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Abstract: Most current studies on multi-agent evolution based on deep learning take a cooperative 

equilibrium strategy, while interactive self-learning is not always considered. An interactive self-

learning game and evolution method based on non-cooperative equilibrium (ISGE-NCE) is pro-

posed to take the benefits of both game theory and interactive learning for multi-agent confrontation 

evolution. A generative adversarial network (GAN) is designed combining with multi-agent inter-

active self-learning, and the non-cooperative equilibrium strategy is well adopted within the frame-

work of interactive self-learning, aiming for high evolution efficiency and interest. For assessment, 

three typical multi-agent confrontation experiments are designed and conducted. The results show 

that, first, in terms of training speed, the ISGE-NCE produces a training convergence rate of at least 

46.3% higher than that of the method without considering interactive self-learning. Second, the evo-

lution rate of the interference and detection agents reaches 60% and 80%, respectively, after training 

by using our method. In the three different experiment scenarios, compared with the DDPG, our 

ISGE-NCE method improves the multi-agent evolution effectiveness by 43.4%, 50%, and 20%, re-

spectively, with low training costs. The performances demonstrate the significant superiority of our 

ISGE-NCE method in swarm intelligence. 

Keywords: non-cooperative equilibrium; interactive self-learning; generative adversarial; game 

evolution; multi-agent confrontation 

1. Introduction

Deep learning has received high attention from research institutions and industries 

since its emergence in 2006. In recent years, deep reinforcement learning (DRL) has grad-

ually become a research focus and the development trend in the field of artificial intelli-

gence and was selected by MIT as one of the 10 breakthrough technologies in 2017 [1]. 

Various deep learning methods such as Dagger [2], Deep Q-learning [3], DRL [4] and 

DNQ [5] are publicized. Among them, the Deep Deterministic Policy Gradient (DDPG) is 

widely used because of its excellent ability to observe and execute actions instantly in 

terms of individual intelligence [6], such as for the robotic arms to achieve high precise 

actions [7], for the Autonomous Underwater Vehicles (AUVs) to patrol intelligently [8]. 

However, DDPG has problems such as behavioral convergence failure and low training 

efficiency when dealing with multi-agent environment behavior problems [9,10]. 

Accordingly, multi-agent intelligent learning has been intensively studied and con-

ceived as deep learning develops. For instance, Malysheva A. et al. [11] proposed a new 

MAGNet method for multi-agent reinforcement learning. Based on a weight agnostic neu-

ral networks (WANNs) methodology, an automated searching neural net architecture 

strategy was proposed that can perform various tasks such as identifying zero-day attacks 

[12]. Sheikh, HU et al. [13] proposed the DE-MADDPG method, which can achieve better 

multi-agent learning by coordinating local and global rewards. Li, SH. et al. [14] proposed 
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the M3DDPG method, which can be better adapted to the multi-agent environment. All 

of the above multi-agent intelligent learning methods have the function of interactive 

learning, which proves that intelligent learning in multi-agents can achieve self-learning 

and evolution for the individuals; effectively, it is advanced in learning ability compared 

with the methods such as DDPG, which concerns only self-learning as an agent [15]. How-

ever, these methods lack the support of game theory. 

It has to be noticed that multi-agent interactive learning is a well-known characteris-

tic of game evolution. In recent years, many scholars have introduced the idea of “game 

theory” into deep learning. For example, in the battlefield of cyberspace, an offense–de-

fense evolutionary game model [16] as well as an exploration–detection game model [17], 

was established to constantly improve cognition and decision optimization by interactive 

learning, such as to enhance cyber defense capability. In terms of the communication bat-

tlefield, the establishment of a dynamic game model [18], which allows intelligent jam-

mers and intelligent anti-interference to be trained in interactive game confrontation, can 

effectively improve the intelligence of the multi-agent. In summary, it is obvious that com-

bining game evolutionary with a multi-agent interactive learning framework can effec-

tively improve the training effect. However, these studies did not introduce game strate-

gies. 

There are some references that apply game theory strategies to deep learning appro-

priately. In [19], an iterative algorithm was proposed in order to provide existence and 

convergence conditions under which the buses reach a suitable equilibrium. However, 

this study did not use an interactive learning framework. Shi, D. et al. [20] proposed a 

mean-field game (MFG)-guided deep reinforcement learning (DRL) approach for task 

placement in collaborative MEC, which helps servers to make instant task placement de-

cisions and significantly reduces the average service latency. Zhang, HD et al. [21] pro-

posed a learning method that can measure the collaborative information between multiple 

agents, using a cooperative approach to solve the problem of individual robot capability 

limitation. Liu, M et al. [22] proposed a heuristic imprecise probabilistic based interaction 

decision algorithm, HIDS, i.e., it utilizes the multidimensional semantic relevance among 

observation, tasks and agents, such that agents can continuously improve cognition and 

optimize decision-making by learning interactive records. However, the mentioned game 

strategies above are mainly based on cooperative parallelism while not considering the 

non-cooperative equilibrium between the two parties of the game. 

Non-cooperative game equilibrium is a critical phase in game theory. Shi, D. et al. 

[23] presented a concept that both sides of the game, regardless of the game process, 

would eventually reach non-cooperative equilibrium. In [24], the conditions to achieve a 

locally asymptotically stable Nash equilibrium (NE) and the necessary conditions to 

achieve an evolutionary stable strategy (ESS) were derived. Yan, PY et. al. [25] developed 

an iterative algorithm that solves the production decision and scheduling problem based 

on a non-cooperative equilibrium strategy with cyclic bi-value graphs. Zhu et. al. [26] 

combined, with the Nash equilibrium strategy, an online minimaxQ network learning al-

gorithm proposed for network training with observed values. Nevertheless, none of the 

non-cooperative game equilibrium-based deep learning methods collected above had in-

troduced interactive self-learning simultaneously. This paper solved the problems of poor 

effect and slow learning speed of DDPG on multi-agent learning. Furthermore, the con-

cept of “game evolution” is successfully introduced into the interactive self-learning 

framework, and the multi-agent interactive self-learning game and evolution method was 

designed. Finally, the result of agent training achieved the effect of non-cooperative equi-

librium 

In this paper, an interactive self-learning game and evolution method (ISGE-NCE) 

based on non-cooperative game equilibrium is designed to realize multi-agent intelligent 

gaming and evolution. The rest of this paper is arranged as follows: Section 2 introduces 

the environment modeling of game evolution and the fundamentals of deep learning by 

taking the DDPG individual intelligent learning method for instance. Section 3 presents 
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the detailed design of the proposed ISGE-NCE method. The generative adversarial net-

work is first formed to achieve fast individual classification in the environment. The multi-

agent interactive learning method is then designed based on distributed non-cooperative 

equilibrium strategies to realize interactive self-learning games and evolution. Section 4 

illustrates the performance of the proposed ISGE-NCE for multi-agent evolution in three 

different experiment scenarios for effective evaluations. Finally, the work of this article is 

summarized and discussed in Section 5. 

2. Related Work 

This section introduces the game evolutionary environment modeling and the DDPG 

learning methods. 

2.1. Environmental Modeling of Game Evolution 

In agent game confrontation, it is difficult to pre-design behaviors for an agent when 

the environment is complex and changes with time. Traditional behavior planning cannot 

meet the requirements of game evolution in confrontation, and the strategy of an agent 

should react differently and adaptively with the change of environment. Deep learning 

allows agents to learn new strategies online, which helps to gradually improve the per-

formance of the agent and realize the evolution of strategies through the interaction be-

tween the agent and the environment. The process can be described as: in a certain state 

space and action space, training each agent is trained by maximizing the discount reward 

of the agent. This process is a Markov decision process. 

