subject to FSF, each sub-band undergoes flat fading.
When orthogonal frequency division multiplexing (OFDM) is integrated into massive
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MIMO architectures, mmWave channels are viewed as the aggregation of a number of
parallel flat fading channels, which urges us to achieve large multiplexing and diversity
gains [16–18] with a large number of spatial degrees of freedom. Nevertheless, the overall
system performance still hugely depends on the channel estimation, which is a tricky task
for the channel subspace sampling limitation [19,20].

In the aspect of channel estimation in massive MIMO systems, several relevant
schemes [21–25] have been developed in various scenarios. In general, massive MIMO
channels are efficiently parameterized with a series of associated parameters including
fading coefficients, angles of arrival or departure (AoAs/AoDs) and delays. Owing to
the intrinsic sparsity of mmWave channels, some approaches [10], Refs. [26–29] based on
compressing sensing (CS) techniques convert the issue of channel estimation into the re-
covery of a line sparse signal. For example, a conventional CS-based algorithm is proposed
for channel estimation with much training overhead reduction in a multiuser mmWave
system [28]. Further in the work [10], with a novel hierarchical multi-resolution code-
book, an adaptive CS-based algorithm is proposed to estimate the channel parameters
both in single-path and multipath mmWave environments. According to the CS-based
methods, the continuous parameter space is discretized into a finite of grid points [30–32],
and the estimated angles are assumed to lie on the prespecified grid points. In fact, actual
angles may be not in accordance with this assumption, which seriously degrades the
channel estimation performance. In addition, some tensor decomposition-based methods
stand out in the fields of mmWave channel estimation. The work [33] achieves the joint
channel parameter estimation via parallel factor (PARAFAC) analysis in massive MIMO
systems. As the improvement of [33], Ref. [34] proposes a more accurate PARAFAC-based
estimator in the presence of pilot contamination. For the joint multiuser channel estima-
tion, [35] proposes a layered pilot transmission scheme and decomposes the problem of
multiuser channel estimation into a number of problems of single-user channel estimation.
In the aforementioned scenarios [33–35], simulations demonstrate that the tensor-based
algorithms have better estimation performance compared with these CS-based methods.
However, most of the existing works concentrate on the narrowband systems while realistic
mmWave channels exhibit the broad-band FSF. The work [36] proposes a simultaneous
orthogonal matching pursuit (SOMP) scheme and regards the broadband mmWave channel
estimation as a multiple measurement vector (MMV) problem with a common support
(i.e., the channel support at different frequencies is assumed to be the same). Unlike the
proposed scheme in [36], the work [37] estimates the support of the angle-domain channel
at some frequencies independently by the orthogonal matching pursuit (OMP) algorithm
and combines them into the common support at all frequencies. Moreover, a CANDE-
COMP/PARAFAC (CP) decomposition-based method for downlink channel estimation
is proposed in a mmWave MIMO-OFDM system, where the received signal at individual
user is formulated as a low-rank PARAFAC tensor. So far, to the best of our knowledge,
there are few tensor decomposition-based methods for joint multiuser mmWave channel
estimation, especially over the FSF channels.

In our paper, we consider the broad-band FSF channel and address the problem
of multiuser uplink channel estimation in a massive MIMO system, where the hybrid
precoding strategy is adopted. Due to the sparsity of mmWave channels, a PARAFAC
decomposition-based scheme is proposed for multiuser mmWave channel estimation.
In the successive time slots, all the MSs simultaneously transmit respective pilots to a
common BS, and the signals received at the BS can be fitted in a low-rank PARAFAC
structure. Table 1 presents some reviewed works along their main distinctive characteristics
to better position our present work. Unlike the system [38] where individual users are
considered for downlink transmission, our proposed algorithm concentrates on the joint
estimation of multiuser uplink channels, which leads to wider identifiability and more
relaxed requirements for unique PARAFAC decomposition. The main contributions of our
work are summarized as follows.
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(1) For the sparsity of mmWave FSF channels, the signals transmitted from multiple
users can be modeled as a low-rank PARAFAC structure at the BS, which promotes the joint
channel estimation in contrast with [38]. It’s worth noting that the massive MIMO channel
is characterized with path gains, AoAs/AoDs and delays. This tensor modeling not only
takes full advantage of diversities in space, time and frequency dimensions, but also has
the benefits of multidimensional structures.

(2) In this context, a PARAFAC decomposition-based algorithm is proposed for
accurate estimates of multiuser mmWave channels parameters including path gains,
AoAs/AoDs and delays. The proposed algorithm consists of two stages. In the first
stage, the accelerated trilinear alternating least squares (ATALS) algorithm is put forward
for efficient PARAFAC decomposition. In the second stage, we make further efforts to
extract unknown channel parameters of multiple users from factor matrices. The unique-
ness of PARAFAC decomposition is also studied, which gives the guidance on the design
of precoding and combining matrices. What’s more, our proposed scheme has wider
identifiability in terms of unique PARAFAC decomposition.

(3) To provide a benchmark for system evaluation, the Cramér -Rao Bound (CRB)
results for channel parameters of multiple users are derived. Simulations reveal that the
mean square errors (MSEs) of channel parameters obtained by our algorithm are nearly
close to their corresponding CRB results, which indicates our proposed PARAFAC-based
algorithm yields accurate channel estimation. While our proposed scheme is put forward
at the assumption of uniform linear array (ULA) antennas, it is also suitable for uniform
planar array (UPA) antennas.

(4) The computational complexity of the proposed scheme is analyzed. For compari-
son, we also analyze the computational complexities of some CS-based channel estimation
schemes including the SOMP [36], OMP [37] and adaptive CS [10] algorithms. Numerical
results demonstrate that our proposed algorithm outperforms its counterparts in estimation
accuracy and computational complexity, particularly with a substantial training overhead
reduction. Specially, our proposed scheme still performs well, even though the number of
users is large.

Table 1. Some reviewed channel estimation works.

Works System Scenario Algorithm

[36] multiuser mmWave massive MIMO-OFDM system SOMP
[37] mmWave massive MIMO-OFDM system OMP
[38] mmWave massive MIMO-OFDM system adaptive CS
[10] mmWave massive MIMO system CP decomposition-based method
our work multiuser mmWave massive MIMO-OFDM system PARAFAC-based channel parameter estimation

The rest of this paper is organized as follows. Section 2 first presents the fundamentals
of PARAFAC model and formulates the PARAFAC model of multiuser mmWave massive
MIMO-OFDM architecture. The uniquess issue of constructed PARARFAC model is also
discussed in Section 2. In Section 3, a two-staged PARAFAC-based algorithm is proposed
for multiuser mmWave channel estimation. The CRB derivation are given in Section 4.
Section 5 presents some numerical results for the system performance analysis. Finally,
some conclusions are drawn in Section 6.

