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Abstract: Stochastic computing is an emerging scientific field pushed by the need for developing
high-performance artificial intelligence systems in hardware to quickly solve complex data processing
problems. This is the case of virtual screening, a computational task aimed at searching across huge
molecular databases for new drug leads. In this work, we show a classification framework in which
molecules are described by an energy-based vector. This vector is then processed by an ultra-fast
artificial neural network implemented through FPGA by using stochastic computing techniques.
Compared to other previously published virtual screening methods, this proposal provides similar
or higher accuracy, while it improves processing speed by about two or three orders of magnitude.

Keywords: stochastic computing; hardware acceleration; virtual screening

1. Introduction

Due to the data explosion that has taken place in all scientific and technological areas,
the use of artificial intelligence (AI) arises as an optimal and quick strategy to convert raw
data into useful information. This data explosion is particularly critical in the area of organic
chemistry, owing to the truly vast possibilities for constructing chemical compounds [1].
Such a vast chemical space embraces, but it is by no means limited to, the ever-increasing
number of compounds from different chemical databases, which is now of the order of tens
of billions and publicly available. For the specific problem of the analysis of interactions
between different molecules—the aim of any drug discovery process, after all—the number
of possibilities explodes and becomes unmanageable. This is critical, even if machine
learning techniques are applied in the context of fast-growing screening libraries [2,3]. That
is why speeding up this type of process by means of accelerator methods is highly desirable.

Drug development is a time-consuming process, where, on average, more than ten
years and hundreds of millions of U.S. dollars are needed. From the early 1990s, huge
libraries of compounds have been made available to facilitate compound screening. To aid
in the early stages of the drug discovery process, new computing strategies were developed
(virtual screening—VS) [4]. The primary goal of VS [5–7] is to find out, from a molecule
database, a subset of molecules with a high chance to be chemically active. This subset
of compounds is revised by medicinal chemists to improve their preclinical properties.
When a 3D structure of the target is available and the binding site is known, this problem
is more specifically called structure-based VS [8–10]. On the other hand, when at least a
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molecule with activity for the target compound is known, methods for ligand-based VS
are used [11–13]. Certain ligand-based methods used for virtual screening benefits from a
set of molecules [14–16] instead of a single ligand used as a search template. Such models
are typically generated with machine learning algorithms trained on ligands with known
activity [17,18].

1.1. Artificial Neural Networks Applied to Virtual Screening

It is well known that the use of advanced machine learning methodologies in VS, such
as support vector machines or artificial neural networks (ANN), is becoming increasingly
popular in ligand-based VS strategies [19]. ANN are inspired by how the brain processes
information and have become trendy in many science and technological areas, due to their
ability to solve many complex pattern matching problems. ANN can be applied to adjust
complex relationships without considering the underlying physical links. A sufficiently
large dataset of samples suffices to correlate the data, which consists of pairs of an input (a
sample) and an output (its class). ANN are normally structured as a set of interconnected
elementary processing units, each one implementing a non-linear operation. Because of
the large configurability of ANN, a huge number of training examples are required for the
adjustment of the connectivity matrices Ωk =

{
ωk

ij

}
. This adjustment is specially easy to

obtain for feedforward neural networks. Given a specific training dataset whose desired
network response is correlated with the input, the optimization of Ω is a non-convex
problem that can be solved by using the backpropagation algorithm.

Neuromorphic hardware (NH) is a research field which has been propelled by the need
of developing high-performance AI systems [20–24]. NH is able to provide timely responses
to those applications which require processing huge amounts of data [25]. Many efforts
have been made in implementing neuromorphic digital [26] and analogue [27] circuits.
The great advantage of digital implementation is its ability to create massive ANN devices
on a single chip and to easily test them in field programmable gate arrays (FPGAs) [28,29].
Nevertheless, the use of large numbers of multipliers, necessary to reproduce the neural
weights, constrains its proper parallelization and, as a consequence, it limits the speeding
up process.