In the Markov decision process, the state at the next moment is determined only by 

the current decision, independent of all previous states. In addition, the state of each mo-

ment corresponds to an action, and the state of the next moment is determined by the 

action of the current moment. The pros and cons of that state are represented by a deter-

mined value which determines the expectation of future returns. Therefore, the concept 

of value function is introduced in the process of deep learning to represent the value that 

the state has at the current moment, and the definition equation is as follows: 

𝑉𝜋(𝑠) = 𝐸[𝑅𝑡+1 + 𝜆𝑉𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]  (1) 

where 𝜋 is the strategy selection, 𝑉𝜋(𝑠) denotes the state value function, 𝐸 is the ex-

pectation, 𝜆 is the discount factor, 𝑅𝑡+1 is the reward at moment 𝑡 + 1, and 𝑆𝑡+1 is the 

state at moment 𝑡 + 1. From Equation (1), it can be seen that the current state value is 

determined by the current reward and the next moment value, which is the basic form of 

Bellman’s equation. The Bellman equation is solved by iteration. 

Action value is more reasonable than state value, and the optimal decision action can 

be selected based on action value. The action value function 𝑄𝜋(𝑠, 𝑎) in game evolution 

is expressed as the cumulative reward obtained after performing action 𝑎 in state 𝑠 at 

the current moment. Its Bellman equation is as follows. 

𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑅𝑡+1 + 𝜆𝑄𝜋(𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2) 

Game evolution is the process of finding the optimal solution to the Bellman equa-

tion. From Equation (2), it can be seen that the optimal strategy is to solve the optimal 

action value function, and the optimal action value function is the maximum value of the 

action value function among all strategies. The process can be expressed as iterating over 

𝑄𝜋(𝑠, 𝑎) until convergence, at which point the action corresponding to the optimal action 

value is chosen as the optimal policy. 

2.2. DDPG Learning Method 

DDPG is a deep learning model with AC (Actor-Critic) architecture, which for any 

agent, there is a corresponding policy network together with a critic network. At a certain 

moment 𝑡, the policy network generates successive actions 𝐴𝑡 based on the state 𝑆𝑡 in 
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the environment; after that, 𝐴𝑡  interacts with the environment to generate the state 𝑆𝑡+1 

at the next moment. In addition, the critic network will obtain the evaluation value 𝑄 of 

the decision process of the policy network at moment 𝑡 based on 𝑆𝑡 and 𝐴𝑡  . The strat-

egies and evaluations of different agents in DDPG do not affect each other, that is, each 

agent’s strategies and evaluations are determined only according to its own actions and 

states. 

The policy network is iteratively updated by the parameter 𝜃𝑢 while 𝐴𝑡 is selected 

based on 𝑆𝑡 to produce the current reward 𝑅𝑡 and the next state 𝑆𝑡+1 via environmental 

interaction. The objective policy network selects the optimal next action 𝐴𝑡+1  by 𝑆𝑡+1 

sampled in the empirical replay pool. Its network parameters 𝜃𝑢′ are periodically repli-

cated from 𝜃𝑢. The critic network is updated by iterations of the value network parame-

ters 𝜃𝑄 and the current 𝑄value, i.e., 𝑄(𝑆𝑡 , 𝐴𝑡 , 𝜃𝑄), is calculated. The target 𝑄value is cal-

culated by 𝑦𝑖 = 𝑅𝑡 + 𝛾𝑄′(𝑆𝑡+1, 𝐴𝑡+1, 𝜃𝑄′) where the computation of 𝑄′(𝑆𝑡+1, 𝐴𝑡+1, 𝜃𝑄′) is 

taken responsible by the target critic network. The network parameters 𝜃𝑄′ are periodi-

cally replicated from 𝜃𝑄. The loss function of the evaluation network is  

𝐿(𝜃𝑄) =
1

𝐾
∑(𝑦𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡 , 𝜃𝑄))2

𝐾

𝑡=1

 (3) 

The goal of the critic network is to minimize the loss 𝐿(𝜃𝑄), since a smaller 𝐿(𝜃𝑄) 

represents a more accurate value given for states and actions. Therefore, the parameter 

𝜃𝑄 of the evaluation network is updated by the gradient descent method, and the equa-

tion is shown as (4). 

𝜃𝑄 = 𝜃𝑄 − 𝜂
𝜕

𝜕𝜃𝑄
𝐿(𝜃𝑄) (4) 

where 𝜂 denotes the learning rate. 

For policy networks, the larger the feedback 𝑄 value obtained, the smaller the loss 

of Actor would be. The objective function equation is as follows. 

𝐽(𝜃𝑢) =
1

𝐾
∑ 𝑄(𝑠𝑡 , 𝑎𝑡 , 𝜃𝑢)

𝐾

𝑡=1

 (5) 

where  𝑎𝑡 = 𝜋𝜃𝑢(𝑠𝑡) 

Since the strategy is deterministic, the gradient of Equation (5) can be expressed as 

∇𝜃𝑢𝐽(𝜃𝑢) =
1

𝐾
∑ ∇𝜃𝑢𝜋(𝑠𝑡 , 𝜃𝑢)∇𝑄(𝑠𝑡 , 𝑎𝑡 , 𝜃𝑄)

𝐾

𝑡=1

 (6) 

The parameters 𝜃𝑢  of the policy network are updated using the gradient ascent 

method, as shown by Equation (7). 

𝜃𝑢 = 𝜃𝑢 + 𝜂
𝜕

𝜕𝜃𝑢
𝐽(𝜃𝑢) (7) 

Since the network update equation of the DDPG learning method does not consider 

the states and actions of other agents, it cannot achieve interactive self-learning for game 

evolution. For complex multi-agent environments, the training results of the DDPG learn-

ing method are difficult to converge; it is also difficult to achieve a non-cooperative equi-

librium. In order to solve this problem, this paper proposes an ISGE-NCE method. Gen-

erative adversarial networks and group interactive learning framework are designed to 

overcome the shortcomings of DDPG method. 

3. System Design  

This section begins with the composition of the evolution system, which is followed 

by the specifications of the two main components, that is, the framework of the generative 

adversarial network, and the framework of multi-agent interaction learning, separately. 
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3.1. System Composition 

As shown in Figure 1, the interactive self-learning game and evolution system based 

on non-cooperative equilibrium mainly consists of two parts: generative adversarial net-

work and multi-agent interaction learning. ISGE-NCE system overcomes the incompe-

tence of DDPG ‘s long training time and poor effect on multi-agent learning. The genera-

tive adversarial network part realizes the rapid identification of monomer categories to 

improves the training speed. In addition, the interactive learning framework part en-

hances training capacity. 

 

Figure 1. Interactive self-learning game and evolutionary system based on non-cooperative equilib-

rium. 

Generative adversarial networks can quickly classify the individual under certain 

evolution environment. There are agents different in category in the environment set, and 

the generative model continuously generates new agents by introducing hidden random 

variables. The discriminant model takes the form of a centralized sampling to distinguish 

between concrete classes of both sides. Both the generative and discriminative models are 

updated using back propagation to achieve a stable equilibrium. The generative adver-

sarial network lays the foundation for multi-agent interactive learning and helps to im-

prove the interactive recognition capability and classification speed of the system. 

