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Abstract: Recently, remote sensing satellite image analysis has received significant attention from
geo-information scientists. However, the current geo-information systems lack automatic detection
of several building characteristics inside the high-resolution satellite images. The accurate extraction
of buildings characteristics helps the decision-makers to optimize urban planning and achieve better
decisions. Furthermore, Building orientation angle is a very critical parameter in the accuracy of
automated building detection algorithms. However, the traditional computer vision techniques lack
accuracy, scalability, and robustness for building orientation angle detection. This paper proposes
two different approaches to deep building orientation angle estimation in the high-resolution satellite
image. Firstly, we propose a transfer deep learning approach for our estimation task. Secondly, we
propose a novel optimized DCRN network consisting of pre-processing, scaled gradient layer, deep
convolutional units, dropout layers, and regression end layer. The early proposed gradient layer
helps the DCRN network to extract more helpful information and increase its performance. We have
collected a building benchmark dataset that consists of building images in Riyadh city. The images
used in the experiments are 15,190 buildings images. In our experiments, we have compared our
proposed approaches and the other approaches in the literature. The proposed system has achieved
the lowest root mean square error (RMSE) value of 1.24, the lowest mean absolute error (MAE) of 0.16,
and the highest adjusted R-squared value of 0.99 using the RMS optimizer. The cost of processing
time of our proposed DCRN architecture is 0.0113 ± 0.0141 s. Our proposed approach has proven its
stability with the input building image contrast variation for all orientation angles. Our experimental
results are promising, and it is suggested to be utilized in other building characteristics estimation
tasks in high-resolution satellite images.

Keywords: deep regression network; deep transfer learning; building detection; building orientation
angle; high-resolution satellite image

1. Introduction

Remote sensing satellite data analysis plays an essential role in providing helpful infor-
mation for urban planning and decision-making [1]. In addition, the recent sustainability
research studies of smart cities depend on remote sensing data analysis [2]. Remote sensing
data are presented in multi-modal form, e.g., aerial images, multispectral images, light
detection and ranging (LiDAR) sensors, hyperspectral, and synthetic aperture radar (SAR)
sensors [3]. The satellite image analysis is one of the most critical information analysis in
satellite data [4]. Furthermore, human analysis - techniques for extracting building infor-
mation are very tedious and inaccurate for the involvement of human expertise quality
degree [5]. Therefore, computer-based systems are more accurate, save time, and save cost,
especially in high-resolution satellite images. Computer vision is a computer-based image
analysis system that utilizes image content information such as intensities, edges, textures,

Electronics 2021, 10, 2970. https://doi.org/10.3390/electronics10232970 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3388-5127
https://orcid.org/0000-0003-2050-5236
https://doi.org/10.3390/electronics10232970
https://doi.org/10.3390/electronics10232970
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10232970
https://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/10/23/2970?type=check_update&version=2


Electronics 2021, 10, 2970 2 of 30

and morphological [6]. Such information is beneficial to enhance, segment, detect, or recog-
nize objects inside these images. In the last decade, several computer vision algorithms
were introduced for satellite image analysis applications [7].

Automated building boundary extraction plays a crucial role in urban planning.
The topographic data of building clusters are summarized into linear alignments, and non-
linear alignments [8]. The linear alignments are divided into collinear, curvilinear, and align-
along-road. The non-linear alignments are divided into grid and unstructured. These
variations of building clusters inside urban planning make it challenging to accurately
detect the angle of building orientation inside the satellite high-resolution images to obtain
an optimum building boundary extraction. Therefore, the correct building orientation
angle plays an essential role in the overall building detection algorithms. A sample of
dense buildings satellite image at different building orientation angles (−20, 0, +10, +20)
from Riyadh city is shown in Figure 1a. Different buildings alignments can be modeled
such as linear as shown in Figure 1b, curvilinear as shown in Figure 1c and grid with
different orientation angles as shown in Figure 1d. There are two main kinds of approaches
for applying computer vision applications in satellite images, which are the traditional
image processing approaches and deep learning approaches [9]. There is a challenge to
employ recent approaches to analyze the building orientation angle.

Figure 1. (a) High-resolution satellite image shows different building orientation angles in dense building view in Riyadh
city, (b) linear building alignment representation, (c) curvilinear building alignment representation, and (d) grid building
alignment representation with different orientation angles.
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Deep learning has been introduced by LeCun [10] as a subfield of artificial intelli-
gence (AI), in which the computer algorithm learns tasks and distinguishes patterns with
just constrained preparing information. Deep learning models can automatically extract
the features with no need for feature extraction process [11]. Deep learning calculations
learn designs by advancing through layers in a neural system to reach inferences. These
advantages have made the utilization of deep learning a powerful tool in computer vi-
sion algorithms. Recently, deep learning shows exponential growing trend in compute
vision tasks such as estimation [12], enhancement [13], segmentation [14], detection [15],
and classification [16]. Deep learning is a powerful tool for a large amount of satellite image
analysis tasks [17]. The deep learning algorithms have been employed in several satellite
image analysis such as building detection [18], ship detection [19], vehicle detection [20],
crop detection [21], and water detection [22]. There is a real need to employ deep learning
to estimate some building characteristics in the remote satellite image.

This paper focuses on the building’s orientation angle as an essential characteristic for
urban planning and automated building detection algorithms. Our proposed approach
is based on the deep learning technique, which has proven its power compared with the
traditional computer vision techniques. Deep learning is employed to estimate the angle of
building orientation for buildings in Riyadh city collected during this study.

In this paper, our contributions are as follows:

(1) We have proposed two deep learning approaches to estimate the building orientation
angle in high-resolution satellite images.

(2) The first approach based on deep transfer learning was examined using recent deep
learning architectures.

(3) The second approach is based on a lightweight deep learning architecture called
DCRN to estimate building orientation angle.

(4) A new early gradient layer has been proposed to overcome the drawbacks of building
images and enhance the DCRN architecture performance.

(5) A grid search hyper-parameters optimization has been applied to achieve the best
performance for the DCRN architecture.

(6) We have collected a dataset for Riyadh city that consisted of thousands of building
images with different angles to achieve our task.

(7) The two proposed approaches has been evaluated using our buildings dataset. Then,
we compared our findings with the traditional and deep learning approaches in
the literature.

The remainder of this paper is organized as follows. Section 2 presents the related
works of building angle detection, including (1) traditional computer vision techniques,
(2) deep learning techniques. Section 3 introduces our proposed material and methods
in detail. Section 4 presents the experimental section with the proposed approach per-
formance analysis with benchmarking against previous algorithms over our Riyadh-city
building datasets. Section 5 introduces the discussion of our experimental results. Finally,
the conclusion is introduced in Section 6.

2. Related Works

Buildings are one of the most important four patterns inside satellite images that need
to be analyzed for optimum urban planning Zhang et al. [8]. Deep semantic segmentation
for buildings received great attention last years Hatamizadeh et al. [23], Sun et al. [24],
Yi et al. [25], Liu et al. [26], Abdollahi et al. [27], Yi et al. [25] and Wang and Li [28].