A possible solution is the use of approximate multipliers that are built by using non-
deterministic computing methods. In this particular context, stochastic computing (SC)
arises as a potential alternative [30,31]. SC has been used to develop many different complex
tasks, such as the implementation of Bayesian classifiers [32,33], image processing [34,35],
or the implementation of neuromorphic circuits [36,37]. Data representation within the SC
paradigm is performed in a probabilistic way with the use of Boolean quantities, which
switch randomly over time. The probability of a single bit in a given state is used to
encode the desired signal, thus reducing the area cost since only one wire is needed to carry
the whole numerical value with this probabilistic codification. Hence, complex functions
whose implementation requires a high amount of area, such as multiplications [38], are
performed by using a single logic gate, with great savings in terms of area and power [39,40].
However, this area reduction has a cost in terms of precision loss. This is not critical anyway
in most machine learning applications (e.g., ANN), where a relatively reduced set of output
categories or classes must be discriminated based on generic similarities. Indeed, most of
the current machine learning applications use a small number of bits to represent digitized
signals [41] because the difference in the final result between using high-precision floating-
point signals and low-precision 8/16-bit signals is negligible [42]. Hence, the integration
time used to evaluate the result of stochastic operations can be considerably reduced since
it is exponentially dependent on the bit precision. In addition, as a result of the low area
employed in SC, different ANN cores can be implemented in parallel on a single chip,
thus increasing the throughput, compared with traditional computing methods. Be that
as it may, tackling the miscalculation produced by stochastic correlation signals remains
a challenge for SC designers. The main obstacle is the high number of random number
generators (RNG) needed, which are essential for producing the probabilistic bit streams
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used in SC. Indeed, some operations, such as multiplications, require the inputs to be
uncorrelated (statistically independent) if we want to achieve accurate calculations. That
is the reason why independent RNGs are necessary to generate each stochastic signal.
This fact makes these blocks occupy up to the 90% of the whole area of the final circuit
footprint [43], limiting the benefits of SC. It is therefore crucial to minimize the use of RNG
in SC systems and simultaneously maintain the accuracy.

1.2. Objective of the Paper

In this work, we present an ultra-fast virtual screening method based on an ANN im-
plemented with stochastic computing. The process scheme is shown in Figure 1, where we
compare a known compound that presents a certain biological activity, with a set of query
compounds with unknown activities (database). The proposed system provides, for each
query compound, a likelihood value, which measures if the query compound presents the
same activity as the active one. In this process, the following must be considered:

− Electron distribution assigned to individual atoms must be taken into consideration
along with their spacial distribution. The MOL2 file type is therefore needed for each
compound since this information is included in this format.

− A set of molecular descriptors are estimated from the MOL2 files. Molecular pairing
energies (MPE) [44], dependent on both charge distribution and molecular geometry, are
adopted as descriptors. These descriptors are independent of rotations and translations
of the compound, and provide valuable information about its binding possibilities.

− Once the MPE values are obtained from the query and active compounds, a preconfig-
ured ANN estimates the similarity between queries and active compounds.

− The database is finally ordered, according to the similarity values provided by the system
and, consequently, only the top-most compounds are selected for laboratory assays.

Figure 1. The process of similarity comparison between a set of query compounds with unknown
chemical properties and a compound with known activity against a specific therapeutic target.
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To validate the model, we use the DUD-E dataset of chemical compounds [45].
The DUD-E docking benchmark is a widely used database to evaluate virtual screen-
ing methods. It is composed of 102 different pharmaceutical targets that include a crystal
ligand, along with a set of active compounds and decoys (assumed as non-actives). The per-
formance of the system is evaluated through the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve. As it will be shown, a competitive accuracy in re-
gard to other ligand-based models present in the literature is obtained, along with good
performance in terms of both processing speed and energy efficiency.

2. Methods
2.1. Molecular Pairing Energies Descriptors

Virtual screening consists of comparing each query compound of a database with
active ligands against a specific target [17,18]. This comparison is normally made by using
molecular descriptors that can be based on physicochemical properties. In this work, we
propose a classification model which uses molecular pairing energies (MPEs) as the main
descriptor [44] together with a neural network discriminator. These pairing energies are
defined as

Eij = K
qiqj

rij
(1)

where qi and qj are the partial charges of each atom of the molecule, and rij is the distance
between them.

These partial charges are related to the electron distribution that can be assigned
to individual atoms through quantum mechanical calculations. To screen thousands or
millions of compounds, there are much faster and more efficient methods, such as the
partial equalization of orbital electronegativity or the Merck molecular force field [46–48].

Among all the pairing energies present in a compound, we choose the N highest
(positive) and lowest (negative) energies, thereby creating an ordered 2N-dimensional
vector for the description of the molecule. If we have less than 2N pairing energies,
the vector is center-padded with zeroes until it reaches the 2N dimensions. In this work, we
set N to 6, so we use a total of 12 energy descriptors per compound. The most electropositive
or electronegative MPE values are related to molecular scattering or the assembly properties
of the compound.