Based on the common rules, the multi-agent interactive learning has an additional 

parameter sharing mechanism compared with DDPG learning. In addition, the critic net-

work would consider the state and action parameters of other agents, which enhances the 

interactive learning ability of the agents and speed up the training process as well. Besides, 

the game evolution of the multi-agent would promote the learning efforts and improve 

the learning efficiency. Training results reflect non-cooperative equilibrium. 

3.2. Generative Adversarial Network 

The Generative Adversarial Network (GAN) obeys the two-person zero-sum game 

theory [27,28]. The sum of the interests of the two game participants is a constant, and one 

of the two players is the generative model (G) and the other is the discriminative model 

D), and the two parties have different functions. 

The framework of the generative adversarial network is shown in Figure 2. The gen-

eration model is a sample generator which produces a realistic sample by passing random 

noise through a multilayer perceptron. The discriminant model is a binary classifier to 

identify whether the input sample is true or false. The generative model together with the 
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discriminative model form a generative adversarial network, which improves its own dis-

criminative ability to achieve accurate agent/individual classification by simulating the 

multi-agent confrontation game and evolution regularly. 

 

Figure 2. Framework of the generative adversarial network. 

Optimized discriminant model D. 

𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔(𝐷(𝑥))] + 𝐸𝑧~𝑃𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] (8) 

where 𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) denotes maximizing the discrimination of 𝐷, 𝐸 is the mathematical 

expectation, 𝐷(𝑥) is the discriminant model function, 𝐷(𝐺(𝑧)) is the generative model 

function, and 𝑝𝑑𝑎𝑡𝑎(𝑥) is the environmental sample.  

Optimized generative model G 

𝑚𝑖𝑛𝐺𝑉(𝐷, 𝐺) = 𝐸𝑧~𝑃𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] (9) 

where 𝑚𝑖𝑛𝐺𝑉(𝐷, 𝐺) denotes minimizing the discrimination of 𝐺 and 𝑃𝑧(𝑧) is the noise 

sample. 

The generative adversarial network can be subdivided into two steps during the 

same round of gradient inversion: the discriminative model training first, followed by the 

generative model training. The training flow chart is shown in Figure 3. During the train-

ing of the discriminative model, the surrounding agents are classified to be 0 and 1, while 

the interference sources are corresponding to 0 and detection sources are corresponding 

to 1.  

 
(a) (b) 

Figure 3. Generative adversarial network training flow chart: (a) discriminant model training; (b) 

generate model training. 

The discriminant model samples the set of environments to generate a score 𝐷(𝑥), 

which is back-propagated and updated according to a loss function composed of the score 

𝐷(𝑥). When training the generative model, the generative model and the discriminative 

model are considered as a whole, and the overall output score 𝐷(𝐺(𝑧)) close to 1 is the 
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goal of optimization. Where the generative model randomly generates different classes of 

agents through random variables. The generative model is updated in the same way as 

the discriminant model, with backpropagation updates based on a loss function consisting 

of score 𝐷(𝐺(𝑧)). The pseudo-code for generating adversarial networks is shown in Al-

gorithm 1. 

 

Algorithm 1. Generating adversarial networks pseudocode. 

Minibatch stochastic gradient descent training of generative adversarial nets. The number of 

steps to apply to the discriminator, 𝑘, is a hyperparameter. 𝑘 = 1 was used, the least expensive 

option in our experiments. 

1 for number of training iterations do 

2 for k steps do 

3 Sample minibatch of m noise samples {𝑧(1), . . . , 𝑧(𝑚)} from noise prior 𝑝𝑔(𝑧). 

4 Sample minibatch of m samples {𝑥(1), . . . , 𝑥(𝑚)} from data generating distribution 

𝑝𝑑𝑎𝑡𝑎(𝑥). 

5 Update the discriminator by ascending its stochastic gradient: 

6 end for 

7 Sample minibatch of m noise samples {𝑧(1), . . . , 𝑧(𝑚)} from noise prior 𝑝𝑔(𝑧) 

8 Update the generator by descending its stochastic gradient: 

𝑚𝑖𝑛𝐺𝑉(𝐷, 𝐺) = 𝐸𝑧~𝑃𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] 

9 end for 

The gradient-based updates can use any standard gradient-based learning rule. Momentum 

was used in our experiments. 

The training results of the generative adversarial network are shown in Figure 4. As 

can be seen in Figure 4a, there is no obvious confrontation process between the generative 

model and the discriminant model at the beginning of training when the number of train-

ing is 1300, and their loss values do not change significantly. As shown in Figure 4b, the 

loss values of the generative and discriminant models tend to stabilize as the number of 

training times increases. This indicates that the discriminant model can discriminate de-

tection from interference in a simulation game adversarial environment. Generative ad-

versarial networks can effectively improve the adversarial ability of an agent, with fast 

training, simple model, and high discriminant accuracy after training. 

 
(a) (b) 

Figure 4. Generative adversarial networks training data: (a) 1300 training sessions; (b) 4500 training sessions. 

3.3. Multi-Agent Interactive Learning  

3.3.1. Multi-Agent Interactive Network 

The individual deep learning algorithm cannot learn interactively because it does not 

effectively use the global information about the actions and states of other agents. For 
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game adversarial training of multi-agent, the game adversarial interactive training prob-

lem is difficult to solve. Therefore, for the intelligent learning problem of multi-agent, a 

network framework based on DDPG can form a multi-agent interactive learning algo-

rithm by assigning a set of DDPG networks to each agent. The structure of the multi-agent 

interactive learning network is shown in Figure 5, which uses a centralized critic network 

decentralized policy network. The critic network knows not only its own state and action, 

but also the state and action of other agents when performing evaluation to calculate the 

value𝑄, and then realize the information interaction of the multi-agent. The multi-agent 

interactive learning utilizes distributed execution strategy, which allows the agents to set 

different reward functions according to the task, thus effectively solving the multi-agent 

non-cooperative strategy execution problem. 

 

Figure 5. Multi-agent interactive learning network map. 

In Figure 5, the policy network consists of an input layer, two hidden layers and an 

output layer. The hidden layer is represented by FC (Fully connection), which is defined 

by Equation (10). 

𝑦 = 𝜎(𝑊𝑥 + 𝑏) (10) 

In Equation (10), x is the input of the network, y represents the output of the network, 

W denotes the parameter matrix corresponding to the learning of the connection 

layer  𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) , 𝜎 is the activation function, and b is the bias vector to be 

learned by the network. 

Each hidden layer has 64 neurons, and ReLU is used as the activation function, which 

is defined as Equation (11). 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) = {0      𝑥≤0
𝑥     𝑥>0 (11) 

The five neurons in the output layer correspond to the five base actions, and a Soft-

max normalization function is used to ensure that all actions sum to one, which is defined 

as shown in Equation (12). 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑋)𝑗 =
𝑒 𝑋𝑗

∑ 𝑒𝑋𝑘𝐾
𝑘=1

 (12) 

where 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑋)𝑗 denotes the value of the jth output under K outputs. The input of 

the policy network is its own state 𝑆, which is independent of the states of other agents. 

Each agent makes decisions through the strategy network, which depends on its own state 

𝑆 , thus reflecting the non-cooperative nature of the multi-agent interactive learning 

method. 
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The input layer of the critic network is all states 𝑆 and actions 𝐴 in the environ-

ment, and an agent can obtain information of all agents through observation, which obvi-

ously enhances the interactive learning ability of the multi-agent compared with the critic 

network of DDPG which only targets the states and actions of agents.  