Another research dimension for building included the deep detection networks Shahin
and Almotairi [29]. In Li et al. [30], the authors have introduced a building damage de-
tection system based on deep learning. They have utilized the single-shot deep learning
detector to detect the damaged area. They have utilized a Hurricane-Sandy dataset col-
lected in 2012 in their study. The study has included only 350 images and achieved 77%
average precision. In Zhang et al. [31], the authors have introduced a deep learning
detection algorithm based on masked-RCNN. The authors have combined a fusion image
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to increase the system performance. The experiments have been applied to Chinese cities.
The system achieved intersection over union (IOU) 87.8%. In Ma et al. [32], the authors
have proposed a deep learning detection algorithm based on YOLOv3 for collapsed Build-
ings in Post-Earthquake. The dataset was collected after the 2008 Wenchuan and the 2010
Yushu earthquakes. The proposed algorithm reached 90.89% average precision.

However, these algorithms were employed for buildings area extraction alone. In addi-
tion, they neglected the other building characteristics which are essential in urban planning,
such as height, orientation, and damage degree. Furthermore, the deep semantic segmenta-
tion techniques usually consume high processing time. The authors did not discuss the
building orientation angle characteristic from a regression problem perspective, as chal-
lenging to construct a dataset for each building characteristic separately or transform the
deep segmentation networks for other estimation tasks.

Several articles have been also introduced for buildings characteristics analysis such as
building heights detection Liasis and Stavrou [33], building roof detection Nemoto et al. [34],
building change detection More et al. [35], and building damage detection Li et al. [30].
Several estimation problems has been solved using deep learning approaches for buildings
as shown in Table 1. The buildings heights estimation has been deeply investigated in
several previous works Karatsiolis et al. [36], Li et al. [37], Liu et al. [38], and Cao and
Huang [39].

In Karatsiolis et al. [36], the authors introduced a deep learning model that combines
architectural characteristics extracted through U-NET supported with residual connections
and learned the height estimation by mapping the aerial RGB images. They achieved an
RMSE value of 1.6. However, their model could not predict their heights in the DFC2018
dataset. In addition, the tall and thin buildings were rarely detected. The model some-
times failed to estimate their heights correctly. In some buildings cases, the model also
failed to detect them. In Li et al. [37], the authors introduced a deep regression network
that captured building height information with no need for multi-remote sensing per-
spectives. As a result, their model achieved the lowest RMSE value of 1.4. However,
to achieve this target, they employed the ResNet architecture as a feature extractor back-
bone, then they fine-tuned the end of the network with a regression layer to fit the problem.
In Liu et al. [38], the authors presented an IM2ELEVATION deep learning model based on
the multi-sensor fusion of aerial RGB images and lidar data. They have achieved an RMSE
value of 3.05. However, the network was very complex, which increased its inference
time. Besides that, lidar data is not always available. In Cao and Huang [39], the authors
introduced the M3Net deep learning model based on learning multi-spectral images, RGB
images, and near-infrared bands. Moreover, they fed their network with multi-view images
nadir, forward, and backward images). As a result, their model achieved an RMSE value of
3.3. Furthermore, their model was compared with single-task networks for height estima-
tion, and they achieved a lower RMSE with the multi-task branching technique. However,
the availability of all remote sensing information is challenging to be obtained for each city.
In Sun et al. [40], the authors introduced an orientation estimation Network for outdoor
RGB images. They have proposed a model based on fine-tuned MobileNet. They evaluated
their model based on the average error, which was relatively high. Their dataset included
buildings but not specifically for buildings images. In Amini and Arefi [41], the authors
presented a deep CNN network to detect the collapsed buildings after an earthquake using
height estimation. They employed both RGB images and lidar data pre-event satellite
image as well as post-event. Their model was evaluated by overall quality metric which
has achieved a value of 91.5%.
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Table 1. Various studies for building characteristics estimation in the literature.

Reference Architecture Processing Information Estimation Task Performance

Karatsiolis et al. [36] Unet + Residual Network Aerial RGB Images Building Height Estimation RMSE = 1.6

Li et al. [37] Deep Regression
Network

Remote Sensing RGB
Images Building Height Estimation RMSE = 1.4

Liu et al. [38] IM2ELEVATION
Network

Aerial RGB images and
Lidar data Building Height Estimation RMSE = 3.05

Cao and Huang [39] M3Net Network Multi views images
and spectral images Building Height Estimation RMSE = 3.3

Sun et al. [40] Fine-tuned MobileNet Outdoor RGB Images Building Orientation
Estimation Avg. Error = 23.63

Amini and Arefi [41] Deep CNN Remote Sensing
RGB Images + Lidar data

Building Damage
Estimation Qulaity = 91.5%

In this study, we focus on the building analysis in the high-resolution satellite image,
especially the studies including building orientation angle calculation. Building orientation
angle estimation is an active research point; there are three approaches in the previous
studies to detect building boundaries involved with its orientation angle in high-resolution
satellite RGB images. The first approach is based on the traditional image processing
techniques. This approach has been proposed during building boundary detection, which
is based on morphological binary processing. After binary thresholding of the building
image, several pre-processing operations have been applied to remove artifacts. The major
binary blob was utilized to extract the building boundary edges. Then, the orientation
angle has been calculated as in Ghandour and Jezzini [42]:

cosθ =

−→
V1 ·
−→
V2∥∥∥−→V1

∥∥∥ · ∥∥∥−→V2

∥∥∥ (1)

where
−→
V1 ·
−→
V2 are two opposites vectors in the building and θ is the angle between them.

In Ghandour and Jezzini [42], the authors proposed a building boundary detection
algorithm based on building shadow verification. They have utilized traditional image
processing techniques for building roof boundary extraction. They utilized The SztaKi–Inria
and Istanbul cities datasets. They have utilized a fusion idea to increase their system
performance, which reached 95.8% of accuracy. However, the proposed algorithm lacked
robustness in the case of changing the color nature of roof buildings. In Nguyen et al. [43],
the authors have proposed an un-supervised automatic building detection algorithm based
on an active contour algorithm. Their experiments have been applied on a dataset collected
from Quebec City and Vaihingen City, Germany. The authors utilized LiDAR information
to increase the system performance that reached 91.12% intersection of union (IOU).

The second approach is based on the Hough transform Wang et al. [3]. Hough lines
in the Hough transform approach can detect the best fitting line from a set of 2-D points
where each pixel in the spatial domain is represented into a sinusoidal curve in Hough
space. The algebraic distance from the origin to the line (ρ) is defined as in Wang et al. [3]:

ρ = xcosθ + ysinθ (2)

where (x; y) are coordinates of a point on the line in a Cartesian system, θ is the angle of the
line’s normal with respect to the x-axis.

In Wang et al. [3], the authors have utilized the Hough transform approach for LIDAR
information to extract the building boundary. Their experiments have been applied to
three urban sites: Quantities Village site, Osaka city, and Toronto city. The average accuracy
achieved through their proposed system has been 90%. In Bachiller-Burgos et al. [44],
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the authors have introduced a building boundary detection based on Hough transform.
They have combined corners, segments, and polylines for the detected boundary. They
have evaluated their proposed system based on qualitative analysis with no quantitative
measurement of their proposed system.

The third approach is dependent on the supervised learning approach. In Kadhim and
Mourshed [45], the authors have introduced a system for building heights detection based
on traditional image processing. The authors have utilized graph fuzzy morphological
processing to extract the building heights. The algorithm has been examined on seven
urban sites in Cardiff, UK. They achieved a mean square error of the overall system
reached 21%.