In this work, the MPE model is applied to the full DUD-E database, in which the
partial charges are estimated by using the MMFF94 force field [48], which is implemented
within the Openbabel software. Empirically, the MPE model shows a good capability to
cluster those compounds showing similar chemical properties [44], as it can be appreciated
in Figure 2, where we have plotted the most positive and most negative pairing energies
for five different DUD-E targets. Figure 2 suggests that those compounds with a higher
cohesion energy usually have a higher scattering energy. The working hypothesis is that
MPE values can be efficiently used to compare chemical activities between compounds.
This way, an AI-assisted model, such as the ANN proposed, may take advantage of this
representation and obtain good results.
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Figure 2. Clustering capacity of pairing-energy descriptors when using the most negative and most
positive MPE values for five different DUD-E targets.

2.2. Artificial Neural Network Implementation

ANN has emerged as a powerhouse for prediction and classification tasks. In this
work, ligand-based virtual screening is seen as a classification problem to be solved via an
ANN-based algorithm.

Each neuron in the network computes a transfer function of its weighted inputs so
that the output of the jth neuron is

aj = φ
(
∑

i
ωijxi

)
, (2)

where ωij is the weight assigned to the ith input xi and φ is the non-linear activation
function. It is supposed that all the inputs come from the previous neural layer.

Several activation functions have been used in the literature. Among them, the ReLU
function (φ(x) = max(x, 0)) is one of the most widely used functions due to its simplicity
for both inference and training. The ReLU function has two great advantages. First, it
addresses the vanishing gradient problem introduced by other activation functions during
the backpropagation training phase [49]; second, it can be easily implemented in stochastic
computing by using a reduced set of logic gates.

The main purpose of this work is to develop an accurate and energy-efficient method-
ology to implement a ligand-based virtual screening process. Starting from 24 MPE values
(12 per each compound to be compared), we studied several ANN architectures with a
single output (i.e., 1 and 0, meaning active and decoy, respectively) in order to estimate the
target similarity. Figure 3 shows the scheme of the ANN architecture employed, in which
the parameter uk

j stands for the jth component of the kth compound, Hl,j stands for the

jth neuron in the lth hidden layer, and the output yout is the prediction of the similarity
between the compounds.
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Figure 3. ANN architecture employed for the estimation of similarity between two compounds.
Each compound uk

j is described by 12 energy descriptors, where j is the jth component of the kth

compound, Hl,j stands for the jth neuron in the lth hidden layer; B and C are the number of neurons
in the first and the second hidden layer; and yout is the prediction of the model.

2.3. Stochastic Computing

Stochastic computing consists of representing signals by using random bit streams (BS)
of length N [30,50]. There are various types of numeric codifications, being that the unipolar
and bipolar are the two most important ones. In the unipolar codification, a number is
directly represented by the probability of receiving a logical 1 through a wire and, as a
result, the numbers that can be represented lie between 0 and 1. In the bipolar codification,
a N-bit stream (BS) represents a quantity defined as p = (N1 − N0)/(N0 + N1), being that
N0 and N1 are the number of zeroes and ones which form the bit stream, respectively
(with N = N0 + N1). Thus, bipolar values are restricted between −1 and +1. In the bipolar
codification, any two’s complement number X can be converted into a stochastic bit stream
x(t) by comparing the X value with a random number generator (RNG) R(t). This way,
each stochastic signal must be understood as a sequence of Booleans x(t) = {X > R(t)},
where the precision of these signals is related to the bit stream length considered (N).
The RNG R(t) must be uniformly distributed over the interval of all possible values of X,
from −2(n−1) to 2(n−1) − 1, being that n is the binary bit precision. To recover the original
value X in the binary domain, a signed up/down counter and a register are used.