3.3.2. Multi-Agent Interactive Learning 

The strategy parameters for each agent in multi-agent interactive learning are 𝜃 =

(𝜃1, 𝜃2, … , 𝜃𝑁) and the joint strategy is 𝐻: 𝜋 = (𝜋(𝜃1), 𝜋(𝜃2), … , 𝜋(𝜃𝑁)) 

The multi-agent interactive learning experience replay set is 

𝑠𝑡 , 𝑎1
𝑡 , 𝑎2

𝑡 , … , 𝑎𝑁
𝑡 , 𝑟1

𝑡 , 𝑟2
𝑡 , … , 𝑟𝑁

𝑡 , 𝑠𝑡+1 (13) 

where 𝑠𝑡 = (𝑜1
𝑡 , 𝑜2

𝑡 , … , 𝑜𝑁
𝑡 )  denotes the set of observations of an agent at moment 

t, 𝐴𝑡 = (𝑎1
𝑡 , 𝑎2

𝑡 , … , 𝑎𝑁
𝑡 ) denotes the set of actions of an agent at moment t, 𝑅𝑡 = (𝑟1

𝑡 , 𝑟2
𝑡 , … , 𝑟𝑁

𝑡 ) 

denotes the set of rewards obtained by the agent at moment t after performing their re-

spective actions, and 𝑠𝑡+1 = (𝑜1
𝑡+1, 𝑜2

𝑡+1, … , 𝑜𝑁
𝑡+1) denotes the set of observations of the 

agent at moment t+1. 

The critic network for multi-agent interactive learning contains the states and actions 

of all agents, and the evaluation is updated by observing the states and actions of other 

agents for interactive learning. The loss function of the critic network is 

𝐿 =
1

𝐾
∑(𝑦𝑡 − 𝑄(𝑠𝑡 , 𝑎1, 𝑎2, … , 𝑎𝑁 , 𝜃𝑄))2

𝐾

𝑡=1

 (14) 

where 𝑦𝑡  is the target 𝑄 value of the target critic network output, and the formula is 

shown in Equation (15). 𝑄(𝑠𝑡 , 𝑎1, 𝑎2, … , 𝑎𝑁 , 𝜃𝑄) is the critic network output 𝑄 value. The 

target 𝑄 value and the critic network output 𝑄 together update the critic network pa-

rameters 

𝑦𝑡 = 𝑅𝑡 + 𝛾𝑄′(𝑆𝑡+1, 𝐴𝑡+1, 𝜃𝑄′) (15) 

where 𝐴𝑡 = 𝜋𝜃𝑢(𝑆𝑡), and 𝛾 is the discount factor. 

The learning objective of the critic network is to minimize 𝐿(𝜃𝑄), and the parameters 

𝜃𝑄 of the critic network are updated by the gradient descent method, and the formula is 

shown in Equation (4).  

For the policy network, the objective function equation is shown in Equation (16). 

𝐽(𝜃𝑢) =
1

𝐾
∑ 𝑄(𝑠𝑡 , 𝑎1, 𝑎2, … , 𝑎𝑁 , 𝜃𝑢)

𝐾

𝑡=1

 (16) 

The gradient calculation equation is 

∇𝜃𝑢𝐽 =
1

𝐾
∑ ∇𝜃𝑢𝜋(𝑠𝑡 , 𝜃𝑢)∇𝑄(𝑠𝑡 , 𝑎1, 𝑎2, … , 𝑎𝑁 , 𝜃𝑄)

𝐾

𝑡=1

 (17) 

In Equation (17) above, except for 𝑎𝑡 corresponding to the current agent needs to be 

calculated in real time by using the policy network, the other actions can be obtained from 

the experience replay set. The goal of the policy network is to maximize the score of the 

critic network; thus, the parameters 𝜃𝑢 of the policy network can be updated by the gra-

dient ascent method, as shown in Equation (7). 

The multi-agent interactive learning framework is shown in Figure 6. 
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Figure 6. A framework for multi-agent interactive learning. 

In Figure 6, the environment 𝑃 is interconnected and contains all agents. The policy 

network of each agent generates successive actions 𝑎𝑡 according to its own state 𝑜𝑡 in 

the environment, and the process is only related to the agent’s own state; thus, the policy 

network reflects the non-cooperative nature of the multi-agent. The critic network is based 

on the state 𝑜𝑡 and the 𝑎𝑡 of the generated action, and the state 𝑆𝑡 and the 𝐴𝑡 of the 

generated action of the other agents in the experience playback set, and then the evalua-

tion value 𝑄 of the decision process of the policy network at moment t. Therefore, the 

critic network embodies the ability of multi-agent interactive learning.  

The multi-agent interactive learning process is shown in Figure 7, and the pseudo-

code is shown in Table 1. During the training process, each agent relies on its own policy 

to obtain the action corresponding to the current moment state, and then executes the 

action to interact with the environment and obtains the experience and deposits it into the 

shared experience pool. The multi-agent interactive learning updates the local policy net-

work by the global Q value, but it needs the global state information and the action infor-

mation of all agents. The maximum number of training times are set to 25,000. 

Table 1. Multi-agent interactive learning pseudocode. 

Multi-Agent Interactive Learning Pseudocode. 

1. Randomly initialize the network parameters 𝜃𝑢, 𝜃𝑄, 𝜃𝑢′ = 𝜃𝑢, 𝜃𝑄′ = 𝜃𝑄, clear the ex-

perience playback set  

2. For I from 1 to N，performing Iterations 

a) Initialize 𝑆 to the first state of the current state sequence. 

b) Each agent, at moment t, gets 𝐴𝑡 = 𝜋𝜃(𝑆𝑡) in the strategy network based on state 
𝑆𝑡 

c) Execute action 𝐴𝑡, get new state 𝑆𝑡+1, reward 𝑅𝑡, and store 

{𝑠𝑡 , 𝑎1
𝑡 , 𝑎2

𝑡 , … , 𝑎𝑁
𝑡 , 𝑟1

𝑡 , 𝑟2
𝑡 , … , 𝑟𝑁

𝑡 , 𝑠𝑡+1}  into experience playback set 𝐷 

d) Each agent starts updating the network by sampling K samples from the experi-

ence playback set 𝐷 

1) Compute the optimal action 𝐴𝑡+1 = 𝜋𝜃(𝑆𝑡+1) to be taken at the next moment 

through the target strategy network 

2) Approximate true 𝑄 values are computed by the target evaluation network 

with state and action as inputs and 𝑦𝑡 = 𝑅𝑡 + 𝛾𝑄′(𝑆𝑡+1, 𝐴𝑡+1, 𝜃𝑄′) as outputs 

3) Update the evaluation network with 𝐿 =
1

𝐾
∑ (𝑦𝑡 −𝐾

𝑡=1

𝑄(𝑠𝑡 , 𝑎1, 𝑎2, … , 𝑎𝑁 , 𝜃𝑄))2as the loss function 

4) Update the policy network by∇𝜃𝜋
𝐽 =

1

𝐾
∑ ∇𝜃𝜋

𝜋(𝑜, 𝜃𝜋)∇𝑄(𝑠𝑡 , 𝑎1, 𝑎2, … , 𝑎𝑁 , 𝜃𝑄)𝐾
𝑡=1   
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5) If the number of iterations reaches the frequency of network parameter up-

dates, the target evaluation network and target strategy network parameters 

are updated: 𝜃𝑄′ = 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′ 

𝜃𝑢′ = 𝜏𝜃𝑢 + (1 − 𝜏)𝜃𝑢′  𝜏 is the update coeffi-

cient, which is generally taken as 0.1 or 0.01 

End for 

End for 

 

Figure 7. Multi-agent interactive learning flow chart. 