To our knowledge, in the literature, the building orientation angle has not been inves-
tigated through a deep learning framework as the main task. However, we have noticed
that the learning of the object angle orientation based on deep learning has been discussed
in the previous articles as a stage for arbitrary-oriented object detection Chen et al. [46],
Wang et al. [47], and Tang et al. [48]. Their orientation estimation networks were based
on VGG16 architecture. In Chen et al. [46], the authors investigated the buildings at three
angles only. In Wang et al. [47], the authors introduced a ship detection model that ne-
glected the evaluation of the ship’s orientation angle estimation accuracy. In Tang et al. [48],
the authors investigated the vehicles orientation angle estimation in the vehicles detection
model. However, the achieved RMSE value was very high and reached a value of 74.38. On
the other hand, the convolutional regression networks have been previously introduced
to estimate the orientation angles in several applications. In Hara et al. [49], the authors
introduced a continuous object orientation estimation for pedestrians, which requires
prediction of 0◦ to 360◦ degrees. In Phisannupawong et al. [50], the authors proposed a
regression network based on Xception architecture for satellite orientation estimation from
the image. However, they employed a simulated images dataset to train their model due
to the insufficiency of dataset size. All these previous articles proved the efficiency of deep
regression networks for the orientation angle estimation task.

On the other hand, there was a study to detect building orientation angles through
SAR information Li et al. [51]. The authors proposed a mathematical model to estimate
the building orientation angle from SAR information in several regions of interest. Their
proposed system measured the overall building’s orientation angles inside each region
of interest. However, there were several disadvantages of their proposed system. First,
their results have been investigated using only the estimated angle’s mean and standard
deviation values on limited case studies. Second, the high standard deviation values of the
estimated angles of the buildings and the utilized dataset lacked uniform distribution of
the buildings’ orientation angles which is more suitable for urban planning. Third, SAR
information is produced by generating consequence pulses of radio waves to illuminate
the target, and the space-based illuminators equipped with SAR radar lack the continuous
availability of the transmitter to illuminate the target Maslikowski et al. [52].

Several drawbacks have been founded in the previous studies as follows: the de-
pendency on the LIDAR sensor fusion with image information which increased system-
processing complexity, the dependency on the traditional image processing for color build-
ing roof detection, which lacked robustness, the absence of building detection in a desert
environment with no building roof color and low contrast image appearance. Furthermore,
the high-resolution satellite RGB images can be captured instantly and provide separate
data for each building information suitable for urban planning tasks. Such drawbacks
could be tackled using deep learning approaches. In addition, all previous deep learning
approaches for building detection neglected the building orientation angle as the main
task. In the previous studies, building detection algorithms were involved with build-
ing orientation angle detection, which decreased the system performance Chen et al. [46].
Furthermore, the complexity of roof appearance made the prediction based on roof morpho-
logical appearance. Therefore, there is a complexity to modify the loss function of the deep
learning detectors. However, the previous datasets lacked a dessert nature like in Saudi
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Arabia cities, which decreased the image contrast. Therefore, there is a real need to estimate
the orientation angle of the building in remote sensing images in the desert environment.

3. Material and Methods
3.1. Material

We have collected a dataset for building images from three different high-resolution
satellite images. The dataset of building images was collected from Riyadh city, Saudi
Arabia. The size of each image was 50 MB in JPEG compression format with a resolution
of 6140× 8106. Each image contained thousands of buildings with different orientation
angles, locations, designs, roof shapes, and roof colors. The building images were cropped
manually from each image. The total number of buildings were 15,190 building with
different five angles (+20, +10, 0, −10, and −20) as shown in Figure 2. We have utilized the
dataset-splitting technique to validate our proposed approach (80% training, 20% testing).
We divided the collected building dataset into a 12,152 training set and a 3038 test set.

(a) (b) (c)

(d) (e)

Figure 2. A sample of building images with different orientation angles from our collected dataset
from Riyadh city (a) building image with orientation angle 0, (b) building image with orientation
angle +10, (c) building image with orientation angle −10, (d) building image with orientation angle
−20, and (e) building image with orientation angle +20.

3.2. Methods

In this paper, we deliver two deep learning approaches for estimating the building
angle orientation problem. The first approach is based on deep transfer learning, and the
second is based on a novel optimized deep convolutional regression network.

3.2.1. Transfer Learning Approach

In this approach, we apply the fine-tuning of the pre-trained networks for the transfer
learning approach [53], as shown in Figure 3. Thus, the proposed approach consists of
input building images dataset, pre-processing, and fine-tuning stage.

The Building images dataset contains a wide building images dataset with predefined
orientation angles. Each building image has its size, which varies according to the building
size. Due to these variations, we need to set each building image to fit with the image
input layer. The image input layer of each pre-trained network is as follows: AlexNet
(227 × 227 × 3), VGG16 and VGG19 (224 × 224 × 3), GoogleNet (224 × 224 × 3), ResNet
architectures (224 × 224 × 3), MobileNetv2 (224 × 224 × 3), and EfficientNet (224 × 224 × 3).
We utilize several pre-trained networks (AlexNet, VGG16, VGG19,GoogleNet, ResNet,
MobileNetv2, and EfficientNet). All of these networks have been trained on the ImageNet
dataset [54]. ImageNet dataset contains hundreds of thousands of images for one thousand
classes. Each pre-trained network has its learnable weights that can extract low, medium,
and high-level features for any input image. We utilize the ability of such networks to
extract edges, intensities variation, and contrast variation to distinguish the building
orientation angle. All these networks consist of several convolutional layers that contain
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hundreds of learned kernels. Each pre-trained network has a different depth that means
the number of layers deep in its architecture are as follows: AlexNet (8 layers deep), VGG16
(16 layers deep), VGG19 (19 layers deep), GoogleNet (22 layers deep), ResNet18 (18 layers
deep), ResNet50 (50 layers deep), ResNet101 (101 layers deep), MobileNetv2 (53 layers
deep), and EfficientNet (290 layers deep). However, these networks are fine-tuned by
replacing their final layers that consist of a fully connected layer and Softmax classification
layer with a single neuron fully connected layer and regression layer. Finally, each network
is trained again to estimate the orientation angle from the input building image.

New Learning 
Task (K)

Pre
Processing

Pre-Trained Networks (AlexNet, VGG 16,…..etc.)

FC
 =

 1
00

0

Cl
as

si
fi

ca
ti

on

Pre-Trained Weight

FC
 =

 1

R
eg

re
ss

io
n

Estimated θ

Fine-tuning 

Figure 3. The first proposed approach based on transfer learning for building orientation angle estimation.

The transfer learning process is applied for our regression problem by transferring
the learning task from the ImageNet dataset to our target building dataset. This process is
defined as followed in Kandel and Castelli [53], each input image in a domain D consists of
two components: features space F with a probability distribution P(X) as in Equation (3):

D = {F, P(X)} (3)

The source domain dataset (DS) can be defined as in Equation (4):

DS = {(XS1
, YS1), (XS2

, YS2), . . . . . . , (XSn
, YSn)} (4)

where S represents the source domain for learning samples X = {x1, x2, x3. . ., xn} with
size n, the source dataset XS = {xS1 , xS2 . . . xSn} ε FS, and the corresponding source class
label yS ∈ γS the source dataset labels.

