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Abstract: Most modern processors contain a vector accelerator or internal vector units for the fast
computation of large target workloads. However, accelerating applications using vector units is
difficult because the underlying data parallelism should be uncovered explicitly using vector-specific
instructions. Therefore, vector units are often underutilized or remain idle because of the challenges
faced in vector code generation. To solve this underutilization problem of existing vector units,
we propose the Vector Offloader for executing scalar programs, which considers the vector unit
as a scalar operation unit. By using vector masking, an appropriate partition of the vector unit
can be utilized to support scalar instructions. To efficiently utilize all execution units, including
the vector unit, the Vector Offloader suggests running the target applications concurrently in both
the central processing unit (CPU) and the decoupled vector units, by offloading some parts of the
program to the vector unit. Furthermore, a profile-guided optimization technique is employed to
determine the optimal offloading ratio for balancing the load between the CPU and the vector unit.
We implemented the Vector Offloader on a RISC-V infrastructure with a Hwacha vector unit, and
evaluated its performance using a Polybench benchmark set. Experimental results showed that
the proposed technique achieved performance improvements up to 1.31× better than the simple,
CPU-only execution on a field programmable gate array (FPGA)-level evaluation.

Keywords: vector processors; job offloading; resource utilization; data parallelism; heterogeneous
system architectures

1. Introduction

As many emerging workloads—such as physics simulations and vision applications—
have become more complex, vast, and diverse, they can no longer be handled efficiently
by a simple, single central processing unit (CPU). Although a multitasking technique using
multiple CPU cores has been proposed to achieve a high performance gain, it suffers from
high parallelization overhead when creating multiple threads. To support single-thread
performance efficiently, several accelerators such as vector processors, graphics processing
units (GPUs), and neural processing units (NPUs) are often utilized. In particular, vector
processors have become an essential part of modern computing because they can handle large
workloads effectively through tight integration with existing CPUs.

Vector processing is a parallel computing technique that exploits data parallelism
using a single-instruction multiple-data (SIMD) scheme, and it requires SIMD-purpose
hardware and extensive software support to utilize the hardware. Most modern CPU cores
for both general-purpose use and supercomputing generally contain vector processing
units such as streaming SIMD extensions (SSE) [1], advanced vector extensions (AVX)
(for Intel CPUs) [2], and Neon (for ARM CPUs) [3]. To accelerate applications using
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vector processing units, programmers or compilers must generate special codes using these
available vector instruction set architecture (ISA) extensions.

Although vector processing appears to be promising, the main challenge is program-
ming. To accelerate applications efficiently using vector units, a compiler or programmer
should find a substantial amount of underlying data parallelism and translate the paral-
lelization potential into a real code to make sufficient use of the vector unit. Although many
techniques for improving the quality of the vector code have been proposed [4–7], the re-
sulting vector resource utilization is still low. Manual vector code optimization is a basic
approach; however, it requires a deep understanding of the target vector architectures,
and the optimized codes have limited reusability. Automatic compiler-level vectorization
is a promising alternative to manual vector code generation, but it cannot provide sufficient
coverage because it can vectorize only 45–71% of loops, even in synthetic benchmarks [8].
Moreover, many vectorized applications do not show sufficient performance gains, as ex-
pected, owing to the high data alignment overhead [4,7]. Although many vectorization
libraries also utilize vector units by providing more general interfaces, they are still limited
in use.

To solve this problem, we propose a method of utilizing vector units as simple scalar
processing units, similar to general arithmetic logic units (ALUs) inside CPU cores. With
this scheme, normal instruction-level parallelism can be exploited more efficiently using
both internal ALUs and vector units, whereas not all of the computational capabilities of
the vector units are utilized. By utilizing only a subset of the computational resources
to run scalar instructions on the vector units, two potential problems are identified. The
first problem is resource waste, owing to the unnecessary computations of the remaining
parallel resources. This can be prevented using several vector masking capabilities, such as
the configurable vector length [9,10] or masked vector instruction features [2,11], which
are widely supported by modern vector ISAs to prevent such side effects.