4. Experimental Environment 

In order to test the effect of the ISGE-NCE，three experiments are designed to be in 

different confrontation scenes with increasing complexity in conditions and with adding 

number of agents involved. The agents in the multi-agent are either interference source or 

detection source, which are marked in red or blue, respectively, for better illustration.  

The distance between the blue detection source and the red interference source be-

comes smaller, the reward of the detection source increases. The distance between the red 

interference source and the blue detection source becomes larger, the reward of the inter-

ference source increases.  

If the detection source collides with the interference source, which indicates that the 

capture of the detection source is effective, equivalently the interference source is subject 

to a capture. Otherwise, the red interference source gains reward by maintaining the dis-

tance to the blue detection source. The interactive self-learning and evolutionary capabil-

ity of the ISGE-NCE method is evaluated by the reward curves and game results. 

The initial parameters of the network 𝜃𝑢, 𝜃𝑄 are set to 0.5, the state 𝑆 is the posi-

tion of each agent, and the action 𝐴 is the velocity of the agent. The acceleration range of 

the experimental environment is set between 3.5 and 4.5; the maximum number of train-

ings is set to 25,000. The computer used for experiments whose cache is 16G, CPU is core 

i7, and operating system is Ubuntu 18.04. The code is implemented based on python3.6 

with parl 1.3.1, Gym 0.10.5 and multi-agent particle environment. 
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4.1. A Basic Multi-Agent Confrontation Experiment(E1) 

In the first experiment (which is named as E1 for short in the rest of this paper), the 

multi-agent confrontation environment contains two blue detection agents and two red 

interference agents.  

Figure 8 presents the possible states of the agents in the process of multi-agent con-

frontation game and evolution. 

   
(a) (b) (c) 

Figure 8. Confrontation process diagram of multi-agent confrontation environment. (a) Motion trend of the detection agent 

and the interference agent. (b) Action of the detection agent and the interference agent. (c) Action process of the detection 

agent and the interference agent. 

After training, the agents would be aware of their goals and tasks. As shown in Fig-

ure 8a, the blue detects take the red interference as target, and their task is to chase the red 

interfering agent. The red interfering agent, targeting the blue detecting agent, is tasked 

to increase the distance to the blue detecting agent.  

As shown in Figure 8b, the blue detection agent and the red interference agent act 

according to the task objective. Figure 8c shows that as the confrontation goes the blue 

detector agent keeps chasing the red interference agent, while the red interference agent 

can maintain the distance from the blue detection source.  

The experimental results of the multi-agent confrontation environment show that the 

trained blue detection agent and red interference agent adversarial process is consistent 

with the expected effect of the initial reward model, and the adversarial parties can 

achieve interactive self-learning and evolution through game learning, which in turn val-

idates the effectiveness of the ISGE-NCE method.  

For further verification about the adaptability of the ISGE-NCE method for multi-

agent confrontation under different environment, the acceleration of both adversaries was 

set to be inconstant. Denote 𝑉𝐿 as the acceleration of the blue detection agent and 𝑉𝑅 as 

that of the red interference agent. There would be three test conditions, 𝑉𝐿 > 𝑉𝑅, 𝑉𝐿 = 𝑉𝑅 

and 𝑉𝐿 < 𝑉𝑅, respectively. The values of the reward functions of both confrontation sides 

under different acceleration and different training times are presented in Table 2. 
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Table 2. Variation of reward function values under different acceleration conditions between two 

sides of the detection–interference confrontation. 

Training 

Times 

Acceleration Conditions 

𝑽𝑳 > 𝑽𝑹  

Rewards Change 

𝑽𝑳 = 𝑽𝑹  

Rewards Change 

𝑽𝑳 < 𝑽𝑹  

Rewards Change 

2000 −32.2 −24 −19.16 

10,000 14.19 10.25 14.01 

15,000 30.24 19.18 12.55 

20,000 73.5 27.48 17.62 

25,000 71.88 25.5 13.22 

As can be seen in Table 2, the rewards show an increase and eventually reach equi-

librium with the training iterations. When the training goes over 2000 times, the reward 

function value starts to rise significantly. 

A plot of the rewards recorded during the multi-agent confrontation is shown in Fig-

ure 9. 

In Figure 9a, the reward value increases significantly at stage when the training goes 

between 13,000 and 17,000 times, and then becomes stable. 

In Figure 9b, the rewards of the blue detectors increase significantly when the train-

ing goes between 7000 and 10,000 times, and then becomes stable. The similar situation 

happens for the red interferences, but the big variance of the rewards happens between 

the 3,000 and 5,000 training times, as shown in Figure 9c. 

From Figure 9b,c, it is evident that both confrontation sides can significantly increase 

the reward and enhance the individual intelligence in the early stage of unsupervised 

training by using the ISGE-NCE method. The final almost steady reward states imply the 

evolution reaches the non-cooperative game equilibrium as expected. 

   
(a) (b) (c) 

Figure 9. Reward function curves for multi-agent confrontation environment experiments: (a) reward function curves for 

the blue detection multi-agent and the red interference multi-agent for different acceleration parameters(“D4,I3.5” indi-

cates 𝑉𝐿 = 4, 𝑉𝑅 = 3.5; “D3.5,I3.5 “ indicates 𝑉𝐿 = 3.5 and 𝑉𝑅 = 3.5; “D3.5,I4” indicates 𝑉𝐿 = 3.5 and 𝑉𝑅 = 4); (b) plot of 

the reward function for the blue detection agents, and (c) shows the plot of the reward function for the red interference 

agents. 

4.2. Multi-Agent Covert Confrontation Environment (E2) 

In order to evaluate the adaptability of the ISGE-NCE method for more complicated 

environments, a multi-agent covert confrontation environment experiment (which is 

called E2 for short) was designed based on the multi-agent confrontation environment 

experiment in Section 4.1, as shown in Figure 10.  

Two covert regions are added, and the agent outside the covert region cannot obtain 

the position of the singleton which insides the covert region. The number of blue detection 

agents and red interference agents were both increased to 4. 
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(a) (b) (c) 

Figure 10. Multi-agent covert confrontation environmental confrontation process diagram: (a) motion trend of the detec-

tion agent and the interference agent; (b) action of the detection agent and the interference agent; (c) action process of the 

detection agent and the interference agent. 

The behaviors of the blue detectors and the red interferences are basically similar 

with that was settled in Section 4.1. The changes are as following, in Figure 10, the blue 

detectors keep pursuing the red interfering agents while the red interference agents can 

maintain the distance from the blue detection source and use the environment to avoid it 

reasonably.  

The results of the E2 show that the trained blue detection agents and red interference 

agents act as expected corresponding to the initial reward model, and the both confronta-

tion sides can achieve interactive self-learning and evolution through game learning, thus 

verifying the effectiveness and adaptability of the ISGE-NCE method to complex environ-

ments.  

Furthermore, different accelerations are set for both confrontation sides, which is 

similar with that have carried out in E1, to verify the performance of the ISGE-NCE 

method. The rewards of both confrontation sides under different acceleration and differ-

ent training times are shown in Table 3, in which the 𝑉𝐿 and 𝑉𝑅 own the same meanings 

as introduced in E1, respectively. 