The target domain dataset (DT) can be defined as in Equation (5):

DT = {(XT1
, YT1), (XT2

, YT2), . . . . . . , (XTn
, YTn)} (5)

where T represents the target domain for learning samples X = {x1, x2, x3. . ., xm} with size
m, the target dataset XT = {xT1 , xT2 . . . xTm} ε FT , and the corresponding target class label
yT ∈ γT the target dataset labels.

The new learning task K is defined as having two components: label space γ and
objective function ϕ (.), as in Equation (6):

K = {γ, ϕ(.)} (6)
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where K represents the new learning task: K = {γ, ϕ (.)}, n >> m.

3.2.2. Deep Building Regression Network (DCRN)

The proposed DCRN approach is a lightweight architecture, which includes a pre-
processing layer, several convolutional units, a dropout layer, and a regression layer. In this
study, we aim to develop the topology of DCRN deep learning architecture by optimizing
its hyper-parameters. First, as shown in Algorithm 1, we initialize the DCRN network with
initial hyper-parameters to obtain the best DCRN network depth and training optimization
algorithm. Secondly, we establish the hyper-parameters dictionary for the number dropout
percentage (Drop Per.), initial learning rate, and the kernel size (KS) in each convolutional
layer. Finally, the grid search algorithm is applied to obtain the best hyper-parameters for
DCRN architecture.

Algorithm 1: Grid Search algorithm for our proposed DCRN approach.
Initialize the DCRN network with initial hyper-parameters.
Obtain the best training optimization algorithm for the DCRN network.
Obtain the best depth for the DCRN network.
Create the DCRN network.
Specify the hyper-parameters dictionary

KS = [3, 5, 7]
Drop Per. = [0.1, 0.2, 0.3, 0.4, 0.5]
Initial learning rate = [0.001, 0.002, 0.003, 0.004, 0.005]

For (n ∈ Iterations Number)
Start Grid Search Algorithm (n, Hyper-parameters Dictionary)

Output: Optimized DCRN Network that achieved the lowest RMSE.

Our proposed Deep Building Regression Network (DCRN) network is presented in
Figure 4. It consists of a deep network input layer, a scaled gradient (SG) layer, three
convolutional units, a dropout layer, a fully connected layer, and a regression layer. Con-
volutional unit1 consists of a convolutional layer, a batch normalization layer, and an
activation layer. Convolutional unit 2, where each one consists of a convolutional layer,
a batch normalization layer, an activation layer, an average-pooling layer, two repetitive
convolutional unit3 where each one consists of a convolutional layer, a batch normalization
layer, and an activation layer.

The image input layer contains two pre-processing stages, the first stage is resizing
the input image with (64 × 64), and the second stage is converting the color input image to
a gray-scale level to decrease the computational processing time as in Equation (7) [55].

PImage = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B (7)

where PImage represents the output image and R is the red channel of the input image, G is
the green channel of the input image, and B is the blue channel of the input image.

In this paper, we employ the scaled gradient (SG) layer to enhance the building’s
appearance and remove the shadow artifacts surrounded by the building. First, the gradient
is utilized to highlight the edges of the building. Then, the histogram equalization of the
input image is calculated to enhance the input image and remove lighting conditions
variation. However, there is a building image lighting variation. Therefore, the scaling
factor is added to the histogram equalization process to be adaptive [53]. The advantage of
using the SG layer is shown in Figure 5. In this paper, we modify the scaling factor to be a
learnable parameter inside the SG layer.
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Figure 4. The second proposed approach based on DCRN for building angle orientation estimation.

Figure 5. A sample for building image enhancement using SG layer: (a) Before SG layer; (b) After
SG layer.

The proposed SG layer is defined as follows: we compute the gradient image Xs by
convolving the input grayscale image by the gradient G:

Xs = PImage ∗ G (8)

where G is the gradient kernel defined as:

G = ¼ ∗

 1 0 1
0 −4 1
1 0 1


Then, Xg is the subtraction of input image and the gradient output image

Xg = PImage− Xs (9)
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The histogram-equalized image Eq_Xg is obtained by:

Eq_Xg = histeq(Xg) (10)

where histeq is the histogram equalization function of the input image Xg. Finally, the scaled
gradient output (SGimage) is defined as in Equation (11):

SGimage = α. Eq_Xg + Xs (11)

where α is a scaling factor that is learned through training with range [0, 1].
The convolutional layer contains several convolutional kernels that are responsible

for obtaining the features. These kernels are applied in a spatial area of the image to
construct a receptive field. Each input image is divided into blocks and the kernels that
contain learnable parameters convolving them. A single convolution process is defined as
in Equation (12):

FK
I = Ix,y ∗ Kk

I (12)

where Ix,y represent input image (x, y), Kk
I represents Ith convolutional kernel of kth layer.

Batch normalization (BN) improves deep learning stability and accelerates the training
process by eliminating internal covariate change. This process consists of normalizing the
previous activation layer output and subtracting the mean of the batch. Then, dividing the
output by the standard deviation of the batch. The batch normalization transformation
function (Tk

I ) is defined in Equation (13).

Nk
I =

Tk
I

σ2 + ∑i Tk
i

(13)

where Nk
I represents the feature map after the normalization process, Tk

I represents the
input feature map, and σ represents variation through the feature map.

According to the massive number of computed parameters, a down-sampling process
should be applied to the input features map. Therefore, we have utilized the averaging as
in the following equation:

ZI = fp(FI
x,y) (14)

where ZI represents Ith output feature map, FI
x,y represents Ith input feature map, and fp

represents pooling operation type.
The activation function is responsible for making the network decision. The rectified

linear unit (Relu) activation function has two advantages: speed and robustness for the
CNN learning process.

Tk
I = fA(Fk

I ) (15)

Fk
I represents the output of convolution layer operation, and fA represents the activation

rectified linear unit (ReLU) function.
The dropout layer has proven its potential as a regularization technique in several

deep learning architectures. It provides the regularization process during the learning
process. This process is utilized to prevent over-fitting and achieved by stochastic dropping
out some neurons during the training process.

The Fully connected (FC) layer consists of a single neuron for the estimated orientation
angle value located before the final regression layer. Thus, Fc is responsible for remapping
the feature map on a single neuron value.

The regression layer employs the loss function during the training process in super-
vised learning to obtain the best parameters. The most common regression loss function is
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the mean square error that represents the squared distances between the target variable Yi
and the predicted values Y

′
i as in Equation (16).

MSE =
1
n

n

∑
i=1

(Yi −Y
′
i )

2 (16)

Hyper-parameters play an essential role in the performance of deep networks. Each
convolutional layer (CL) consists of number of kernels (K) with kernel size (KS). The learn-
ing rate value is utilized to achieve the minimum loss value with a relatively high con-
vergence speed. Firstly, we select the hyper-parameters that have been utilized in similar
works. We select the learning rate as followed in a similar direction estimation deep net-
work [56]. The minimum batch size value was investigated in a similar remote sensing
application [57] and the minimum batch size 64 has achieved the best average accuracy
among several minimum batch sizes. The epochs number controls the network training
iterations. In our estimation problem, about 30 epochs are utilized to achieve the minimum
loss value. Therefore, we set the initial hyper-parameters for our proposed DCRN as
shown in Table 2 as follows: the KS to the lower value 3, the dropout percentage to 20% of
neurons drop, and the initial learning rate to 0.001. Secondly, during the experiments, we
investigate the optimized hyper-parameters for our proposed DCRN architecture using
an exhaustive grid search method [58] as shown in Algorithm 1. Our DCRN architecture
has achieved the best performance with the following parameters: the KS to the value 7,
the dropout percentage to 30% of neurons drop, and the initial learning rate to 0.004.