One of the main advantages of SC is the low cost in terms of hardware resources
to implement complex functions. The clearest example is the stochastic multiplier: the
product operation is performed by a single XNOR gate when using bipolar coding. Figure 4
illustrates a bipolar SC multiplication with the main parts of a SC system: the binary to
stochastic conversion, the stochastic operation, and the recovery of the binary result. A
binary signal X is converted to a stochastic x(t) by using a time-varying random number
R(t) and a binary comparator. As a result, a single stochastic bit is obtained during each
clock cycle, where SC signals are set to ’1’ or ’0’ with a given probability. Note that in the
example of Figure 4, we multiply two SC signals x(t) and y(t) to generate z(t)). For the
stochastic product operation, both input signals must be uncorrelated. It means that the
covariance between signals must be zero: Cov

(
x(t), y(t)

)
= 0. The output signal z(t) is

generated after applying the truth table of an XNOR gate, as shown in Figure 4. The final
averaged value after the evaluation time (eight cycles in the example of Figure 4) is the
product between x and y. To store the result in memory, a conversion must be carried out
from the time-dependent stochastic domain to the two’s complement one. This conversion
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is easily performed by using a signed up/down counter and a register, which stores the
final value, where at every N clock cycles (namely, the evaluation time), the enable signal
g_eval is set to store the expected result.

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

geval

X 0.000 (binary, 2’s-complement)

R(t) 0.010 1.010 1.110 0.110 1.001 0.111 1.000 0.011

x(t) = 0.0

y(t) = 0.5

z(t) = 0.0

count 1.111 1.110 1.111 1.110 1.111 0.000 0.001 0.000

Z – 0.000

Figure 4. Example of a SC bipolar multiplier. Two switching inputs x and y represent signals 0 and
0.5, respectively. Afterward, they are multiplied through the XNOR gate, leading to signal z = 0.0.
Signal y(t) is generated with an independent RNG (not shown in the picture). Stochastic signals are
colored in blue.

As previously mentioned, decorrelation between SC signals is necessary for the
operation to be accurate. Otherwise, the XNOR gate stops estimating the product operation.
For instance, if input signals are completely correlated (i.e., when both signals are generated
by the same random source), the outcome is a function associated to the absolute value of
the difference between the input signals (see Figure 5). Therefore, maximum correlation
between SC signals is attained when bit streams are generated using the same RNG,
as shown in Figure 5. To quantify the degree of correlation, the following expression is
normally used [51]:

C(x, y) =
Cov

(
x(t), y(t)

)
1− | x− y | −xy

, (3)

where the function Cov is the covariance between two time-dependent stochastic signals
x(t) and y(t) when using bipolar coding, while parameters x and y are their averaged values,
bounded between −1 and +1. The case C(x, y) = 0 implies that both signals are obtained
from two independent RNG, such as the example of Figure 4. By contrast, C(x, y) = +1
implies that both signals are generated from the same RNG, such as the example of Figure 5.
To recap, depending on the correlation level of the input signals, different operations are
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obtained. In SC, the output of any combinatorial gate can be expressed as a function of x
and y. For the cases of AND, OR and XNOR gates, we have the following:

AND(x, y) =
(
xy + x + y− 1

)(
1− C(x, y)

)
· 1

2
+C(x, y)min(x, y)

OR(x, y) =
(
x + y + 1− xy

)(
1− C(x, y)

)
· 1

2
+C(x, y)max(x, y)

XNOR(x, y) = xy
(
1− C(x, y)

)
+C(x, y) ·

(
1− | x− y |

)
(4)

Therefore, when C(x, y) = 1, the AND gate performs the min operation, whereas the
OR gate performs the max function. For an XNOR gate, instead, the function changes from
z = x · y when C(x, y) = 0, to z = 1− | x− y | when C(x, y) = 1. Hence, depending on the
correlation between SC signals, the functionality changes drastically.

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

X 0.000 (binary, 2’s-complement)

Y 0.100 (binary, 2’s-complement)

R(t) 0.010 1.010 1.110 0.110 1.001 0.111 1.000 0.011

x(t) = 0.0

y(t) = 0.5

z(t) = 0.5

Figure 5. Correlation between signals can change the function implemented by logic gates. Stochastic
signals x(t) and y(t) are said to be perfectly correlated when they share the same RNG R(t). Stochastic
signals are noted in blue.

2.4. Stochastic Computing Neuron

To implement a SC artificial neuron, we propose the circuit shown in Figure 6. The in-
put vector x(t) is multiplied by the weight vector w(t) through an array of XNOR gates,
in a similar way to other neural approaches found in the literature [37]. Addition is carried
out by an accumulative parallel counter (APC) [52]. The APC estimates the number of high
values minus the number of low values from the i inputs during a total of N clock cycles.
The APC circuit outputs a two’s complement value, which represents an estimation of the
scalar product between x(t) and w(t). The advantage of using an APC instead of other SC
addition circuits, such as a MUX or an OR gate, is that the APC is a correlation-independent
circuit [53]. This makes the correlation introduced by the XNOR gates in the multiplication
isolated, giving exact results after the addition. Once the addition is performed, we need to
convert it again to the stochastic domain to continue operating in the following layers. For
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this purpose, a binary to stochastic converter is used, obtaining the APC stochastic signal
s(t), as seen in Figure 6.