Notation : Scalars, vectors, matrices and tensors are denoted by lowercase, boldface lower
case, boldface uppercase and calligraphic uppercase letters, e.g., a, a, A and A, respectively.
AT, AH, A∗ and A† denote the transpose, conjugate transpose, inverse and pseudo-inverse of
matrix A, respectively. The operators �, ⊗ and ◦ denote the Khatri-Rao, Kronecker and outer
products, respectively. IK denotes the K× K identity matrix and ‖·‖F denotes the Frobenius
norm. The operator diag(a) constructs a diagonal matrix with the vector a and the operator
vec(·) changes a matrix into a column vector by stacking the columns. For convenience, all
the abbreviations used in this paper are given in Abbreviations .
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2. System Model

As shown in Figure 1, we consider a multiuser mmWave massive MIMO-OFDM
system composed of BS and U MSs. The BS is equipped with N antennas and R RF chains,
and the u-th MS is equipped with Mu antennas and Ru = 1 RF chain. Since hybrid
precoding structure is adopted in this scenario, the number of RF chains is less than that of
antennas, i.e., R 6 N, Ru 6 Mu. Specially, the number of antennas for each MS is assumed
to be equal, i.e., Mu = M, ∀u = 1, · · · , U. The number of subcarriers for transmission is
assumed to be K.

R

U

M

U
M

N

BB

Figure 1. Architecture of multiuser mmWave massive MIMO-OFDM system.

In the uplink, all the MSs simultaneously transmit respective pilot signals to the
common BS via a set of K subcarriers. As mmWave channels exhibit the inherent feature
of sparsity, a geometric channel model with finite scatterings is utilized to account for
mmWave channels. In terms of the uplink transmission via the k-th subcarrier, the chan-
nel of Lu scatterings from the u-th MS to BS can be expressed as Hu, k ∈ CN×M in the
frequency domain

Hu, k =
Lu

∑
lu=1

Hu, lu exp(−j2π fs τu, lu k/K), (1)

with the lu-th path
Hu,lu = βu,lu aBS(ϕu,lu)a

T
MS(ψu,lu) ∈ CN×M, (2)

for lu = 1, · · · , Lu, u = 1, · · · , U, where fs is the sampling rate, Lu denotes the number
of propagations and τu, lu denotes the time delay of the lu-th path. In this setting of Lu
scatterings, a single propagation path Hu, lu is parameterized by a set of channel parameters
(βu, lu , ϕu, lu , ψu, lu), where βu, lu , ϕu, lu and ψu, lu denote the complex gain, AoA and AoD
of the lu-th path, respectively. The vectors aBS(ϕu, lu) and aMS(ψu, lu) are the receive and
transmit steering vectors, respectively. For the ULA, the steering vectors are given by

aBS(ϕu, lu) =
1√
N

[
1, ej(2π/λ)d sin(ϕu, lu ) , · · · , ej(N−1)(2π/λ)d sin(ϕu, lu )

]T
∈ CN×1, (3)

aMS(ψu, lu) =
1√
M

[
1, ej(2π/λ)d sin(ψu, lu ) , · · · , ej(M−1)(2π/λ)d sin(ψu, lu )

]T
∈ CM×1, (4)

where λ is signal wavelength and d is the antenna spacing. Assume that ABS, u =
[aBS(ϕu, 1), · · · , aBS(ϕu, Lu)] ∈ CN×Lu , AMS, u = [aMS(ψu, 1), · · · , aMS(ψu, Lu)] ∈ CM×Lu ,
βu, k = [βu, 1, k, · · · , βu, Lu , k] ∈ C1×Lu with the term βu, lu , k = βu, lu exp(−j2π fs τu, lu k/K),
we derive

Hu, k = ABS, u diag(βu, k)A
T
MS, u, (5)

2.1. PARAFAC Model

In this subsection, we give a brief overview of PARAFAC model and discuss the
unique issue of PARAFAC decomposition. The PARAFAC decomposition amounts to
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decomposing the N-way tensor X ∈ CI1×···×IN into a sum of components, each component
being a rank-one tensor. For a three-way tensor X ∈ CI×J×K of R components, PARAFAC
decomposition can be expressed as

X =
R

∑
r=1

ar ◦ br ◦ cr ⇔ [X ]i, j, k =
R

∑
r=1

[A]i, r[B]j, r[C]k, r, (6)

where A = [a1, · · · , aR], B = [b1, · · · , bR] and C = [c1, · · · , cR]. For brevity, we have the
expression X = [[A, B, C]]. Alternatively, it can be written as the mode-n product:

X = I3,R×1A×2B×3C, (7)

where I3,R is the three-way identity tensor of dimensions R × R × R which represents
a diagonal hypercubic tensor with its nonzero elements δi,j,k = 1 when and only when
i = j = k. Furthermore, slicing X along each dimension comes to three distinct slabs
X (i, :, :) = BDi(A)CT , X (:, j, :) = ADj(B)CT and X (:, :, k) = ADk(C)BT . Arranging
the slices in some manner leads to the three corresponding matrix unfoldings: X(1) =
(C� B)AT ∈ CKJ×I , X(2) = (C�A)BT ∈ CI K×J and X(3) = (B�A)CT ∈ CI J×K.

Extended to a N-way tensor X ∈ CI1×···×IN of rank R, PARAFAC analysis has
the form:

X = IN,R ×N
n=1 A(n), (8)

with its element [X ]i1, ··· , iN
=

R
∑

r=1

N
∏

n=1

[
a(n)r

]
in

, where A(n) ∈ CIN×R, in = 1, · · · , IN , n =

1, · · · , N, r = 1, · · · , R. Furthermore, the columns of matrix A(n) are assumed to be
normalized, i.e., with a unit norm, for 1 6 n 6 N, we derive that

[X ]i1, ··· , iN
=

R

∑
r=1

gr

N

∏
n=1

[
A(n)

]
in , r

, (9)

where the identity tensor IN,R is replaced by the diagonal tensor G ∈ CR×···×R whose
nonzero elements are equal to scaling factors gr lying on its diagonal.

Then we investigate the uniqueness of PARAFAC-N model in (9). Since the condition
for essential uniqueness of PARAFAC model involves the notion of k-rank of a matrix,
we first recall the definition of k-rank. The k-rank of a matrix A ∈ CI×R is denoted by
kA, where kA = r on condition that any r columns of A are linearly independent, where
k-rank stands for Kruskal-rank. It can be shown by using the identifiability theorem for the
PARAFAC-N model if

R

∑
r=1

kA(n) > 2R + (N − 1), (10)

then X ∈ CI1×···×IN is essentially unique and its loading matrices A(n) ∈ CIn×R, n =
1, · · · , N are unique to column permutation and scaling. Hence, there exists an alternative
set of matrices Â(n) ∈ CIn×R with the relation Â(n) = A(n)Π∆(n), for n = 1, · · · , N, where

Π is a permutation matrix and ∆(n) is a nonsingular diagonal matrix such as
N
∏

n=1
∆(n) = IR.