Table 2. Hyper-parameters setting for our proposed DCRN network.

Layer Name Initial Hyper-Parameters Optimized Hyper-Parameters

CLs in Convolutional Unit 1 KS [3, 3], K = 64 KS [7, 7], K = 64

CLs in Convolutional Unit 2
KS [3, 3], K = 128 KS [7, 7], K = 128
KS [3, 3], K = 256 KS [7, 7], K = 256
KS [3, 3], K = 512 KS [7, 7], K = 512

CLs in Convolutional Unit 3 KS [3, 3], K = 1024 KS [7, 7], K = 1024
KS [3, 3], K = 1024 KS [7, 7], K = 1024

Activation Layers Relu Unit Relu Unit

Pooling Layers KS [2, 2], stride = 2 KS [2, 2], stride = 2

Dropout Layers Drop Percentage = 20% Drop Percentage = 30%

4. Results

We perform our proposed system based on MATLAB 2020a. The system platform
contains Quad-Core 2.9 GHz Intel i5 with 16 GB RAM. The GPU computation is done
through NVIDIA Quadro 5000 with 16 GB internal RAM and computing capability 6.1.
We design seven main experiments to prove our findings as follows: (1) We investigate
the performance of our first proposed approach, (2) We investigate the best depth for our
proposed DCRN architecture, (3) We investigate the SG layer effect on DCRN architectures
with different optimization algorithms, (4) We investigate the performance of DCRN
architecture after the hyper-parameters grid-search optimization, (5) We compare between
our optimized DCRN approach and the other methods in the literature, (6) We perform
a computational cost analysis for our approach vs. the previous methods, and (7) We
visualize several examples to answer how each algorithm makes its decision to estimate
the correct orientation angle.

In this section, we assess our experimental results based on quantitative and qualitative
results. We use the root mean square error (RMSE) value as defined in Equation (17), mean
absolute error (MAE) as defined in Equation (18) and Adjusted R-Squared value as defined
in Equation (19). Furthermore, we perform a computational cost analysis for our proposed
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DCRN network. On the other hand, we visualize the learning curves for both training and
validation cycles for our proposed DCRN network. In addition, we visualize the activation
of our proposed DCRN network.

RMSE =

√
1
n

n

∑
i=1

(θi − θ
′
i)

2
(17)

MAE = (
1
n
)

n

∑
i=1

∣∣∣θi − θ
′
i

∣∣∣ (18)

Adjusted R_Squared =
(1− R_Squared)(n− 1)

(n− k− 1)
(19)

where

R_Squared = 1− ∑ θi − θ̂i

∑ θi − θ̂i
(20)

where θ
′
i is the predicted building orientation angle for instance i, θi is the correct building

orientation angle for instance i with a given n samples of the test dataset. K is the number
of independent variables.

4.1. Experiment 1

In this experiment, we investigate the transfer learning approach, as shown in Figure 3.
We utilize AlexNet, VGG16, VGG19, GoogleNet, ResNet18, ResNet50, ResNet101, Mo-
bileNetV2, and EfficientNet. We employ the RMSE value to compare different pre-trained
networks. We have also compared two optimization algorithms during this experiment:
adaptive moment estimation (ADAM) and root mean square (RMS). ALL network training
parameters are set as follows: learning rate: 0.001, epochs: 30, minimum batch size: 64.
As shown in Table 3, MobileNetV2 has achieved the lowest RMSE value (2.14) with ADAM
optimizer and (2.43) with RMS optimizer. EfficientNet has achieved the second rank of
the RMSE value (2.18) with RMS optimizer and (2.44) RMSE value with ADAM optimizer.
ALL ResNet architectures have achieved low RMS values as follows: ResNet18 (2.31)
RMSE value with ADAM optimizer and (2.44) RMSE value with RMS optimizer, ResNet50
(2.67) RMSE value with ADAM optimizer and (2.76) RMSE value with RMS optimizer,
and ResNet101 (2.65) RMSE value with ADAM optimizer and (2.58) RMSE value with
RMS optimizer. AlexNet has achieved a high RMSE value (5.06) with the ADAM optimizer
and (4.21) RMSE value with the RMS optimizer. On the contrary, both VGGNet models
have achieved the worst RMSE values. VGGNet16 has achieved the highest RMSE value
(147.48) with ADAM optimizer and (79.98) RMSE value with RMS optimizer. VGGNet19
has achieved a high RMS value (103.14) with ADAM optimizer and (34.5) RMSE value
with RMS optimizer.

Table 3. The achieved RMSE values with our proposed transfer learning approach for building angle orientation estimation.

Optimizer AlexNet VGG16 VGG19 GoogleNet ResNet18 ResNet50 ResNet101 MobileNetV2 EfficientNet

ADAM 5.06 147.48 103.14 2.22 2.31 2.67 2.65 2.14 2.18
RMS 4.21 78.98 34.5 2.45 2.44 2.76 2.58 2.43 2.44

4.2. Experiment 2

In this experiment, we investigate the performance of the second proposed DCRN
approach. The network’s depth is considered an important parameter to determine the
network performance. Therefore, we investigate the depth of convolutional unit 2 variation.
This experimental setup utilizes the RMSE value to compare different depths, as shown in
Figure 6. The network training parameters setup is as follows: learning rate: 0.001, epochs:
30, minimum batch size: 64.
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Figure 6. The proposed DCRN with three architectures (a) depth A, (b) depth B, and (c) depth C.

Figure 6 shows the details of variation of convolutional unit 2 in its depth. We keep
the remind of DCRN fixed without using the SG layer.

As shown in Figure 7, the DCRN with depth A has achieved the highest RMSE values
with both utilized optimizers. The ADAM optimizer has achieved 4.62 RMSE value and
RMS has achieved 4.41 RMSE value.DCRN with depth B has achieved 3.02 with ADAM
optimizer and has achieved 2.73 with RMS optimizer. The lowest RMSE values have been
achieved by using DCRN with depth C. The DCRN architecture with depth C has achieved
2.54 with ADAM optimizer and has achieved 2.42 with RMS optimizer.
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Figure 7. The achieved RMSE values with our proposed DCRN with three architectures depths A, B,
and C.

4.3. Experiment 3

In this experiment, we investigate the SG layer effect on the proposed DCRN archi-
tecture. The network training setup is as follows: learning rate: 0.001, minimum batch
size: 64, and epochs: 30. As shown in Table 4, the proposed DCRN has achieved the RMSE
value (1.8914) using the RMS optimizer. However, the proposed DCRN has achieved
an RMSE value (1.9372) using the ADAM optimizer. The RMS optimizer has achieved
the Adjusted R-squared value (0.9104). However, the ADAM optimizer has achieved the
lowest Adjusted R-squared value (0.9025) with our proposed DCRN architecture.

Table 4. The RMSE values for DCRN approach with SG Layer based on different optimizers.

RMSE Value Adjusted R-Squared Value

DCRN with ADAM Optimizer 1.9372 0.9025
DCRN with RMS Optimizer 1.8914 0.9104

Also, in this experiment, we investigate both loss and RMS learning curves using our
proposed SG layer with the architecture of depth c based on RMS and ADAM optimizers.
The loss and RMS for the training set are shown in Figures 8 and 9. The loss and RMS for
the validation set are shown in Figures 10 and 11.