Table 3. Variation of reward function values for different acceleration conditions on both confron-

tation sides of the detection–interference confrontation. 

Training 

Times 

Acceleration Conditions 

𝑽𝑳 > 𝑽𝑹  

Rewards Change 

𝑽𝑳 = 𝑽𝑹  

Rewards Change 

𝑽𝑳 < 𝑽𝑹  

Rewards Change 

2000 −115.87 −76.51 −96.91 

10,000 87.29 96.61 117.72 

15,000 65.25 66.43 52.58 

20,000 42 30.59 30.63 

25,000 42.2 31.2 28.38 

As can be seen from the training results in Table 3, the reward function values show 

an increase and eventually reach equilibrium with the training iterations. After the num-

ber of training times is greater than 2000, the reward function value starts to rise signifi-

cantly. The reward function curves of the multi-agent confrontation environment experi-

ment are shown in Figure 11. In Figure 11a, the reward value increases significantly be-

tween 3000 and 10,000 training times, and then stabilizes. In Figure 11b, the value of the 

reward function increases significantly between 2000 and 20,000 training times, and then 

stabilizes. In Figure 11c, the reward value increases significantly between 3000 and 5000 
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training times and then stabilizes. It shows that the both confrontation sides can signifi-

cantly increase the value of the reward function and the degree of individual intelligence 

in the early stage of unsupervised training by the ISGE-NCE method, and then the curve 

stabilizes to reach the non-cooperative game equilibrium.  

In Figure 11b,c, the blue detection agents and red interference agents evolve inde-

pendently of each other in the interactive self-learning game and evolution and execute 

the non-cooperative distribution strategy. In addition, the reward function curves both 

finally reach the equilibrium steady state, further proving the strategy of non-cooperative 

equilibrium of the ISGE-NCE method. 

   
(a) (b) (c) 

Figure 11. Experimental reward function curves for the multi-agent covert confrontation environment: (a) reward function 

curves for the blue detection multi-agent and the red interference multi-agent for different acceleration parameters; (b) 

curves of the reward function for the blue detection agents; (c) curves of the reward function for the red interference 

agents. 

4.3. Multi-Agent Barrier-Covert Confrontation Environment (E3) 

Based on the brilliant performance of our ISGE-NCE method in E1 and E2, the con-

frontation environment is updated to be more complicated in this Multi-agent Barrier-

Covert Confrontation Environment (which is called E3 for short). As shown by Figure 12, 

a black barrier region is added as an impassable region, from which the agents would 

bounce back when they collide. 

    
(a) (b) (c) 

Figure 12. Diagram of the confrontation process in the multi-agent obstacle-covert confrontation environment: (a) detec-

tion agents’ action, (b) interference agents’ action, and (c) action process of the detection agent and the interference agent. 

The multi-agent obstacle concealment confrontation environment experiment is 

shown in Figure 12, the blue detection agents keep pursuing the red interference agents, 

while the red interference agents can maintain the distance from the blue detection source 

and use the environment to avoid reasonably. The experimental results of the multi-agent 

confrontation environment show that the trained blue detection agents and red interfer-

ence agents adversarial process is consistent with the expected effect of the initial reward 
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model, and the both confrontation sides can achieve interactive self-learning and evolu-

tion through game learning, thus verifying the effectiveness and adaptability of the ISGE-

NCE method to complex environments. 

Similarly, the rewards of the both confrontation sides under different acceleration 

and different training times are observed and presented in Table 4, to complement the 

performance of our ISGE-NCE method in E3.  

Table 4. Variation of reward function values under different acceleration conditions between both 

confrontation sides of the detection- interference confrontation. 

Training 

Times 

Acceleration Conditions 

𝑽𝑳 > 𝑽𝑹  

Rewards Change 

𝑽𝑳 = 𝑽𝑹  

Rewards Change 

𝑽𝑳 < 𝑽𝑹  

Rewards Change 

2000 −140.43 −126.49 −60.66 

10,000 89.84 88.70 83.95 

15,000 32.53 65.38 41.05 

20,000 32.84 38.31 32.56 

25,000 32.3 28.58 38.52 

As can be seen from the training results in Table 4, the reward function values show 

an increase and eventually reach equilibrium with the training iterations. The reward 

function values start to rise significantly after the number of training times is greater than 

2000. A curve of the reward function curve of the multi-agent confrontation environment 

experiment is shown in Figure 13. In Figure 13a, the reward value rises significantly be-

tween 3000 and 12,000 training times, and then stabilizes. In Figure 13b, the value of the 

reward function increases significantly between 2000 and 22,000 training times, and then 

stabilizes. In Figure 13c, the reward value increases significantly between 3000 and 5000 

training times and then stabilizes. It shows that the both confrontation sides can signifi-

cantly increase the value of the reward function and the degree of individual intelligence 

in the early stage of unsupervised training by the ISGE-NCE method, and then the curve 

stabilizes to reach the non-cooperative game equilibrium.  

In Figure 13b,c, the blue detection agents and red interference agents evolve inde-

pendently of each other in the interactive self-learning game and evolution, and they ex-

ecute the non-cooperative distribution strategy. In addition, the reward function curves 

both finally reach the equilibrium steady state, further proving the strategy of non-coop-

erative equilibrium of the ISGE-NCE method. 

   
(a) (b) (c) 

Figure 13. Experimental reward function curves for multi-agent barrier-covert confrontation environment: (a) reward 

function curves for the blue detection multi-agent and the red interference multi-agent with different acceleration param-

eters; (b) reward function plot for the blue detection agents; (c) reward function curves for the red interference agents. 

4.4. Discussion of Experimental Results 

4.4.1. Learning Effect (Performance) 

To assess the learning effect of our ISGE-NCE method, the behavior of the blue de-

tection agents before and after learning, and the behavior of the red interference agents 
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before and after learning are compared in the three environmental experiments, i.e., E1, 

E2 and E3. It is assumed that the acceleration of blue detection agents and red interference 

agents are equal, and the number of collisions between them is considered as the evalua-

tion index, and the upper limit of the number of collisions is set to 20. 

Figure 14a shows a before-and-after training comparison for the red side, where the 

evolution proportion is the difference between the number of collisions before and after 

learning for the multi-agent. The evolution rate is the ratio of the evolution proportion to 

the upper limit of the number of collisions, which can indicate the degree of evolution of 

the individual intelligence. As Figure 14a can be obtained, the red interference multi-agent 

can successfully evade the blue detection multi-agent after learning, and its evolution rate 

reaches 60%. As can be obtained in Figure 14b, the blue detection multi-agent achieves 

accurate detection and pursuit of the red interference multi-agent through self-learning as 

well as antagonistic learning of the red interference multi-agent. The evolution rate 

reaches 80% compared to unlearning. The results of the effect plots before and after multi-

agent learning show that the ability of both the red interference multi-agent and the blue 

detection multi-agent are effectively improved through multiple iterative learning, which 

further verifies the achievability of interactive self-learning game and evolution under the 

simulated confrontation environment experiment.  

  
(a) (b) 

Figure 14. Comparison of the effect before and after multi-agent learning: (a) comparison of the effect before and after 

learning for the red interference multi-agent (orange represents the number of collisions before training, green represents 

the number of collisions after training, and purple represents the difference between the number of collisions before and 

after training); (b) comparison of the effect before and after learning for the blue detection multi-agent (orange represents 

the number of collisions before training, green represents the number of collisions after training, and purple represents 

the difference between the number of collisions before and after training). 