The second problem is the low performance of vector units when parallel resources
are not fully utilized. To compensate for the low performance gain, the collaborative
execution of the target application on both internal ALUs and vector units is a possibility.
To maximize the collaboration performance, the optimal offloading ratio of the target
workloads between the internal ALUs and the vector units should be determined based
on the difference in the raw performance as well as the job offloading overhead from the
CPUs to the vector units. Because a precise prediction of the ratio is almost impossible to
achieve statically, a profile-guided optimization algorithm is a promising solution.

Based on these insights, a collaborative execution technique, referred to as Vector
Offloader, was designed in this study to make the collaborative execution of scalar programs
possible on internal ALUs and vector units without complex vectorization techniques. The
technique splits the target loops into two scalar partitions to execute on internal ALUs
and vector units by finding the optimal vector offloading ratios based on the profile
information. The proposed technique was implemented on a RISC-V infrastructure (Rocket
core) with a Hwacha vector processor extension [12], and it was verified on a VCU118
FPGA board [13]. Although the proposed technique has been implemented specifically
on the vector accelerator, it is also applicable to other architectures that contain vector
ALUs if dynamic out-of-order instruction scheduling is supported to make possible the
parallel execution of main integer ALUs and vector units. The Vector Offloader achieved
a 1.31× performance improvement on average for the Polybench benchmark suite [14],
with double, float, and integer data types for mini and small workload sizes, and it showed
similar performance gains in all the test cases.

This paper provides the following contributions:

• A method that utilizes vector units without considering data parallelism is introduced;
• A profile-guided algorithm is introduced to determine the optimal offloading ratio

based on an analysis of the importance of the work offloading size to the vector units;
• The Vector Offloader is evaluated in depth in a field programmable gate array (FPGA)-

based environment.



Electronics 2021, 10 , 2960 3 of 15

2. Background
2.1. Modern Vector Architecture

SIMD exploits data-level parallelism (DLP) to efficiently run data-parallel code regions
in terms of energy and area efficiency [15]. However, because of their low programmability
and inflexible memory access patterns, SIMD units are often underutilized or not used at
all. Many techniques have been proposed to solve this problem. To avoid memory access
restrictions and control divergence problems, Intel SSE, AVX, and ARM NEON support
lane-masking instructions such that multiple-way data paths can be turned on and off
selectively. As an extended version of the traditional SIMD structure, NVIDIA proposed the
SIMT [16] structure to support branch divergence more efficiently. Additionally, Maven [17],
which is an earlier version of Hwacha [12], was proposed as a hybrid architecture between
traditional vector structures and GPUs.

As briefly discussed, the operation units in modern vector units can be controlled
individually. For example, Intel AVX, a subword-level SIMD structure, can select units to
execute through masking, and Maven, a vector-thread (VT) architecture, can control each
unit individually by not only masking, but also determining the hardware vector length at
runtime. VT-based design variations, such as Maven, have a control thread that manages
the micro-threads on the vector execution unit [18]. The control thread uses a vector load
and store instructions to efficiently move data, and then uses vector fetch instructions to
control all micro-threads concurrently.

2.2. Hwacha: Baseline Vector Architecture

Hwacha is a vector accelerator attached to a RISC-V Rocket [19] CPU with a Rocket
custom coprocessor (RoCC) interface [12]. The main difference between Hwacha and the
traditional vector assembly programming model is that vector operations on Hwacha
are not fetched from a host CPU; instead, they are fetched by the Hwacha accelerator
in the form of a separate worker thread. Therefore, the host CPU needs to control the
Hwacha using control threads without executing the actual instructions [12]. RoCC is
an interface designed to accelerate a Rocket core using a coprocessor, and the interface
allows communication between the core and the attached accelerator. By exploiting the
CPU–coprocessor decoupled structure with the RoCC interface, and then separating the
vector instructions from the control thread, as discussed, Hwacha can execute the separate
worker thread in parallel to the main thread of the CPU.