We have noticed that both learning curves during the training cycle are oscillating and
starting with high values as shown in Figures 8 and 9. In Figures 10 and 11, we visualize
both learning curves during the validation cycle. In this experiment, the RMS optimizer
loss and RMSE value have started highly during the first epochs However, the performance
of both optimizers are very similar at the end of the epochs.
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Figure 11. The proposed DCRN validation RMSE performance with SG layer based different opti-
mizers.

We visualize the residual plots of our proposed optimized DCRN approach for es-
timating the different building orientation angles as shown in Figure 12. The building
orientation angle 0 has achieved the smallest boxplot with the lowest angle error varia-
tion between the angles. Similar boxplots are noticed for the estimation of angles (10, 20,
and −10). However, the boxplots represent the estimation of (−20) angle is the largest
boxplot. The angle 10 represents the largest variation between the angle’s errors.
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Figure 12. The residual variation in building orientation angle estimation based on Boxplots diagram.

In this experiment, we visualize the robustness of our proposed method with the
variation of the building image contrast as shown in Figure 13. We apply our proposed
algorithm by simulating several contrast values in range [0–1]. The contrast variation is
applied to the five angles in the test set.
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Figure 13. The effect of building image contrast variation on the building orientation estimation
results for our proposed approach.

4.4. Experiment 4

After investigating the DCRN depth layers and the best optimizer that working with
it. We investigate the other hyper-parameters for DCRN architecture as shown in Figure 14.
We investigate the dropout percentage, initial learning rate, and kernel sizes in each layer.
The investigated hyper-parameters were examined as follows: dropout percentage (0.1, 0.2,
0.3, 0.4, 0.5), kernel size (3, 5, 7), and Initial learning rate (0.001, 0.002, 0.003, 0.004, 0.005).
The results of hyper-parameters tuning of our proposed DCRN at kernel size = 3, 5, and 7
are shown in Figure 14a–c, respectively.
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(b)  The RMSE values for our proposed DCRN architecture with Hyper-parameters tuning at Kernel size =5. 

(c)  The RMSE values for our proposed DCRN architecture with Hyper-parameters tuning at Kernel size =7. 
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Figure 14. The RMSE values for our proposed DCRN architecture with Hyper-parameters tuning.

In this experiment, we have utilized the Experiment Manager tool in MATLAB 2020a
which has generated 75 individual experiments. The lowest RMSE value (1.239) has been
achieved with kernel size 7, initial learning rate 0.004, and drop percentage 0.3. Moreover,
the optimized DCRN has achieved an Adjusted R-squared value of 0.99. The highest
RMSE value (1.906) is achieved with kernel size 3 initial learning rate 0.002 and drop
percentage 0.4.
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In Table 5, we calculate the mean and the standard deviation (SD) values for the
estimated angles results with the contrast variation of the input images. The estimation
of buildings with orientation angle −10 has achieved the nearest mean value of 10.01
and the estimation of buildings with orientation angle 20 has achieved the lowest SD
error. The estimation of buildings with orientation angle −20 has achieved a mean value
of −20.61. On the contrary, the estimation of buildings with orientation angle +10 has
achieved the largest SD value of 0.33.

Table 5. Our proposed approach building orientation angle estimation mean and SD values with
building image contrast variation.

Building Orientation Angle 0 10 20 −10 −20

Mean −0.03 10.2 19.9 −10.01 −20.61
SD 0.26 0.33 0.07 0.20 0.28

4.5. Experiment 5

In this experiment, we compare our proposed optimized DCRN and the previous
methods. The first method is based on morphological binary processing [42], the second
method is based on Hough transform processing [3], and the remind methods are based on
deep regression networks [46,49,59,60]. Firstly, to prove the generalization ability of our
proposed approach, we visualize the building orientation angles mean ± variance values
through all test set as shown in Table 6. Secondly, we have selected random test samples
with different building sizes, building designs, roof shapes, and roof colors to visualize our
proposed approach robustness with buildings shape and color change.

The morphological processing approach has achieved its best performance when
estimating angle−10 with a mean value of−13.44. However, the variance error has a value
of 1692.43. The morphological processing approach has failed to estimate the building
orientation angles 0, 20, and −20. The Hough transform approach has achieved its best
performance when estimating angles −20 with a value of −23.03. However, the variance
error of the estimation of angles −20 was high. The Hough transform approach has
failed to estimate the orientation angles for angles 0, 10, and 20. The deep learning
approach1 [46] has achieved its best performance during the estimation of buildings’
angles with a value of −10. However, the variance error was high at 22.74. It has achieved
the worst results during the estimation of angle −20 with the highest variance value of
33.94. The deep learning approach2 [59] has achieved its best performance during the
estimation of buildings’ angles with a value of −10. The deep learning approach3 [49]
has achieved its best performance during the estimation of buildings’ angles with a value
of 10. The deep learning approach4 [60] has achieved its best performance during the
estimation of buildings’ angles with a value of 0. The deep learning approach4 has achieved
the nearest mean value for estimating the building’s orientation angle 0. Our proposed
approach has achieved the nearest mean values compared to the previous methods for
estimating buildings with orientation angles −10, −20, and 20. For the estimation of angle
−10, our optimized DCRN approach has achieved an average estimated value of −10.03
with a low variance error of 0.62. For the estimation of angle −20, our optimized DCRN
approach has achieved an average estimated value of −19.8 with a low variance error
of 1.03. For the estimation of angle 20, our optimized DCRN approach has achieved an
average estimated value of 19.97 with a low variance error of 1.01. Finally, Our optimized
DCRN approach has achieved the lowest mean absolute error for the angles’ means values
with a value of 0.16.
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Table 6. Our proposed building orientation angle estimation mean ± variance results vs. previous methods for all test
set samples.

Building Orientation
Angle −10 −20 0 10 20 Mean Absolute

Error

Morphological
Processing [42] −13.44 ± 1692.43 9.38 ± 2874.33 11.53 ± 1929.5 12.62 ± 2432.18 5.49 ± 8.61 12.29

Hough Transform [3] −4.72 ± 912.73 −23.03 ± 323.72 −24.37 ± 327.85 −23.57 ± 288.56 −9.79 ± 7.88 19.21
Deep Learning
Approach1 [46] −9.65 ± 22.74 −16.57 ± 33.94 2.1 ± 11.59 7.27 ± 33.12 19.13 ± 27.47 1.90

Deep Learning
Approach2 [59] −10.12 ± 6.74 −18.51 ± 19.56 0.24 ± 2.5 8.58 ± 14.1 19.34 ± 9.23 0.79

Deep Learning
Approach3 [49] −9.91 ± 0.63 −19.7 ± 4.8 0.04 ± 0.23 9.81 ± 4.98 19.7 ± 1.03 0.18

Deep Learning
Approach4 [60] −9.39 ± 0.52 −19.47 ± 4.58 −0.01 ± 0.04 9.65 ± 4.17 19.35 ± 3.06 0.40

Our Optimized
DCRN Approach −10.03 ± 0.62 −19.8 ± 1.03 0.12 ± 0.37 9.58 ± 4.28 19.97 ± 1.01 0.16

For more explanation, we visualize ten different samples of building images as shown
in Table 7. The second column represents the original image sample, the third column rep-
resents the correct orientation angle of the building sample, the fourth column represents
the estimated orientation angle based on morphological processing approach, the fifth col-
umn represents the estimated orientation angle based on the Hough transform processing
approach, from sixth to ninth columns represent the estimated orientation angles based
on the previous deep learning networks. Finally, the last column represents the estimated
orientation angles based on our optimized DCRN approach.