APC

1
2

i
i-1

Rx(t)

n-bit

A>B

A

B

s(t)

zero(t)

ai(t)

0

ReLu	Neuron

ai(t)

n-bit

W (t)1W (t)1

X (t)1
X (t)1

W (t)2

X (t)2

W		 (t)i-1

X   (t)i-1

W (t)i
X (t)i

X (t)i

W (t)i

Figure 6. Stochastic neuron design exploits correlation to reduce area cost. The stochastic vectors
x(t) and w(t) are uncorrelated, producing a stochastic multiplication with XNOR gates. Stochastic
units are noted in blue, while the two’s complement signals are in black.

The transfer function (SC-ReLU) is implemented by exploiting correlation between
signals. Following the rules expressed in Equation (4), the max function can be implemented
with a single OR gate in the stochastic domain if the input signals are totally correlated
(C(s, zero) = 1). For this reason, to implement the SC-ReLU in the neuron, the signals s(t)
and zero(t) are generated by using the same RNG (Rx(t)). The signal zero(t) is a bit stream
which contains 50% of ones, thus representing a zero bipolar number. The stochastic output
activation a(t) is, therefore,

a(t) = max
( i

∑
q=1

xq(t)ωq(t), 0
)

(5)

The SC-ReLU design of this work is in high contrast with those ones found in the SC
literature. A. Ren et al. [53] presented a SC-ReLU design based on segment slicing. This
was carried out by using high-cost digital counters for each input argument, entailing an
increase in footprint area (see Figure 8 in the original paper [53]). J. Yu et al. provided
another approach to implement SC-ReLUs [54]. That design was based on an FSM circuit,
which depends on its state to set the stochastic output (see Figure 5a in the original
paper [54]). Z. Li et al. [55] used a circuit based on counters and accumulators, clipping
the ReLU output to one (see Figure 6 in the original paper [55]). None of these SC-
ReLU designs takes advantage of the correlation phenomenon, and they are also not area
efficient. Moreover, all these approaches suggested by the literature do not have any
control over the correlation level of the outcome, being unpredictable. This is a problem for
the following layers for which full decorrelation must be guaranteed in order to perform
the multiplication operation. If not guaranteed, it leads to accumulating inaccuracies
when the signal goes to the next layer. By contrast, in the approach we propose, the
correlation is intentionally manipulated to exploit the best of the two worlds (correlation
and decorrelation), producing precise results, while saving plenty of resources.

2.5. Stochastic Computing ANN

Figure 7 shows a general view of the hardware implementation of the proposed VS
hardware. As it can be observed, only two RNGs are needed for the whole VS acceleration
system (LFSR1 and LFSR2 in the figure). The proposed architecture saves a large amount
of hardware resources since RNG circuits are one of the most area-demanding blocks in
stochastic computing designs. A linear feedback shift register (LFSR) circuit is used as a
pseudo-RNG. The LFSR1 block generates Rx(t), which is used in the stochastic conversion
of the inputs u1,2, the zero reference signal and the APC binary output of each stochastic
neuron. All these signals present maximum correlation. Binary to stochastic blocks (BSC)
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are employed to convert from the two’s complement to the stochastic domain, using LFSR
sequences. The output vector of each layer is denoted as al , where l stands for the hidden
layer of the network. To attain total decorrelation between neuron inputs and weights
(needed for multiplication), LFSR2 is employed as a second pseudo-RNG. It provides the
signal Rw(t)) which generates the stochastic weight vector w(t).