2.2. Constructed PARAFAC Model

According to the upstream communication protocol, multiple MSs encode their respec-
tive pilots to the BS through the FSF channels via K subcarriers in P successive time slots.
At the destination, the BS employs the combining vectors to detect the transmitted signals
from the MSs. Define su, k ∈ CRu×1 as the pilot for the u-th MS with k-th the subcarrier,
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and e(p)
u, k ∈ CM×Ru as the precoding vector in the p-th time slot, the signal vector received

at the BS in the p-th time slot can be expressed as

x(p)
k =

U

∑
u=1

Hu, ke(p)
u, ksu, k + v(p)

k , (11)

where v(p)
k is additive white Gaussian noise. Considering the hybrid precoding strcuture,

the BS employs the combining vectors
{

f(p)
r, k

}R

r=1
to detect the received signal x(p)

k . For the
r-th RF chain at the BS, we derive

y(p)
r, k = f(p)T

r, k

U

∑
u=1

Hu, ke(p)
u, ksu, k + v(p)

r, k , (12)

where y(p)
r, k is the received signal observed from the r-th RF via the k-th subcarrier in the p-th

time slot, and v(p)
r,k is additive White Gaussian noise. Arrange the R combining vectors at

the BS to form the composite combining matrix F(p)
k ∈ CR×N , i.e., F(p)

k =
[
f(p)

1, k , · · · , f(p)
R, k

]T
,

which is composed of baseband combiner F(p)
BB, k ∈ CR×R and RF combiner F(p)

RF ∈ CN×R,

i.e., F(p)
k = F(p)

RF F(p)
BB, k ∈ CN×R. Similarly, the combined precoder e(p)

u, k at the u-th MS is

composed of baseband precoder e(p)
MM, u, k ∈ CRu×Ru and RF precoder e(p)

RF, u ∈ CM×Ru ,

i.e., e(p)
u, k = e(p)

RF, ue(p)
MM, u, k ∈ CM×Ru . It should be mentioned that the elements of RF precod-

ing/combining matrices e(p)
RF, u and F(p)

RF meet the constant modulus property. In addition,
all K subcarriers share the same RF precoding/combining in consideration of flat analog
precoders which are fixed over the band.

Our goal is to achieve reliable estimation of channel parameters (βu, lu , ϕu, lu , ψu, lu , τu, lu)

from y(p)
r, k with as few pilots as possible. Since the elements of matrices e(p)

u, k and F(p)
k are

randomly chosen from a unit cicrle, we assume that e(p)
u, k = e(p) and F(p)

k = F. Substituting
(5) into (12) yields

y(p)
r, k = fT

r

U

∑
u=1

ABS, u diag(βu, k)A
T
MS, ue(p)su, k + v(p)

r, k

= fT
r ABS diag(βk)A

T
MSe(p) + v(p)

r, k ,

(13)

where Γ = ∑U
u=1 Lu, ABS = [ABS, 1, · · · , ABS, U ] ∈ CN×Γ, AMS = [AMS, 1, · · · , AMS, U ] ∈

CM×Γ, βk = [β1, ks1, k, · · · , βU, ksU, k] ∈ C1×Γ. Define Zk = ABS diag(βk)AT
MS, Zk corre-

sponds to the frontal slice of third order PARAFAC model Z ∈ CN×M×K. We derive that

Z = I3, R×1ABS×2AMS×3B, (14)

where B =
[

β1
T , · · · , βK

T
]T
∈ CK×Γ. Clearly, the aggregate channel tensor Z ∈ CN×M×K

includes all the channels of U MSs via K subcarriers with its three modes standing for the
number of antennas at the BS, antennas at the MS and subcarriers for transmission.

Collecting the received signal y(p)
r, k from R RF chains contributes to

y(p)
k =

[
y(p)

1, k , · · · , y(p)
R, k

]T
∈ CR×1, and arranging the vectors

{
y(1)

k , · · · , y(P)
k

}
in columns

leads to the received signal at the k-th subcarrier. By concatenating the received data via K
subcarriers, a three-way signal tensor Y ∈ CR×P×K can be expressed as

Y = I3,R×1FBS×2EMS×3B + V , (15)
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where FBS = FABS ∈ CR×Γ, B ∈ CK×Γ, EMS = ETAMS ∈ CP×Γ and E =
[
e(1), · · · , e(P)

]
∈

CM×P. Notice that Y ∈ CR×P×K and V ∈ CR×P×K are the signal and noise tensors character-
ized with three dimensions standing for numbers of RF chains, time slots and subcarriers in
space, time and frequency domains, respectively. Moreover, the three forms of unfolding Y(1),
Y(2) and Y(3) are given by

Y(1) = (B� EMS)FT
BS + V(1) ∈ CPK×R,

Y(2) = (B� FBS)ET
MS + V(2) ∈ CRK×P,

Y(3) = (EMS � FBS)BT + V(3) ∈ CRP×K,

(16)

where the slices V(1) ∈ CPK×R, V(2) ∈ CRK×P and V(3) ∈ CRP×K represent the three forms
of unfolding of tensor V ∈ CR×P×K.

Since the number of resolvable paths Kpath from MS to BS approximately satisfies
the Poisson distribution Kpath ∼ max{Poisson(λ), 1} with λ = 1.8 when mmWave works
at 28 GHz [39], each MS can be assumed to have 1 or 2 scatterings in the mmWave
communications. Thus, the value of Γ is usually relatively smaller to the value of each
dimension {R, P, K}, which enables the signal tensor Y ∈ CR×P×K to exhibit a low-rank
PARAFAC structure.

2.3. Uniqueness Issue

According to the above derivations, it has been proven that the received signal ten-
sor Y ∈ CR×P×K has a low-rank PARAFAC structure. In this subsection, we study the
uniqueness of PARAFAC analysis and provide some sufficient conditions for the unique
decomposition of Y ∈ CR×P×K.

Inequality (10) establishes the sufficient condition for the uniqueness of PARAFAC-N
model. In the case of our mmWave massive MIMO architecture, if the sum of k-ranks satisfies

kFBS + kEMS + kB > 2Γ + 2, (17)

there exists the unique triple
(
F̂BS, ÊMS, B̂

)
up to permutation and scaling ambiguities,

i.e., F̂BS = FBSΠ∆(1), ÊMS = EMSΠ∆(2), B̂ = BΠ∆(3), where ∆(1)∆(2)∆(3)= I and F̂BS,
ÊMS and B̂ are unique estimates of FBS, EMS and B. In the generic case, the sufficient
condition becomes

min(R, Γ) + min(P, Γ) + min(K, Γ) > 2Γ + 2. (18)

This indicates that matrices FBS, EMS and B must be of full k-rank for the reason that
the k-rank is always less than or equal to the rank, i.e., kA 6 rank(A) 6 min(I, J), for any
matrix A ∈ CI×J .

Then we make a profound study of the k-ranks of (FBS, EMS, B). Considering the ULA
implemented at the BS and MSs, matrices ABS and AMS have the Vandermonde structure,
and thus we have kABS = min(N, Γ), kAMS = min(M, Γ). For the requirement of full
k-rank of FBS and EMS, an ingenious design of combining matrix F and precoding matrix E
becomes an indispensable factor. In practice, both FRF and e(p)

RF are accomplished by analog
phase shifters, which only change the phase of signals. Therefore, the constant modulus
constraint is imposed on the elements of FRF and e(p)

RF . Since the total transmission power

constraint is enforced by normalizing e(p)
MM such that

∥∥∥e(p)
RF e(p)

MM

∥∥∥2

F
= M, we assume that the

entries of combining matrix F and precoding matrix E are chosen uniformly from a unit
circle by a constant, i.e., [F]i1, j1 = 1√

N
ejυi1, j1 , 1 6 i1 6 R, 1 6 j1 6 N, [E]i2, j2 = 1√

M
ejυi2, j2 ,

1 6 i2 6 M, 1 6 j2 6 P, where υi1, j1 and υi2, j2 follow the independent and identically
distribution (i.i.d) uniform distribution U ∼ [0, 2π). Thus, the entries of FBS and EMS
are viewed as i.i.d Gaussian variables, and we have kFBS = min(R, Γ), kEMS = min(P, Γ).