4.6. Experiment 6

In this experiment, we perform a computational cost analysis for our proposed ap-
proach vs. the previous methods at two levels. In the first level, all methods are compared
based on training and inference processes. We compare our proposed DCRN approach
vs. the previous deep learning approaches, as shown in Table 8. In the second level,
all methods are compared based on inference process only. we compare our proposed
DCRN approach and the other buildings’ angle orientation estimation techniques based on
traditional image processing, as shown in Table 9.

Our proposed DCRN approach has achieved the lowest training time, with 19 min.
On the other hand, the deep learning approach2 has achieved the second rank for training
time with 20 min. The deep learning approach1 has achieved the third rank of the training
time with 31 min. The deep learning approach4 has achieved a high training time of 38 min.
The deep learning approach3 has achieved the highest training time with 248 min. Our
proposed DCRN and the deep learning approach2 have achieved the lowest inference time
with 0.01 s. Our proposed DCRN approach and deep learning approach2 have achieved the
lowest inference time with a value of 0.01 s. The deep learning approach3 has achieved the
highest inference time with a value of 0.03 s. Our proposed DCRN approach has achieved
a low training/inference ratio with a value of 1.14 × 105. The deep learning approach4
has achieved a similar training/inference ratio similar to our proposed DCRN approach.
The deep learning approach1 has achieved the lowest training/inference ratio with a value
of 9.3 × 104.

As shown in Table 9, our proposed DCRN approach has achieved the highest perfor-
mance of mean value 0.01 s of the processing inference time. The Morphological processing
approach has achieved the mean value of 0.29 s of the processing inference time with the
least variance value. The Hough transform approach has achieved the highest mean value
of 0.56 s of the processing inference time.
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Table 7. Our proposed approach building orientation angle estimation results vs. previous methods.

No. Image Sample Correct Orientation Angle Estimated Orientation Angle

Morphological
Processing [42]

Hough
Transform [3]

Deep Learning
Approach1 [46]

Deep Learning
Approach2 [59]

Deep Learning
Approach3 [49]

Deep Learning
Approach4 [60]

Our Optimized
DCRN Approach

1 0 87.51 −5.38 9.1 0.27 0.18 0.12 −0.11

2 0 −68.04 −4.6 0.02 9.06 0.3 0.32 −0.21

3 +10 −76.44 −22.4 4.97 9.36 10.5 9.9 10.05

4 +10 −60.05 23.71 5.4 7.65 9.69 9.8 9.84

5 −10 −12.42 −24.4 −13.52 −10.1 −10.2 −9.26 −9.93
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Table 7. Cont.

No. Image Sample Correct Orientation Angle Estimated Orientation Angle

Morphological
Processing [42]

Hough
Transform [3]

Deep Learning
Approach1 [46]

Deep Learning
Approach2 [59]

Deep Learning
Approach3 [49]

Deep Learning
Approach4 [60]

Our Optimized
DCRN Approach

6 −10 −27.98 −56.83 −13.12 −10.6 −10.4 −9.41 −10.23

7 −20 −67.34 14.4 −19.42 −20.9 −17.81 −19.8 −20.8

8 −20 −66.77 19.29 −23.48 −19.5 −19.49 −19.61 −19.68

9 +20 −2.3 64 20.22 19.49 19.9 19.5 20.56

10 +20 83.69 40 16.99 20.09 19.92 19.94 19.99
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Table 8. Our proposed DCRN approach for building orientation angle estimation processing time results vs. the previous
deep learning methods.

Deep Learning
Approach1 [46]

Deep Learning
Approach2 [59]

Deep Learning
Approach3 [49]

Deep Learning
Approach4 [60]

Our Optimized
DCRN Approach

Training Time (min) 31 20 248 38 19
Inference Time (s) 0.02 0.01 0.03 0.02 0.01
Training/Inference 9.30 × 10+04 1.20 × 10+05 5.72 × 10+05 1.14 × 10+05 1.14 × 10+05

Table 9. Our proposed DCRN approach for building orientation angle estimation processing time
results vs.the previous traditional image processing methods.

Processing Time (Mean ± Var) (s)

Morphological Processing [42] 0.29 ± 0.08
Hough Transform [3] 0.56 ± 0.17

Our Optimized DCRN 0.01 ± 0.014

4.7. Experiment 7

In this experiment, we try to answer the question of “how is the decision-making in
each algorithm?” Each algorithm follows some procedures to get the ordination angle of
the building. We visualize ten different samples of building images as shown in Table 10.
The second column represents the original image sample, the third column represents the
morphological processing approach, the third column represents the Hough transform
processing approach, and the last column represents our proposed DCRN approach. In each
algorithm, the estimated orientation angle is calculated by different methodologies. In the
morphological approach, the angle is detected through the biggest binary blob in the image.
In the Hough transform approach, the angle is detected through the average orientation
angles of lines detected on the corners. In our proposed approach, the angle is detected
through the convolutional filters, which are applied to the input images. Then, the filters
construct their learnable parameters through the training process. In our proposed DCRN
approach, we visualize the strongest activation kernel. As the complexity of building
roof appearance, the unsupervised approaches reflects the low performance of estimated
orientation angle. However, CNN features in most of the images reflect the main edges of
the building, which reflect on the effectiveness of orientation angle estimation.

Table 10. The deep activation kernels of our proposed approach vs. traditional methods.

No. Image Sample Morphological Processing [42] Hough Transform [3] Our Optimized DCRN

1

2
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Table 10. Cont.

No. Image Sample Morphological Processing [42] Hough Transform [3] Our Optimized DCRN

3

4

5

6

7

8

9

10

5. Discussion

In experiment 1, the plain networks have demonstrated a low performance. Fur-
thermore, the VGGNet architecture failed to estimate building orientation angle after
fine-tuning. AlexNet has achieved a high RMSE value with both utilized optimizers. In-
ception GoogleNet architecture has achieved a better performance than plain networks.
Moreover, GoogleNet has achieved a lower RMSE value than ResNet18 architecture with
ADAM optimizer. However, ResNet18 architecture has achieved a lower RMSE value than
GoogleNet architecture. Both of EffiicentNet and ResNet18 have achieved a similar RMSE
value with the RMS optimizer. We have concluded that the RMS optimizer has increased
the effectiveness of deep plain networks such as AlexNet, VGG16, and VGG19. Besides that,
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the RMS optimizer has also increased the performance of ResNet101 architecture. Moreover,
the ADAM optimizer has enhanced the performance of GoogleNet, ResNet18, ResNet50,
MobileNetv2, and EfficientNet. We have concluded that the transfer-learning approach
from image classification task to image regression task has some limitations in its accuracy
and consumes long training time. The need to highly upsampling of the input image size
to fit the pre-trained networks may decrease the estimation accuracy. The boundary of
the buildings which visually detect each building orientation angle has low contrast in
color images which makes a real need to increase the buildings’ boundary using image
processing sharpening techniques.