4.4.2. Interactive Self-Learning and Evolutionary Effects (Performance) 

As shown in Figure 15, the reward function values of interactive self-learning and 

evolution are compared with those of non-interactive self-learning and evolution in the 

three experimental environments settings of 4.1, 4.2 and 4.3. When the number of training 

times is 20,000, it can be seen in Figure 15a that the reward function value of E1 is 71.8, the 

reward function value of E2 is 42.3, and the reward function value of E3 is 32.4, while the 

reward function curves are close to equilibrium stability in the three experimental envi-

ronments. The reduced learning time and the faster stabilization of the algorithm are at-

tributed to the interactive learning ability of the critic network. In Figure 15b, the reward 

function values of E1 are 9.9, E2 are 8.2, and E3 are 6.8, while the reward function curves 

in the three experimental environments are obviously not converged; thus, it can be con-

cluded that the ISGE-NCE can effectively improve the evolutionary ability and conver-

gence.  
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(a) (b) 

Figure 15. The reward function comparison chart of Interactive self-learning and evolutionary: (a) 

reward function plot of interactive self-learning and evolutionary; (b) reward function plot of no-

interactive self-learning and evolutionary (E1 is the multi-agent confrontation environment, E2 is 

the multi-agent covert confrontation environment, and E3 is the multi-agent barrier-covert confron-

tation environment). 

The number of training times for interactive self-learning and evolution when the 

reward function value reaches 10 for each experimental environments in 4.1, 4.2 and 4.3 

is shown in Table 5. Table 5 indicates the number of training times required for each curve 

to reach a reward function value of 10. From Table 5, it can be obtained that ISGE-NCE 

can improve the rate of convergence by more than 46.3% compared with no interactive 

self-learning and evolution under the same reward function value. It further shows that 

introducing interactive learning framework into ISGE-NCE can reduce the time to reach 

non-cooperative equilibrium. 

Table 5. Comparison of the training number of interactive self-learning and evolutionary. 

With or Without 

Interactive Train-

ing 

Experimental Scene Categories 

E1 Rewards 10 

Training Times 

E2 Rewards 10 

Training Times 

E3 Rewards 10 

Training Times 

Yes 6000 3000 4000 

No 13,000 4000 10,000 

4.4.3. Comparative Effectiveness with DDPG Learning Method 

In order to verify the effectiveness of the non-cooperative equilibrium-based interac-

tive self-learning and evolutionary methods, experiments were conducted using the 

DDPG learning method in three experimental environments introduced in Sections 4.1–

4.3, and a comparison of the reward functions of the ISGE-NCE method and the DDPG 

learning method is shown in Figure 16. Based on the same reward model, the higher the 

reward value, the better the effect of detection and defense, which can reflect the better 

the performance of the method. 
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(a) (b) (c) 

Figure 16. Comparison chart of the reward functions of the ISGE-NCE method-DDPG learning method: (a) comparison 

chart of the reward functions of the experimental environment (E1) in Section 4.1; (b) comparison chart of the reward 

functions of the experimental environment (E2) in Section 4.2; (c) comparison chart of the reward functions of the experi-

mental environment (E3) in Section 4.3. 

As shown in Figure 16a, the reward obtained using our ISGE-NCE method is 71.88 

when the training goes around 25,000 times in E1(the experimental environment condi-

tion in Section 4.1), and the non-cooperative equilibrium has been reached after nearly 

17,500 times’ training. The reward by using the DDPG learning method is 50.12, and the 

equilibrium has not been reached by that time. This shows the ISGE-NCE method effec-

tively improves the value of the reward function by more than 43.4% and converges faster. 

Additionally, as shown in Figure 16b, according to the results in E2, the reward using 

ISGE-NCE method is 42.2 while the reward using DDPG learning method is -0.6. It indi-

cates that the reward is effectively improved by more than 50% by using our ISGE-NCE 

method compared with the DDPG learning method. Figure 16c shows that under the ex-

perimental environment conditions introduced in Section 4.3, the reward of ISGE-NCE 

method is 32.3 while the reward of DDPG learning method is 12.86. The reward is effec-

tively improved by more than 20% by using our ISGE-NCE method. Lastly, when the 

number of agents is increased as explained in Sections 4.2 and 4.3, since the DDPG is an 

individual learning method which is not suitable for complex multi-agent environments, 

the training capacity is significantly constrained although the convergence speed is fast. 

These results indicate that ISGE-NCE with better performance than DDPG. ISGE-

NCE method can solve the problem of multi-agent learning without manual intervention, 

which can realize unsupervised learning training. ISGE-NCE has the characteristics of 

transfer learning, and the corresponding transfer tasks can be completed with a common 

evaluation index “reward”. The reward model for different system tasks includes reward 

mechanism and observation module. The training data is stored in the “model” file after 

the task is completed and can be performed directly when the same task is encountered 

again. In summary, the ISGE-NCE method has a wide range of potential applications and 

is suitable for agent or multi-agent game confrontation environments. 

5. Conclusions 

In this paper, an interactive self-learning game and evolution approach based on non-

cooperative equilibrium (ISGE-NCE) for multi-agent evolution was proposed. This 

method owns the advantages of both game theory and interactive self-learning, which is 

proven by three groups of multi-agent confrontation experiments. During the evolution 

experiments, the changing rewards before and after training under different conditions 

show that our ISGE-NCE method can significantly improve the rewards and refine the 

individual intelligence at an early stage of training, which then promotes stabilizing the 

training process and reaching the state of non-cooperative game equilibrium efficiently. 

In addition, the ISGE-NCE method does not increase the additional consumption com-

pared with the DDPG method. 

The high evolution rates of both the interference and detection agents support our 

ISGE-NCE method to improve the efficiency of learning evolution by more than 46.3% 
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against the non-interactive self-learning approach under the same reward requirement. 

Finally, the learning effectiveness of our ISGE-NCE method is compared with the DDPG 

method, and our method gives 43.4%, 50%, and 20% higher in rewards, respectively, in 

three different experimental environments. The presented results demonstrate the supe-

riority of the ISGE-NCE method in multi-agent intelligence. 

Author Contributions: Conceptualization, Y.L. and M.Z.; methodology, Y.L., M.Z. and S.W.; soft-

ware, M.Z.; validation, Y.L., M.Z. and H.Z.; formal analysis, Y.L. and S.W.; investigation, M.Z. and 

H.Z.; resources, Y.L. and S.W.; data curation, M.Z.; writing—original draft preparation, M.Z. and 

S.W.; writing—review and editing, M.Z., Y.L. and S.W.; visualization, H.Z. and F.Y.; supervision, 

H.Z. and F.Y.; project administration, S.W. and F.Y.; funding acquisition, Y.L. All authors have read 

and agreed to the published version of the manuscript. 

Funding: This research was supported by the National Natural Science Foundation of China, with 

grant nos. 61973308,62003350 and 62175258, and the Fundamental Research Funds for the Central 

Universities of China with grant no. 800015Z1160. 

Data Availability Statement: The data presented in this study are available upon reasonable request 

from the corresponding author. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Pan, Y.; Jiang, H.; Yang, H.; Zhang, J. A Novel Method for Improving the Training Efficiency of Deep Multi-Agent Reinforce-

ment Learning. IEEE Access 2019, 7, 137992–137999. 
2. Parmar, K.; Guzzetti, D. Interactive imitation learning for spacecraft path-planning in binary asteroid systems. Adv. Space Res. 