Electronics 2021, 10, 2983 8 of 21

In addition, due to the shift-invariant vector d(τu, lu) of all U MSs, B is full k-rank, i.e., kB =

min(K, Γ), where d(τu, lu) = [exp(−j2π fsτu, lu /K), · · · , exp(−j2π fsτu, lu K/K)]T can be
seen as a frequency-domain steering vector pointing towards the delay τu,lu .

In practice, the number of propagation paths Γ is largely limited for mmWave circum-
stances of poor scatterings. Moreover, the scatterings appear in groups with similar delays,
AoAs and AoDs because of massive antennas, which limits effective numbers of active
paths. Generally, the number of subcarriers K is larger than Γ, which turns the uniqueness
condition into

min(R, Γ) + min(P, Γ) + min(K, Γ)

= min(R, Γ) + min(P, Γ) + Γ > 2Γ + 2→ min(R, Γ) + min(P, Γ) > Γ + 2.
(19)

From this condition, we can conclude that the BS has the potiential to achieve the
acurrate channel estimation in as few as two successive time slots, with the help of Γ
combining vectors. Hence, our proposed scheme can realize the accurate multiuser channel
estimation with much reduced training overhead. However, a slightly larger pair of values
for {R, P} is chosen for better performance in our simulations.

3. Proposed PARAFAC Decomposition-Based Channel Estimation Scheme

In the presence of inescapable white noise, we are seeking for some appropriate
solutions to the channel estimation issue. To make the most of low-rank PARAFAC
strcuture of tesnsor Y , an efficient and low-complexity multiuser channel estimation via
PARAFAC decomposition is put forward. The algorithm is divided into two stages. In the
first stage, three factor matrices

(
F̂BS, ÊMS, B̂

)
including channel parameters are uniquely

decomposed from Y by the proposed ATALS algorithm. In the second stage, channel
parameters

(
β̂u, lu , ϕ̂u, lu , ψ̂u, lu , τ̂u, lu

)
are extracted from these factor matrices through the

one-dimensional search method.

3.1. The ATALS Algorithm

As the workhorse technique for low-rank decomposition of three and higher di-
mensions, the alternating least squares (ALS) algorithm is widely applied in the field of
PARAFAC analysis. In order to estimate the channel associated matrices FBS, EMS and B in
an efficient way, the ATALS algorithm is proposed as a speed-up version of the classical
ALS algorithm. In our simulations, all the channel state information is assumed to be
unknown from the MSs or the BS, and the numbers of propagation paths at each MS,
the matrices E and F are provided in advance.

In terms of the ALS algorithm, the criteria is that when estimating each matrix in
the LS algorithm, the other matrices should maintain the previous estimation until the
following cost function converges to the minimum value. At the i-th iteration, the cost
function δ(i) is expressed as:

δ(i) =

∥∥∥∥Y(1) − (B̂(i) � Ê(i)
MS)F

(i)T

BS

∥∥∥∥2

F
, (20)

where F̂(i)
BS, Ê(i)

MS and B̂(i) are the estimated values of FBS, EMS and B acquired from the i-th
iteration, respectively. At the i-th iteration, the factor matrices are updated as follows:

F(i)
BS =

[(
B̂(i−1) � Ê(i−1)

MS

)†
Y(1)

]T
, E(i)

MS =

[(
B̂(i−1) � F̂(i)

BS

)†
Y(2)

]T
, B(i) =

[(
Ê(i)

MS � F̂(i)
BS

)†
Y(3)

]T
(21)

where F̂(i−1)
BS , Ê(i−1)

MS and B̂(i−1) are the estimated values of FBS, EMS and B at the (i− 1)-th
iteration, respectively. However, in some cases, simulations reveal that the convergence
is slow and the estimates of FBS, EMS and B show an increasing tendency towards a
certain direction.
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To speed up the convergence of the ALS algorithm, a line search process of calcu-
lating the linear interpolations for (FBS, EMS, B) is carried out before the ALS algorithm.
The interpolated values for the i-th iteration are expressed as

F̂(new)
BS = F̂(i−2)

BS + ρ(F̂(i−1)
BS − F̂(i−2)

BS ), (22)

Ê(new)
MS = Ê(i−2)

MS + ρ(Ê(i−1)
MS − Ê(i−2)

MS ), (23)

B̂(new) = B̂(i−2) + ρ(B̂(i−1) − B̂(i−2)), (24)

where ρ is the relaxation factor and the differences W(i)
FBS

= F̂(i−1)
BS − F̂(i−2)

BS , W(i)
EMS

= Ê(i−1)
MS −

Ê(i−2)
MS and W(i)

B = B̂(i−1) − B̂(i−2) denote the search directions at the i-th iteration. To speed
up the convergence, we choose an appropriate step size ρ(ρ > 1) [40], which is viewed
as ρ = 1 in the classic ALS algorithm. Assume that ρ = i1/α and α = 3, the cost function
comes to

δ
(i)
ρ =

∥∥∥∥Y(1) − (B̂(new) � Ê(new)
MS )F(new)T

BS

∥∥∥∥2

F

=

∥∥∥∥Y(1) − ((B̂(i−2) + ρW(i)
B )� (Ê(i−2)

MS + ρW(i)
EMS

))(F(i−2)
BS + ρW(i)

FBS
)

T
∥∥∥∥2

F
.

(25)

The relaxation factor ρ = i1/α is accepted on the condition that δ
(i)
ρ 6 δ(i), and then

Ê(new)
MS , Ê(new)

MS and B̂(new) are chosen for the i-th iteration in the following ALS algorithm.

Otherwise, F̂(i−1)
BS , Ê(i−1)

MS and B̂(i−1) are chosen for further estimates at the i-th iteration.
Nevertheless, if this acceleration experiences three consecutive failures, a smaller step size
should be chosen as ρ = i1/(α+1).