0
ReLu	

0
ReLu	

0
ReLu	

0
ReLu	

Hidden	Layer
H1,B

0
ReLu	

0
ReLu	

0
ReLu	

Hidden	Layer
H2,C

Output	
Layer

a1[B-1..0]	(t) a2[C-1..0]	(t)

yout(t)

W1

Wm

Weights

U1

U12

Reference	
Compound

U1

U12

Test 	
Compound	1

Similarity	ANN	core	1

LFSR	1

clk R	[n-1..0]
clk

LFSR	2

clk R	[n-1..0]

0

Zero	(t)
Rx	(t)

BSC
ARRAY

R[n-1..0]

BSC
ARRAY

R[n-1..0]

BSC
ARRAY

R[n-1..0]

n-bit

BSC
ARRAY

R[n-1..0]

w
[m
-1
..0
]	(
t)

n-bit

Similarity	ANN	core	k

Zero	(t)
Rx	(t)

u		[11..0](t)
1

u		[11..0](t)
2

w	[m-1..0]	(t)

yout(t)

u 
 [1

1
..0

]
1

u 
 [1

1
..0

]
2

u 
 [1

1
..0

]
1

R
x (

t)

w
[m

-1
..0

] (
t)Z
er

o 
(t

)

0
ReLu	

0
ReLu	

R
w
(t

)

n-bit

Figure 7. Neural network implementation using two LFSRs for the whole system. LFSR1 is used to
generate the input stochastic vector u1,2, the zero bipolar signal zero(t) and the APC outcome inside
each neuron. LFSR2 is used to generate the weight stochastic vector w(t). Shared signals among the
k ANN cores are depicted in dashed lines. Signals with n-bit two’s complement are noted in black,
whereas stochastic signals are noted in blue.

As noted, the proposed stochastic hardware implementation exploits the correlation
phenomenon between signals and, at the same time, minimizes the area usage by reducing
the number of RNG employed in the circuit to only two LFSR blocks. Furthermore,
the compounds’ stochastic signals u1 and the stochastic weights w(t) are shared by the
k different cores (see dashed lines), thus allowing to increase parallelism. The hardware
proposal can be embedded on a single chip, thus increasing the acceleration factor that this
architecture can attain.

3. Results
3.1. Experimental Methodology

To evaluate the performance and capabilities of the proposed VS hardware, we used
the DUD-E [45] database. This database contains 22,886 active compounds and their
affinities to 102 targets.

We built the training set by incorporating 50% of actives and 10% of decoys from each
target. Each sample of the training set incorporates two compounds as inputs: the crystal
ligand of the target (u1) and an active or a decoy for u2. We used a total of 162,530 samples
for the training set and 1,300,804 ones for the testing set. A learning rate of 0.001 with an
Adam optimizer [56] was employed to train each model.

We performed our analysis based on two comparisons. First, we evaluated three
different SC-ANN models and compared them with their software counterparts. Second,
we compared the SC-ANN implementations with other ligand-based works present in
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the literature. The metrics we chose for the performance evaluation were (a) accuracy
measured with the area under the curve (AUC) of the receiver operating characteristic
(ROC) curve, (b) processing speed in inferences per second, and (c) energy efficiency in
terms of inferences obtained per Joule invested. The AUC value was calculated for each
target and the mean value was reported. The power reported for the SC models was
calculated by the Power Analyzer Tool incorporated in the Quartus environment. We took
into consideration the worst case scenario for the signal toggle rate (50% of variation). We
reported the total power calculated by the tool. We embedded the maximum possible
number of ANN cores on the FPGA, occupying the maximum amount of logic resources
on the device. This makes the power consumption for the SC implementations practically
the same (see ANN cores and FPGA ALM(%) columns in Table 1 for details). As for
the software, we reported the thermal design power (TDP) of the processor specified by
the manufacturer.

Table 1. Performance comparison between FPGA measurements and software simulations for several
ANN architectures.

Model AUC Mean Speed
(inf/s)

Power
(W)

Energy
Efficiency
(inf/Joule)

ANN cores FPGA
ALM (%)

FPGA
DSP (%)

FPGA
BRAM (%)

Clk Freq
(MHz)

SC-12 0.62 3,205,128 21 152,625 105 340,305 (80%) 0 (0%) 0 (0%) 125
SC-24 0.71 1,373,626 21 65,411 45 329,715 (77%) 0 (0%) 0 (0%) 125
SC-48 0.78 549,451 21 26,164 18 309,909 (73%) 0 (0%) 0 (0%) 125