In experiment 2, the proposed DCRN architecture with depth c has achieved the
highest performance with the RMS optimizer. This means that increasing the network depth
increased the overall system performance. We have concluded that DCRN architecture C
has achieved the best performance that confirmed that the increase of DCRN architecture
depth has increased the proposed model performance. However, DCRN with depth A
and depth B has achieved a lower accuracy than architecture with depth C. On the other
hand, our proposed DCRN architecture has achieved the lowest performance with depth
A. In our proposed DCRN, the RMS optimizer has worked better with different DCRN
depths. We have found that our proposed DCRN approach achieved lower RMS value than
transfer-learning approach. From experiment 2, it is demonstrated that training a deep
regression network from scratch is better than pre-trained networks fine-tuning. The color
information for building orientation angle estimation is not useful. The low image input
layer for the deep network as in our proposed DCRN network has performed better than
the high size image input layer in the pre-trained networks.

In experiment3, our proposed SG layer has enhanced the performance of DCRN
architecture as expected from experiments 1 and 2. The proposed gradient layer has solved
the shadows, poor building edges appearance, and low contrast problems. Moreover,
the SG layer has worked better with the RMS optimizer and has achieved the highest
performance. We have found that the RMS optimizer during training and validation
phases has highly oscillated more than ADAM optimizer. However, it achieved a 1.8 RMSE
value lower than the ADAM optimizer in the existence of the SG layer. Both evaluation
metrics RMSE and Adjusted R-squared values have proven the superior performance of
the RMS optimizer with our estimation task. The gradient layer was very efficient and help
the deep network to extract more discriminated features.

In experiment 4, we have performed the hyper-parameters tuning for our proposed
DCRN architecture to achieve the best performance. The lowest RMSE values have been
achieved with the high kernel size (7), the second rank of the lowest RMSE value has been
achieved with kernel size (5). Experiment 4 has demonstrated that the small kernel size
has increased the RMSE value for our proposed DCRN architecture and has decreased
its performance. Furthermore, the lowest RMSE value has been achieved with the high
initial learning rate (0.004), the second rank of the lowest RMSE value has been achieved
with the initial learning rate (0.003). Experiment 4 has demonstrated that the low learning
initial rate value has increased the RMSE value for our proposed DCRN architecture and
consequently has decreased its performance. Finally, the lowest RMSE value has been
achieved with the low drop percentage (0.3), the second rank of the lowest RMSE value
has achieved with drop percentage (0.1). Furthermore, the high drop percentage value
has increased the RMSE value for our proposed DCRN architecture and has decreased its
performance. We have concluded that the hyper-parameters tuning plays a crucial role in
our proposed DCRN network performance. The residual plots error variation through the
estimated angles reflect the low performance during the estimation of −20 angle. However,
the error variation in all other angles is accepted. This provides an additional evidence
for the superior capabilities of deep regression networks to extract building characteristics
from high-resolution satellite images. We have proved the robustness of our proposed
approach with the variation of building image contrast. We have noticed the stability of
our building orientation angle estimation approach with different contrast conditions. We
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have noticed that each building orientation angle estimation has been varied individually
with the contrast variation.

In experiment 5, we compare our proposed approach and the traditional image
processing techniques and the other deep learning techniques. The results showed that
the high superiority of our proposed DCRN architecture compared with the previous
methods. The morphological-based approach lacked robustness and achieved the highest
error values. This bad performance of traditional morphological binary processing refers
to the sensitivity of the algorithm to the details inside the building roof, the design of
the building, and the shadows effect. Furthermore, Hough transform-based approach
has achieved better performance than the morphological processing approach in some
of the angles estimation results. However, the Hough lines are very sensitive to non-
real corners of the building because of the variation of roof design. In some samples,
the two previous approaches failed to estimate the direction of orientation angles. The deep
learning approach1 based on VGG16 and the deep learning approach2 based on AlexNet
have achieved the worst estimation results among the other deep learning approaches.
The deep learning approach3 based on ResNet101 architecture and the deep learning
approach4 based on Xception architecture have achieved better results than VGG16 and
AlexNet Architectures. On the other hand, our optimized DCRN approach has achieved
the best results in most samples. Our proposed approaches have achieved the lowest error
values. The deep learning approach presented in [46] was embedded with the detection
task. This proves that a separated network for object orientation detection is better than
the embedded one [46]. Our optimized DCRN approach reflects its super-capability in
the estimation of building orientation angle with the minimum error values from different
angles after hyper-parameters optimization.

In experiment 6, we have performed a computational cost analysis for our proposed
approach and the other approaches in the literature. The findings clearly has indicated that
the plain networks have achieved the lowest training time, inference time, and training/
inference ratio. Furthermore, our proposed DCRN architecture has achieved the lowest
training and inference time. The deep learning approach2 based on AlexNet architecture
has a similar inference time as our proposed DCRN approach. However, the deep learn-
ing approach4 based on Xception architecture has the same training/inference ratio as
our proposed DCRN approach. Our Proposed DCRN architecture has achieved a lower
processing time than the Hough transform-based and morphological-based approaches.
The morphological-based approach has achieved the highest error values with a high
variance of processing time. However, our proposed DCRN has achieved the lowest error
values with the lowest variance of the processing time.

In experiment 7, we visualize the CNN features aiming to ensure the effectiveness of
our proposed DCRN architecture. The visualization of the previous methods has ensured
that the problems found in these methods required more processes, which increased the
algorithm’s complexity. The building’s roof shapes are very complex, and finding the
edges of such shapes is very difficult. Furthermore, sharped corners and the variations in
building roof design generated corners, which confused the Hough transform algorithm.
However, the visualized activated kernels of the highest kernels show that the correct
edges of the building with correct orientation angles were detected.

6. Conclusions

In this paper, we propose two different approaches for building orientation estimation.
The first approach is based on the transfer learning approach. The lowest RMSE value
(2.2) based on transfer-learning of MobileNetV2 architecture has been achieved with the
ADAM optimizer. The second approach based on our proposed DCRN architecture has
achieved an RMSE value of 2.4. Besides that, the SG layer has achieved an RMSE value
of 1.8. The optimized DCRN network has achieved better performance with the lowest
RMSE value 1.2. The comparison of our proposed approaches vs. previous methods
reflects the high performance of our solution for estimating the building orientation angle.
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An explanation based on CNN features visualization is also provided for our DCRN
architecture. The visualized kernels reflect the correct edges in the estimation of the
building orientation angle. The optimizer plays a critical role to enhance the deep network
performance. RMS optimizer has achieved a lower RMSE value than ADAM optimizer.
The cost processing time of our approach is reasonable and achieved the lowest variance
error. Experiments have been carried on 15,190 building images with different designs,
shapes, angles, and lighting conditions. These experiments have verified the effectiveness
of our proposed approach. We proved that building characteristics could be estimated
through high-resolution satellite images. For future works, other building characteristics
would be estimated, there is still a challenge to decrease the RMSE value of the estimated
orientation angle, and the processing time can be decreased through decreasing network
complexity. Several modifications to the DCRN network architecture can increase its
performance such as residual and inception units. The loss function modification can play
a crucial role to increase the estimation performance and decrease the error. The hyper-
parameters tuning can be accelerated and the hyper-parameters optimization of the DCRN
network can increase the DCRN network performance.
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