3.2. Channel Parameter Extraction

On the basis of estimates
(
F̂BS, ÊMS, B̂

)
from the previous stage, we aim to extract

the channel parameters from these estimated factor matrices in this subsection. With the
permutation and scaling ambiguities, we have

F̂BS = FBSΠ∆(1), ÊMS = EMSΠ∆(2), B̂ = BΠ∆(3), (26)

where Π is the permutation ambiguity. ∆(1), ∆(2) and ∆(3) are the diagonal scaling matrices
with ∆(1)∆(2)∆(3) = I. To achieve the estimation of the channel parameters of all U MSs,
we resort to a one-dimensional search. For the lu-th path of the u-th MS, we obtain the
estimated channel parameters

(
ϕ̂u, lu , ψ̂u, lu , τ̂u, lu

)
:

ϕ̂u, lu = arg max
ϕu, lu

∣∣∣[F̂BSeu, lu
]H

[aBS(ϕu, lu)]
∣∣∣∥∥F̂BSeu, lu

∥∥
2

∥∥aBS(ϕu, lu)
∥∥

2

, (27)

ψ̂u, lu = arg max
ψu, lu

∣∣∣[ÊMSeu,lu
]H

[aMS(ψu, lu)]
∣∣∣∥∥ÊMSeu,lu

∥∥
2

∥∥aMS(ψu, lu)
∥∥

2

, (28)

τ̂u, lu = arg max
τu,lu

∣∣∣[B̂eu, lu
]H

[d(τu, lu)]
∣∣∣∥∥B̂eu, lu

∥∥
2

∥∥d(τu, lu)
∥∥

2

, (29)

where eu, lu is the l-th unit coordinate vector with l =
u−1
∑

i=1
Li + lu. Relying on the estimates

ϕ̂u, lu and ψ̂u, lu of U MSs, we can obtain the scaling matrices ∆(1) and ∆(2). According to the
equality ∆(1)∆(2)∆(3) = I, matrix ∆(3) can be computed. With the known parameters τu, lu
and ∆(3), the complex gain βu, lu fianlly can be obtained. So far, we are capable of estimating
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the channel parameters
(

β̂u, lu , ϕ̂u, lu , ψ̂u, lu , τ̂u, lu
)

of U MSs, and then the channel tensor Z
can be recovered. The detailed steps of our proposed algorithm are given in Algorithm 1:

Algorithm 1 PARAFAC decomposition-based channel estimation algorithm
Input: Received tensor Y , precoding matrix E, combining matrix F, one-dimensional search
number J, the number of paths Lu of U MSs and error threshold ε.
Output: Estimates β̂u, lu , ϕ̂u, lu , ψ̂u, lu and τ̂u, lu .
First stage (the ATALS algorithm):
Initialization: Randomly initialize F̂(0)

BS , F̂(1)
BS , B̂(0), B̂(1), Ê(0)

MS, Ê(1)
MS. Set i = 2, α = 3 and

δ(0) = ∞.
Step 1.1. Compute δ

(i)
ρ from (25) with ρ = i1/α, and compare it with δ(i) from (20).

If δ
(i)
ρ 6 δ(i), construct F̂(new)

BS , Ê(new)
MS , B̂(new) with ρ = i1/α;

else, construct F̂(new)
BS , Ê(new)

MS , B̂(new) with ρ = 1.

Step 1.2. Update F̂(i)
BS using B̂(new), Ê(new)

MS , Y(1) by F̂(i)
BS =

[
(B̂(new) � Ê(new)

MS )
†
Y(1)

]T
.

Step 1.3. Update Ê(i)
MS using B̂(new), F̂(i)

BS, Y(2) by Ê(i)
MS =

[
(B̂(new) � F̂(i)

BS)
†
Y(2)

]T
.

Step 1.4. Update B̂(i) using Ê(i)
MS, F̂(i)

BS, Y(3) by B̂(i) =

[
(Ê(i)

MS � F̂(i)
BS)

†
Y(3)

]T
.

Step 1.5. Compute the new error δ(i). If
∣∣∣δ(i) − δ(i−1)

∣∣∣/δ(i) 6 ε, then end.
Otherwise, set i = i + 1 and go to Step 1.1..
Second stage (Channel parameter extraction via one-dimension search):
for u = 1, · · · , U, and for lu = 1, · · · , LU
Step 2.1. Estimate the AoA ϕ̂u, lu by (27) with ϕj ∈ [0, 2π], 1 6 j 6 J.
Step 2.2. Estimate the AoD ψ̂u, lu by (28) with ψj ∈ [0, 2π], 1 6 j 6 J.
Step 2.3. Estimate the delay τ̂u,lu by (29) with τj ∈ [0, τmax], 1 6 j 6 J.
Step 2.4. Compute the diagonal matrices ∆(1), ∆(2) and ∆(3) .
Step 2.5. Estimate the path gain β̂u, lu according to B̂ = BΠ∆(3).

4. Cramér–Rao Bound Deriavtion

In this section, the derivation of CRB results of channel parameters (βu, lu , ϕu, lu , ψu, lu , τu, lu)
is given. As known to all, the CRB is a lower bound of the variance of arbitrary unbiased
estimator [41], which in turn makes it a reliable benchmark. In this system, the derived CRB
results provide a lower bound on the channel prediction error. Therein, the covariance of any
biased estimator of the canonical parameter vector η satisfies

Cov(η) > Ω−1(η), (30)

where Ω(η) is the Fisher information matrix.
In view of three equivalent forms of Y in (16), the entries of noise matrices V(1), V(2)

and V(3) are i.i.d zero mean, circularly symmetric complex Gaussian noise, of variance σ2.
As a result, the log-likelihood function of signal tensor Y is expressed as

ln L(Y) = −RPK ln
(

πσ2
)
− 1

σ2

R

∑
r=1

∥∥∥y(1)
r − (B� EMS)f

(1)
r

∥∥∥2

2

= −RPK ln
(

πσ2
)
− 1

σ2

P

∑
p=1

∥∥∥y(2)
p − (B� FBS)e

(2)
p

∥∥∥2

2

= −RPK ln
(

πσ2
)
− 1

σ2

K

∑
k=1

∥∥∥y(3)
k − (EMS � FBS)b

(3)
k

∥∥∥2

2
,

(31)
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where y(1)
r , y(2)

p and y(3)
k represent the r-th, p-th, k-th column of Y(1), Y(2) and Y(3), re-

spectively; f(1)r , e(2)p and b(3)
k represent the r-th, p-th, k-th column of FT

BS, ET
MS and BT ,

respectively. The matrices FBS, EMS and B contain unknown parameter sets {ϕu}U
u=1,

{ψu}U
u=1 and {βu, τu}U

u=1, respectively. Define

ϕu = [ϕu, 1, · · · , ϕu, Lu ], ψu = [ψu, 1, · · · , ψu, Lu ], βu = [βu, 1, · · · , βu, Lu ], τu = [τu, 1, · · · , τu, Lu ],

and collect the vectors (βu, ϕu, ψu, τu) for all U MSs, we derive the parameter vector η

η = [β1, · · · , βU , ϕ1, · · · , ϕU , ψ1, · · · , ψU , τ1, · · · , τU ] ∈ C1×4 Γ,

which consits of all the unknown channel parameters. Furthermore, the log-likelihood
function is written as ln L(η) = ln L(Y). Thereby, the complex Fisher information matrix is
given by

Ω(η) = E

{(
∂ ln L(η)

∂η

)H(∂ ln L(η)
∂η

)}

=


Ωββ Ωβϕ Ωβψ Ωβτ

Ωϕβ Ωϕϕ Ωϕψ Ωϕτ

Ωψβ Ωψϕ Ωψψ Ωψτ

Ωτβ Ωτϕ Ωτψ Ωττ

 (32)

Any matrix block of Ω(η) ∈ C4 Γ×4 Γ can be expressed as Ωxy ∈ CΓ×Γ, where x and y
represent any symbol of (β, ϕ, ψ, τ). The (l1, l2)-th element of Ωxy is expressed as

[Ωxy]l1,l2 = E

{
∂ ln L(η)
∂x∗u1, lu1

∂ ln L(η)
∂yu2, lu2

}
. (33)

where l1 =
u1−1

∑
i=1

Li+ lu1 , lu1 = 1, · · · , Lu1 , for u1 = 1, · · · , U ; l2 =
u2−1

∑
i=1

Li+ lu2 , lu2 =

1, · · · , Lu2 , for u2 = 1, · · · , U.
Further precise derivation can be found in the Appendix A.