SW-12 0.66 43,573 95 459 1 - - - -
SW-24 0.72 42,034 95 442 1 - - - -
SW-48 0.79 37,397 95 394 1 - - - -

3.2. Hardware Measurements vs. Software Simulations

Table 1 compares the performance of SC and software (SW) implementations. The
model name points out the number of neurons in the first hidden layer, being 12 for 24-12-
6-1, 24 for 24-24-12-1, and 48 for 24-48-24-1 architectures. The SW results were produced
through an Intel(R) Xeon(R) X5670 processor with a 64-bit floating-point precision running
at 2.93 GHz. Concerning the SC implementation, we used the same weights derived from
its SW counterpart. SC results were measured by using a Gidel PROC10A board, which
contains an Intel Arria-10 10AX115H3F34I2SG FPGA. This device has 427,200 ALMs, built
with TSMC’s 20 nm process technology, improving the performance in regard to previous
FPGA versions. Moreover, it has a PCI Express (PCIe) 3.0 specification (Gen3) IP that
allows a rapid communication interface. The package is a 35× 35 mm2 1152-FCBGA. We
ran the application at a clock frequency of 125 MHz. As for the programming, we used the
Quartus Prime 19.1 multiplatform environment.

The bit precision for the SC implementation was 12 bits, running a sequence length
of N = 212 − 1 = 4095 cycles. We embedded as many SC-ANN cores as possible on the
device for the different architectures (reported in the ANN cores column). The number of
FPGA resources employed is also pointed out in the table.

As shown, SC models display an AUC degradation with respect to the SW implemen-
tation of 0.04, 0.01, and 0.01 for the 12, 24, and 48 architectures, respectively. Nevertheless,
they work 74, 33, and 15 times faster than their SW counterparts. Even more, they are
more energy efficient by factors of 333×, 148×, and 66×. Additionally, we measured the
AUC for the 12-bit quantized models (not shown in the table), and observed that the SC
implementation did not exhibit any accuracy degradation. We thus conclude that the only
degradation presented with respect to the SW results is because of the quantization process
and not due to the stochasticity of the technique.

As it can be observed, no DSP or RAM are employed in the FPGA because a non-
conventional approach is used for the calculus (SC), using only the distributed resources of
the device. This fact undoubtedly shows the advantages provided by SC.
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3.3. Comparison with Other Ligand-Based Models

Table 2 compares the SC models of this work with nine different ligand-based methods
from the literature: eSim-pscreen [57], eSim-pfast [57], eSim-pfastf [57], mRAISE [58],
ROCS [59], USR [59,60], VAMS [59], WEGA [61] and OptimPharm [61]. SC-48 outperforms
all other methods in terms of AUC. It has an improvement of 0.02 with respect to the best
AUC (0.76) method of other works (eSim-pscreen [57]). What is more, it is 44,670 times
faster. If we compare the SC-24 method with the fastest model in the literature (USR [59,60]),
our proposal is 3.65 times slower, but it yields 0.19 more AUC.

Table 2. Performance comparison between this work and different ligand-based methods taken from
the literature.

Model AUC Mean Speed
(inf/s)

This work (SC-48) 0.78 549,451
This work (SC-24) 0.71 1,373,626
eSim-pscreen [57] 0.76 12.3
eSim-pfast [57] 0.74 61.2
eSim-pfastf [57] 0.71 274.9
mRAISE [58] 0.74 –
ROCS [59] 0.60 1820
USR [59,60] 0.52 5.0× 106

VAMS [59] 0.56 109,000
WEGA [61] 0.564 1.6× 10−3

OptimPharm [61] 0.56 8.7× 10−4

A detailed analysis of the AUC for each individual target (from 102 in total) of the most
accurate models in the literature is presented in Table 3. Each column presents, for each
model, the percentage of targets that fits a specific AUC threshold. The proposed model
presents the best results in the table (written in bold).

Table 3. Comparison of percentages linked to the different methods that fit a specific AUC threshold.

Model % AUC
<0.5

% AUC
≥0.6

% AUC
≥0.7

% AUC
≥0.8

% AUC
≥0.9

This work (SC-48) 0 92 74 43 18
eSim-pscreen [57] 5 81 69 43 17
eSim-pfast [57] 9 82 62 34 14
eSim-pfast [57] 5 79 53 26 6

Table 4 shows a per target AUC score comparison between the SC-48 implementation
and the best model of [57–59,61]. Figure 8 shows a graphical representation of this data.
We can appreciate that the proposed model provides the best AUC score values for 53 of
the targets present in the database.

Table 4. Per target comparison of the current SC implementation versus state-of-the-art models. Data taken from [57].