2021, 68, 1928–1951.  

3. Liu, Z.; Liu, Q.; Wang, L.; Xu, W.; Zhou, Z. Task-level decision-making for dynamic and stochastic human-robot collaboration 

based on dual agents deep reinforcement learning. Int. J. Adv. Manuf. Technol. 2021, 115, 3533–3552. 

4. Wu, X.; Li, J.; Xiao, M.; Ching, P.C.; Poor, H.V. Multi-Agent Reinforcement Learning for Cooperative Coded Caching via Ho-

motopy Optimization. IEEE Trans. Wirel. Commun. 2021, 20, 5258–5272. 

5. Zhang, Q.; Lin, J.; Sha, Q.; He, B.; Li, G. Deep Interactive Reinforcement Learning for Path Following of Autonomous Under-

water Vehicle. IEEE Access 2020, 8, 24258–24268. 

6. Kong, W.; Zhou, D.; Yang, Z.; Zhao, Y.; Zhang, K. UAV Autonomous Aerial Combat Maneuver Strategy Generation with Ob-

servation Error Based on State-Adversarial Deep Deterministic Policy Gradient and Inverse Reinforcement Learning. Electronics 

2020, 9, 1121. 

7. Hou, Y.; Hong, H.; Sun, Z.; Xu, D.; Zeng, Z. The Control Method of Twin Delayed Deep Deterministic Policy Gradient with 

Rebirth Mechanism to Multi-DOF Manipulator. Electronics 2021, 10, 870. 

8. Ran, X.; Bian, H.; Zhang, G.; Su, Y. Hierarchical Motion Planning of AUVs in Three Typical Marine Environments. Electronics 

2021, 10, 292. 

9. Zou, Q.; Xiong, K.; Hou, Y. An end-to-end learning of driving strategies based on DDPG and imitation learning. In Proceedings 

of the 32nd Chinese Control and Decision Conference, Hefei, China, 22–24 August 2020; pp. 3190–3195. 

10. Ji, Y.; Wang, J.; Wu, W.; Wang, L.; Peng, C.; Shao, H. Communication Emitter Motion Behavior’s Cognition Based on Deep 

Reinforcement Learning. IEEE Access 2021, 9, 3033–3045. 

11. Malysheva, A.; Kudenko, D.; Shpilman, A. MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learn-

ing. In Proceedings of the 16th International Symposium on Problems of Redundancy in Information and Control Systems, 

Moscow, Russia, 21–25 October 2019; pp. 171–176. 

12. Demertzis, K.; Tsiknas, K.; Takezis, D.; Skianis, C.; Iliadis, L. Darknet Traffic Big-Data Analysis and Network Management for 

Real-Time Automating of the Malicious Intent Detection Process by a Weight Agnostic Neural Networks Framework. Electronics 

2021, 10, 781. 

13. Sheikh, H.U.; Boloni, L. Multi-Agent Reinforcement Learning for Problems with Combined Individual and Team Reward. In 

Proceedings of the International Joint Conference on Neural Networks (IJCNN) Held as Part of the IEEE World Congress on 

Computational Intelligence, Glasgow, UK, 19–24 July 2020; pp. 1–8. 

14. Li, S.; Wu, Y.; Cui, X.; Dong, H.; Fang, F.; Russell, S. Robust Multi-Agent Reinforcement Learning via Minimax Deep Determin-

istic Policy Gradient. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence/31st Innovative Applications of 

Artificial Intelligence Conference/9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HI, USA, 

27 January–1 February 2019; pp. 4213–4220. 

15. Jahangiri, M.; Hadianfard, M.A.; Najafgholipour, M.A.; Jahangiri, M.; Gerami, M.R. Interactive autodidactic school: A new me-

taheuristic optimization algorithm for solving mathematical and structural design optimization problems. Comput. Struct. 2020, 

235, 106268. 



Electronics 2021, 10, 2977 21 of 21 
 

 

16. Liu, X.; Zhang, H.; Zhang, Y.; Shao, L. Optimal Network Defense Strategy Selection Method Based on Evolutionary Network 

Game. Secur. Commun. Netw. 2020, 2020, 5381495. 

17. Tan, J.; Zhang, H.; Zhang, H.; Hu, H.; Lei, C.; Qin, Z. Optimal temporospatial strategy selection approach to moving target 

defense: A FlipIt differential game model. Comput. Secur. 2021, 108, doi:10.1016/j.cose.2021.102342. 

18. Zhao, C.; Wang, Q.; Liu, X.; Li, C.; Shi, L. Reinforcement learning based a non-zero-sum game for secure transmission against 

smart jamming. Digit. Signal Process. 2021, 112, 103002. 

19. Qrihuela, L.; Millan, P.; del Nozal, A.R. A Non-Cooperative Game-Theoretic Approach for Distributed Voltage Regulation in 

DC Grids with a High Penetration of Renewable Energies. Electronics 2021, 10, 768. 

20. Shi, D.; Gao, H.; Wang, L.; Pan, M.; Han, Z.; Poor, H.V. Mean Field Game Guided Deep Reinforcement Learning for Task Place-

ment in Cooperative Multiaccess Edge Computing. IEEE Internet Things J. 2020, 7, 9330–9340. 

21. Zhang, H.; Li, D.; He, Y. Multi-Robot Cooperation Strategy in Game Environment Using Deep Reinforcement Learning. In 

Proceedings of the IEEE International Conference on Robotics and Biomimetics, Kuala Lumpur, Malaysia, 12–15 December 

2018; pp. 886–891. 

22. Liu, M.; Ma, L.; Li, C.; Chang, W.; Wang, Y.; Cui, J.; Ji. Y. Design and Analysis of Decentralized Interactive Cyber Defense 

Approach based on Multi-agent Coordination. In Proceedings of the 16th IEEE International Conference on Mobility, Sensing 

and Networking, Tokyo, Japan, 17–19 December 2020; pp. 659–664. 

23. Simoes, D.; Lau, N.; Reis, L.P. Mixed-Policy Asynchronous Deep Q-Learning. In Proceedings of the 3rd Iberian Robotics Con-

ference, Seville, Spain, 22–24 November 2017; pp. 129–140. 

24. Abass, A.A.A.; Mandayam, N.B.; Gajic, Z. Evolutionary Random Access Game with Objective and Subjective Players. IEEE 

Access 2021, 9, 35562–35572. 

25. Yan, P.; Miao, H.; Che, A.; Yu, K. Nash-equilibrium algorithm and incentive protocol for a decentralized decision and schedul-

ing problem in sustainable electroplating plants. Comput. Oper. Res. 2021, 128, 105130. 

26. Zhu, Y.; Zhao, D. Online Minimax Q Network Learning for Two-Player Zero-Sum Markov Games. IEEE Trans. Neural. Netw. 

Learn. Syst. 2020, 1–14, doi:10.1109/TNNLS.2020.3041469. 

27. Yang, B.; Chen, C.; Chen, F.; Chen, C.; Tang, J.; Gao, R.; Lv, X. Identification of cumin and fennel from different regions based 

on generative adversarial networks and near infrared spectroscopy. Spectrochim. Acta A 2021, 260, 119956. 

28. Zhang, J.; Wu, C.; Yu, X.; Lei, X. A Novel DenseNet Generative Adversarial Network for Heterogenous Low-Light Image En-

hancement. Front. Neurorobot. 2021, 15, doi:10.3389/fnbot.2021.700011. 