5. System Performance Analysis
5.1. Analysis of Computational Complexity

In this subsection, we analyze the computational complexity of our proposed PARAFAC
decomposition-based algorithm. Since the traditional CS-based methods are common and
effective solutions to the problem of mmWave channel estimation, we compare our method
with the SOMP, OMP and adaptive CS-based algorithms.

As shown in Table 2, the overall computational complexity of our proposed algorithm
consists of two parts. In the first stage, the major computational task is the ATALS algorithm,
which is an iterative algorithm in Step 1.2.–Step 1.4. at each iteration. Take the Step 1.2.
for example, to compute the matrix F̂(i)

BS at the i-th iteration, this step has the complexity
in order of O

(
RPKΓ + RPKΓ2 + Γ3), which is the same for Step 1.3. and Step 1.4.. In the

second stage, the complexity mainly lies in the one-dimensional searching (27) - (29) for
channel paremeters of each path. The calculation of delay τu, lu has the complexity in
order of O(JK) for each path, similarly for the calculation of AoAs and AoDs. The total
number of paths Γ is so small that the main complexity order for the one-dimensional
search can be ignored. Finally, the overall computational complexity is represented as
O
(

RPKΓ + RPKΓ2 + Γ3).
As can be seen from Table 2, the complexity of the SOMP, OMP and adaptive CS-

based algorithms can finally be written as O
(

RPKΓ2) + O(RPMUNKΓ), O
(

RPKΓ3) +
O(RPMUNKΓ) andO

(
SRPKΓ2)+O(SRPMNKΓ), respectively. S is the number of adap-

tive stages for each path estimation referred in [10]. Considering the smaller value of
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Γ, theoretical analysis shows that our proposed algorithm has a lower computational
complexity than the SOMP, OMP and adaptive CS-based algorithms. In our simulations,
the average run time of the four algorithms is also recorded for comprehensive comparison.

Table 2. Computational complexity of respective algorithms.

Algorithm Complexity

SOMP O
(

RPKΓ2)+O(RPMUNKΓ)

OMP O
(

RPKΓ3)+O(RPMUNKΓ)

Adaptive CS O
(
SRPKΓ2)+O(SRPMNKΓ)

Proposed First stage O
(

RPKΓ + RPKΓ2 + Γ3)
Second stage O(JK)

Total O
(

RPKΓ + RPKΓ2 + Γ3)
5.2. Simulation Results

In this subsection, numerical results prove the superiority of our proposed algorithm
over other CS-based algorithms through computer emulation. For convenience, system
parameter settings in our simulations are represented in Table 3. In this context, the BS
and the MSs are equipped with the ULA with N = 64 and M = 32, respectively. The total
number of transmission subcarriers is assumed to be K = 128. The carrier frequency and
the sampling rate are set as fc = 28 GHz and fs = 0.25 GHz, respectively. The separation
between antenna elements d is half of signal wavelength λ. According to the wideband
geometric channel model, the mmWave channel parameters are set as follows: βu,lu ∼
CN (0, 1), ϕu,lu

∼ [0, 2π], ψu,lu
∼ [0, 2π], τu,lu

∼ [0, τmax] with the maximum delay τmax =
100 ns. In addition, we assume a reasonably large signal-to-noise ratio (SNR) range of 0dB
to 30dB at the MSs with U = 6, Γ = 8, and the number of scatterings between the BS
and each MS is 1 or 2. For representing the estimation accuracy of channel parameters,
the MSEs are introduced:

MSE(β) =
∥∥∥β − β̂

∥∥∥2

2
, MSE(ϕ) = ‖ϕ− ϕ̂‖2

2,

MSE(ψ) =
∥∥ψ− ψ̂

∥∥2
2, MSE(τ) = ‖τ − τ̂‖2

2.
(34)

where β = [β1, · · · , βU ] ∈ C1×Γ, ϕ = [ϕ1, · · · , ϕU ] ∈ C1×Γ, ψ = [ψ1, · · · , ψU ] ∈ C1×Γ,
τ = [τ1, · · · , τU ] ∈ C1×Γ. The vectors β̂, ϕ̂, ψ̂ and τ̂ are the estimates of true channel
parameter vectors β, ϕ, ψ and τ, respectively. Furthermore, the estimation accuracy
of multiuser mmWave channels can also be evaluated by the normalized mean square
error (NMSE):

NMSE =
K

∑
k=1

∥∥Zk − Ẑk
∥∥2

F

‖Zk‖2
F

, (35)

where Zk represents the multiuser channel matrix via the k-th subcarrier and Ẑk is its
estimated matrix.

In the first example, we examine the performance of our proposed algorithm at
different SNR changes with P = 8. The Figure 2 depicts the MSEs and CRB results of
associated channel parameters versus SNR. From Figure 2, we observe that the MSEs of
channel parameters exhibit a significant decline on the increase of SNR. As the benchmark
for evaluation, the corresponding CRB results have the similar downward trend and
perform approximately as a linear function of SNR. As expected, the MSEs performance of
channel parameters are very close to their corresponding CRBs, especially in a higher SNR
region. The simulation results indicate that our proposed algorithm enjoys an accurate
estimation of multiuser channel parameters.
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Table 3. Simulation configuration of system parameters.

System Parameter Configuration

BS antennas N/ RF chains R 64/10
MS antennas M/ RF chains Ru 32/1
Transmission subcarriers K 128
Total number of MSs U / paths Γ 6/8
Carrier frequency fc 28GHz
Sampling rate fs 0.25GHz
AoA/AoD ϕu, lu /ψu, lu [0, 2π]
Path gain βu,lu CN (0, 1)
Delay τu,lu

[0, τmax]
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Figure 2. MSEs and CRBs of channel parameters versus SNR.

In the second example, we investigate the MSEs performance of our proposed algo-
rithm as a function of the number of subcarriers K, where we set SNR = 30 dB and P = 8.
The CRB results of different sets of channel parameters are also represented for comparison.
It can be seen from Figure 3 that the proposed algorithm yields accurate estimates even
for a small value of K. As the value of K increases, the CRB results of a certain set of
channel parameters show a downward trend, and the MSEs performance are close to
their corresponding CRBs. We also observe that when the number of subcarriers K 6 2,
our proposed algorithm fails. In fact, the phenomenon is consistent with our previous
analysis on unique PARAFAC decomposition. For the case P = 8 > Γ and R = 10 > Γ,
the condition (18) is satisfied only if K > 2.