Target Proposed Model Max (Other) Target Proposed Model Max (Other) Target Proposed Model Max (Other)

aa2ar 0.80 0.76 fabp4 0.85 0.83 mmp13 0.91 0.72
abl1 0.69 0.73 fak1 0.72 0.95 mp2k1 0.87 0.63
ace 0.86 0.75 fgfr1 0.98 0.71 nos1 0.90 0.53
aces 0.81 0.52 fkb1a 0.77 0.72 nram 0.83 0.9
ada 0.81 0.91 fnta 0.74 0.78 pa2ga 0.85 0.74
ada17 0.86 0.8 fpps 0.99 0.99 parp1 0.74 0.9
adrb1 0.80 0.7 gcr 0.77 0.64 pde5a 0.74 0.73
adrb2 0.83 0.65 glcm 0.89 0.78 pgh1 0.65 0.73
akt1 0.74 0.58 gria2 0.68 0.68 pgh2 0.85 0.84
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Table 4. Cont.

Target Proposed Model Max (Other) Target Proposed Model Max (Other) Target Proposed Model Max (Other)

akt2 0.55 0.66 grik1 0.67 0.73 plk1 0.78 0.82
aldr 0.75 0.71 hdac2 0.77 0.53 pnph 0.86 0.92
ampc 0.78 0.76 hdac8 0.77 0.85 ppara 0.92 0.9
andr 0.68 0.71 hivint 0.56 0.49 ppard 0.92 0.81
aofb 0.54 0.46 hivpr 0.83 0.84 pparg 0.89 0.79
bace1 0.79 0.54 hivrt 0.73 0.71 prgr 0.70 0.81
braf 0.74 0.77 hmdh 0.86 0.91 ptn1 0.82 0.57
cah2 0.99 0.92 hs90a 0.65 0.8 pur2 0.95 1
casp3 0.89 0.58 hxk4 0.82 0.9 pygm 0.80 0.58
cdk2 0.72 0.8 igf1r 0.73 0.61 pyrd 0.80 0.9
comt 0.97 0.99 inha 0.54 0.72 reni 0.81 0.79
cp2c9 0.53 0.52 ital 0.70 0.77 rock1 0.58 0.79
cp3a4 0.59 0.58 jak2 0.55 0.81 rxra 0.87 0.93
csf1r 0.66 0.8 kif11 0.65 0.83 sahh 0.94 1
cxcr4 0.73 0.79 kit 0.75 0.69 src 0.69 0.67
def 0.66 0.86 kith 0.93 0.91 tgfr1 0.71 0.84
dhi1 0.78 0.68 kpcb 0.66 0.85 thb 0.72 0.89
dpp4 0.78 0.73 lck 0.69 0.55 thrb 0.85 0.83
drd3 0.72 0.46 lkha4 0.61 0.84 try1 0.91 0.87
dyr 0.96 0.95 mapk2 0.69 0.86 tryb1 0.80 0.83
egfr 0.61 0.77 mcr 0.88 0.79 tysy 0.88 0.92
esr1 0.94 0.96 met 0.67 0.87 urok 0.95 0.81
esr2 0.94 0.97 mk01 0.67 0.79 vgfr2 0.63 0.75
fa10 0.84 0.73 mk10 0.77 0.56 wee1 0.88 1
fa7 0.94 0.96 mk14 0.70 0.61 xiap 0.79 0.94

Figure 8. Visual representation of the scores shown in Table 4. Dots in blue indicate that the proposed
VS system performs better; otherwise, we highlight the dots in orange color.

4. Conclusions

This work shows the potential application of MPE descriptors and artificial neural
networks (ANN) to virtual screening (VS). We have also shown a new methodology
to accelerate the proposed VS process in an energy-efficient way by using stochastic
computing (SC) hardware design techniques. An FPGA-compatible implementation is
realized, and its performance in terms of accuracy, processing speed and energy efficiency
is estimated. Compared to the state-of-the-art, the proposed model shows an increase by a
factor of 44,670 in terms of processing speed and an improvement of 2% in terms of overall
accuracy. We have also demonstrated the benefits attained by employing non-conventional
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(SC) hardware accelerators for ANN when processing huge databases. In particular, we
have introduced a new methodology in which the implementation of the activation (ReLU)
function exploits the correlation between signals, obtained thanks to the APC isolating
characteristics. Overall, only two LFSR blocks are needed for the full ANN design in such
a way that the impact of these blocks, historically regarded as the main drawback of SC,
is minimized. To summarize, this work demonstrates the potential benefits of using non-
conventional (stochastic) accelerators for ANNs when processing huge databases, especially
suitable for those computationally costly processing problems, such as virtual screening.
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