In the third example, we study the NMSE performance of our proposed algorithm
when varying the number of subcarriers K, where we assume SNR = 30 dB. The Figure 4
displays the NMSE performance comparison with the SOMP and OMP algorithms for
different time slots P = 8 and P = 16. Apparently, with the increasing of K, all the three
algorithms have a more and more accurate channel estimation performance. Among these
algorithms, the proposed PARAFAC-based estimator presents a clear advantage over the
SOMP and OMP algorithms, and it has a much lower error floor. In particular, compare the
NMSE performance with different P for a certain algorithm, and we can see that it performs
better when P = 16, especially for the proposed PARAFAC-based and OMP algorithm.
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Clearly, the increasing number of time slots requires more pilots, which leads to a better
estimation performance. However, our goal is to reach a reliable channel estimation with
as few measurements as possible. Besides, the NMSE curve obtained by our proposed
method accords with previous analysis on unique PARAFAC decomposition. For the case
P = 8 > Γ and R = 10 > Γ, when K > 2, the uniqueness condition (18) holds. This
indicates that our proposed algorithm performs well even at the minimum number of
subcarriers K = 2.
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Figure 3. MSEs and CRBs of channel parameters versus K.
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Figure 4. NMSE comparison among different algorithms versus the number of subcarriers K.
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In the fourth example, we investigate the system performance with different numbers
of MSs. The impact of different numbers of MSs on the NMSE performance is shown in
Figure 5, where the numbers of MSs are assumed to be U = 2, U = 4, U = 8, U = 16
and U = 32, with single path propagation for per MS. To guarantee the uniqueness of
PARAFAC analysis, we set P = 22 and R = 12. As the number of MSs increases, the NMSE
performance decreases. There is a reason that channel parameters to be estimated grow
with the rise of U, thus leading to a decline in estimation accuracy. Moreover, the estimation
performance of factor matrices in the first stage suffers from degradation for the increasing
unknown matrix elements. However, our proposed scheme still has a good performance
even though the number of MSs is large to U = 32. While our proposed algorithm is
put forward for multiuser architecture, it is also available in a single-user environment
of multipaths.
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Figure 5. NMSE comparison of the proposed algorithm versus the number of MSs.

In the final example, we compare our proposed algorithm with the SOMP, OMP and
adaptive CS algorithms with different numbers of RF chains R = 8 and R = 16. As shown
in Figure 6, it describes the NMSE comparison among the four algorithms versus SNR.
As the SNR increases, all the algorithms have more and more accurate channel estimation.
Our proposed algorithm is superior to the other three CS-based algorithms in terms of
estimation accuracy with the same R. Especially in a higher SNR region, the three CS-based
algorithms have a poor performance with a higher error floor while the PARAFAC-based
method still yields more accurate channel estimates. Such a performance gap comes from
that these CS-based algorithms assume the estimated angles are discretely distributed
on the pre-defined grids. In fact, actual angles are continuous and may not necessarily
lie on the grids, which results in an inevitable grid mismatch, and thus degrading the
performance. Generally speaking, the finer the grid is, the smaller the grid mismatch error
is. However, it also brings an unstable performance with higher computational complexity.
By contrast, our proposed method is not only free of grid mismatch but also fully utilizes the
low-rank structure of mmWave channels, which leads to a better and stable performance.
From Figure 6, we can also gain some insights into how different numbers of RF chains
effect the system performance. As R increases from 8 to 16, the NMSE performance
degrades. While more RF chains brings about a better system performance, it suffers from
higher hardware cost and power consumption. Therefore, a smaller number of RF chains
should be selected for a compromise between hardware cost and system performance.
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Figure 6. NMSE comparison among different algorithms versus SNR.

For this example, the average run time of the SOMP, OMP, adaptive CS and proposed
PARAFAC-based algorithms at different SNR changes is shown in Table 4. Numerical
results demonstrate that the average run time of our proposed algorithm is shorter than that
of other three algorithms. In contrast with the CS-based algorithms, our PARAFAC-based
algorithm takes advantage of its inherent structure of multidimensional data and achieves
a stable and low-complexity channel estimation.

Table 4. Average run time of respective algorithms.

SNR(dB) 0 5 10 15 20 25 30

SOMP (R = 8) 1.1239 s 1.1892 s 1.1923 s 1.2035 s 1.2315 s 1.2174 s 1.2248 s
OMP (R = 8) 2.2667 s 2.2075 s 2.2738 s 2.2493 s 2.2512 s 2.2555 s 2.2542 s
Adaptive CS (R = 8) 1.0299 s 0.9888 s 1.1948 s 1.1877 s 1.2464 s 1.2162 s 1.1911 s
Proposed (R = 8) 0.7117 s 0.6612 s 0.595 s 0.7766 s 0.7377 s 0.6304 s 0.6987 s

SOMP (R = 16) 1.635 s 1.5626 s 1.6055 s 1.6113 s 1.5785 s 1.6153 s 1.6129 s
OMP (R = 16) 5.3028 s 5.3577 s 5.2848 s 5.2799 s 5.328 s 5.4576 s 5.3256 s
Adaptive CS (R = 16) 1.4869 s 1.679 s 1.6707 s 1.678 s 1.6739 s 1.7011 s 1.6774 s
Proposed (R = 16) 0.7749 s 0.8524 s 0.8869 s 0.8478 s 0.8686 s 0.8329 s 0.8868 s

6. Conclusions

In this paper, a PARAFAC decomposition-based algorithm has been provided for
multiuser uplink channel estimation over the broad-band FSF mmWave channels. Owing
to the sparsity of mmWave channels, the received signal at the BS is formulated as a low-
rank PARAFAC tensor, and thus multiuser channel parameter estimation can be achieved
via PARAFAC decomposition. Therein, the uniqueness issue is studied. Moreover, the CRB
results are derived for evaluation in the situation of multiple users. Simulations reveal
that the algorithm performs well with a few training sequences. Compared with other CS-
based algorithms, our proposed algorithm outperforms its counterparts both in estimation
accuracy and computational complexity. For future research, we will pay more attention to
the time-varying mmWave channels, and try to seek more precise tensor models, such as
the nested PARAFAC model and the nested Tucker model. Novel tensor fitting algorithms
such as the Bayesian inference-based algorithm [42] will be developed in future work for
better performance.
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Abbreviations
The following abbreviations are used in this manuscript:

ALS alternating least squares
AoAs angles of arrival
AoDs angles of departure
ATALS accelerated trilinear alternating least squares
BS base station
CP CANDECOMP/PARAFAC
CRB Cramér–Rao Bound
CS compressing sensing
eMBB extended mobile broadband
FSF frequency-selective fading
IoT internet of things
MIMO multiple-input multiple-output
mMTC massive machine-type communication
MMV multiple measurement vector
mmWave millimeter wave
MS mobile station
MSEs mean square errors
OFDM orthogonal frequency divisional multiplexing
OMP orthogonal matching pursuit
PARAFAC parallel factor
RF radio frequency
SOMP simultaneous orthogonal matching pursuit
ULA uniform linear array
UPA uniform planar array
URLLC ultra-reliable low-latency communication

Appendix A. Derivation of Cramér–Rao Bound

Taking the partial derivatives of ln L(η) with respect to unknown parameters (βu, lu ,
ϕu, lu , ψu, lu , τu, lu), we derive that

∂ ln L(η)
∂βu, lu

=
1
σ2

K

∑
k=1

[(
y(3)

k − (EMS � FBS)b
(3)
k

)H
(EMS � FBS)d̄keu, lu

]
, (A1)

∂ ln L(η)
∂ϕu, lu

=
2
σ2

R

∑
r=1

Re
[(

y(1)
r − (B� EMS)f

(1)
r

)H
(B� EMS) f̄reu, lu

]
, (A2)

∂ ln L(η)
∂ψu, lu

=
2
σ2

P

∑
p=1

Re
[(

y(2)
p − (B� FBS)e

(2)
p

)H
(B� FBS)ēpeu, lu

]
, (A3)

∂ ln L(η)
∂τu, lu

=
2
σ2

K

∑
k=1

Re
[(

y(3)
k − (EMS � FBS)b

(3)
k

)H
(EMS � FBS)b̄keu, lu

]
, (A4)
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where dk = [D]k, l , f r = jπ cos ϕu, lu fT
r D1aBS(ϕu, lu), ep = jπ cos ψu, lu eT

p D2aMS(ψu, lu), bk =

−
(

j2π fsk
/

K
)
[B]k, l with the definitions l =

u−1
∑

i=1
Li+ lu, D1 = diag(0, 1, · · · , N − 1), D2 =

diag(0, 1, · · · , M− 1). The vector eu, lu ∈ CΓ×1 is the l-th unit coordinate vector. In addition,
we derive that

∂ ln L(η)
∂β∗u, lu

=

(
∂ ln L(η)

∂βu, lu

)∗
,

∂ ln L(η)
∂ϕ∗u, lu

=

(
∂ ln L(η)

∂ϕu, lu

)∗
,

∂ ln L(η)
∂ψ∗u, lu

=

(
∂ ln L(η)

∂ψu, lu

)∗
,

∂ ln L(η)
∂τ∗u, lu

=

(
∂ ln L(η)

∂τu, lu

)∗
.

Next, we give some derivations for the aforementioned matrix blocks of Ω(η). Define
the noise vectors v(1)

r = y(1)
r − (B� EMS)f

(1)
r , v(2)

p = y(2)
p − (B� FBS)e

(2)
p , v(3)

k = y(3)
k −

(EMS � FBS)b
(3)
k , and we focus on the matricx blocks on the diagonal of Ω(η):

[Ωββ]l1,l2 =
1
σ2

K

∑
k1=1

K

∑
k2=1

eH
u1, lu1

d̄H
k1
(EMS � FBS)

H(EMS � FBS)d̄k2eu2, lu2
δk1, k2 , (A5)

[Ωϕϕ]l1,l2 =
2
σ2

R

∑
r1=1

R

∑
r2=1

Re
[
eH

u1, lu1
f̄ H
r1
(B� EMS)

H(B� EMS) f̄r2eu2, lu2
δr1, r2

]
, (A6)

[Ωψψ]l1,l2 =
2
σ2

P

∑
p1=1

P

∑
p2=1

Re
[
eH

u1, lu1
ēH

p1
(B� FBS)

H(B� FBS)ēp2eu2, lu2
δp1, p2

]
, (A7)

[Ωττ ]l1,l2 =
2
σ2

K

∑
k1=1

K

∑
k2=1

Re
[
eH

u1, lu1
b̄H

k1
(EMS � FBS)

H(EMS � FBS)b̄k2eu2, lu2
δk1, k2

]
. (A8)

Furthermore, we obtain the other matrix blocks of Ω(η):

[Ωβϕ]l1,l2 =
1
σ4

K

∑
k=1

R

∑
r=1

eH
u1, lu1

d̄H
k (EMS � FBS)

H E
[

v(3)
k v(1)H

r

]
(B� EMS) f̄reu2, lu2

, (A9)

[Ωβψ]l1,l2 =
1
σ4

K

∑
k=1

P

∑
p=1

eH
u1, lu1

d̄H
k (EMS � FBS)

H E
[

v(3)
k v(2)H

p

]
(B� FBS)ēpeu2, lu2

, (A10)

[Ωβτ ]l1,l2 =
1
σ4

K

∑
k1=1

K

∑
k2=1

eH
u1, lu1

d̄H
k1
(EMS � FBS)

H(EMS � FBS)b̄k2eu2, lu2
δk1, k2 , (A11)

[Ωϕψ]l1,l2 =
2
σ4

R

∑
r=1

P

∑
p=1

Re
[

eH
u1, lu1

f̄ H
r (B� EMS)

H E
[

v(1)
r v(2)H

p

]
(B� FBS)ēpeu2, lu2

]
, (A12)

[Ωϕτ ]l1,l2 =
2

σ4

R

∑
r=1

K

∑
k=1

Re
[

eH
u1, lu1

f̄ H
r (B� EMS)

H E
[

v(1)r v(3)
H

k

]
(EMS � FBS)b̄keu2, lu2

]
, (A13)

[Ωψτ ]l1,l2 =
2

σ4

P

∑
p=1

K

∑
k=1

Re
[

eH
u1, lu1

ēH
p (B� FBS)

H E
[

v(2)P v(3)
H

k

]
(EMS � FBS)b̄keu2, lu2

]
, (A14)

and we have Ωϕβ = ΩH
βϕ, Ωψβ = ΩH

βψ , Ωτβ = ΩH
βτ, Ωψϕ = ΩH

ϕψ, Ωτϕ = ΩH
ϕτ, Ωτψ = ΩH

ψτ.
Note that the noise tensor V is independent in three dimensions, i.e.,

E
{
[V ]r1, p1, k1

[V ]∗r2, p2, k2

}
= σ2δr1, r2 δp1, p2 δk1, k2 , where δi, j denotes the Kronecker delta, and
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δi, j = 1 when i = j, δi, j = 0 when i 6= j. In consideration of the (i, j, k)-th entry of V ,

[V ]r, p, k corresponds to the following indexes of the noise vectors v(1)
r , v(2)

p and v(3)
k :

[V ]r, p, k =
[
v(1)

r

]
(p−1)K+k

=
[
v(2)

p

]
(k−1)R + r

=
[
v(3)

k

]
(r−1)P + p

.

Hence, we can compute the product terms of noise vectors in (A9)–(A14). For example,

E
[

v(1)
r v(2)H

p

]
is given by

E
[

v(1)
r v(2)H

p

]
=



0 · · · 0 · · · 0 · · · 0 · · · 0
...

...
...

...
...

0 · · · 1 · · · 0 · · · 0 · · · 0
0 · · · 0 · · · 1 · · · 0 · · · 0
...

...
...

...
...

0 · · · 0 · · · 0 · · · 1 · · · 0
...

...
...

...
...

0 · · · 0 · · · 0 · · · 0 · · · 0



← (p− 1)K + 1
← (p− 1)K + 2

← (p− 1)K + K

↑ ↑ ↑
r R + r (K− 1)R + r

.

Similarly, the computation of E
[

v(1)
r v(3)H

k

]
and E

[
v(2)

P v(3)H

k

]
can be obtained.

In the end, the CRB is written as the inverse of Ω(η):
CRBββ CRBβϕ CRBβψ CRBβτ

CRBϕβ CRBϕϕ CRBϕψ CRBϕτ

CRBψβ CRBψϕ CRBψψ CRBψτ

CRBτβ CRBτϕ CRBτψ CRBττ

 = Ω−1(η). (A15)

The CRB results of the four sets of channel parameters {βu}U
u=1, {ϕu}U

u=1, {ψu}U
u=1

and {τu}U
u=1 can be obtained from CRBββ, CRBϕϕ, CRBψψ and CRBττ , respectively.
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