As shown in Figure 1a, the Rocket five-stage in-order CPUs and Hwacha are connected
through the RoCC interface, and their memory data can be shared using the L2 cache.
As shown in Figure 1b, the CPU executes simple Hwacha control threads, and Hwacha
executes the corresponding worker threads. The Hwacha-specific instructions on the CPU
side (control thread) consist of only the vector memory address (vmca), vector length
configuration (vsetvl), and vector fetch (vf) instructions. Other Hwacha instructions are
executed to manipulate data on Hwacha natively.

Regarding the control thread, the Hwacha control instructions on the CPU are executed
in a manner similar to normal instructions. When the Hwacha instructions are fetched from
the CPU, the decoded information is passed to Hwacha through a five-stage pipeline. In the
instruction decoding stage, the CPU generates the required information by understanding
the instructions, and then sends the information to Hwacha using the RoCC interface. For
example, vmca and vf instructions pass on the specific memory addresses to Hwacha.
To utilize the Hwacha execution unit, a vf instruction specifically passes the program
counter (PC) of a target micro-thread. Based on the PC value, the vector memory unit
(VMU) in Hwacha fetches instructions from the micro-thread. Therefore, the CPU has the
simple role of passing the PCs of multiple micro-threads to be executed on Hwacha.
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Figure 1. A baseline system architecture and an example execution scenario: (a) a RISC-V Rocket
core and a Hwacha vector unit, and (b) an execution example of a control thread in the CPU and a
separate work thread in the parallel vector unit.

3. Motivation
3.1. Vectorization Challenges

Although most modern CPU designs include vector units, they are often underutilized
or not efficiently used in many applications. The low utilization is primarily caused by the
difficulty in generating efficient vector instruction streams; this is because a compiler or
programmer must understand the target application characteristics. The first solution is
to have experienced programmers understand the algorithm fully and then translate the
full underlying data parallelism into a vectorized code. Clearly, this is difficult for average
programmers and requires high development efforts from programmers whenever new
applications are introduced. The second solution is to use an automatic compiler-level
vectorization technique, which is a typical approach employed by various widely used
compilers. However, this technique results in low coverage because only some predefined
patterns are accepted, and the performance gain is insufficient even when a vectorized
code can be generated.

Figure 2 shows the auto-vectorization coverage of widely used compilers: GCC [20]
and Clang [21]. We vectorized 17 loops on 9 benchmarks from the Polybench [14] suite by
compiling them using the -O3 optimization level and -mavx2 microarchitecture options.
As shown in Figure 2, Clang and GCC can successfully vectorize only 29% and 59% of
the loops, respectively. More specifically, Clang and GCC can apply innermost-loop-
level vectorization on 29% of the target loops (same loops on both compilers), whereas
GCC alone can apply vectorization onto 30% more loops, using advanced techniques to
consider a scope wider than the innermost loop. Based on reports from the compilers, loop
vectorization was not applied owing to the complicated access patterns, safety concerns
regarding instruction reordering, and low expected performance gains.

0% 20% 40% 60% 80% 100%

GCC

Clang

Innermost Loop Outer Loop

• GCC 7.4.1: –mavx2 –O3 –fopt–info–vec–all –fopt–info–loop–all

• Clang 11.1.0: –mavx2 –O3 –Rpass=loop–vectorize –Rpass-missed=loop-vectorize –Rpass-analysis=loop-vectorize

29%

59%

Figure 2. Auto-vectorization coverage of existing compilers. We tested GCC 7.4.1 and Clang
11.1.0 with -O3 optimization level and -mavx2 microarchitecture options. A total of 17 loops on
9 benchmarks from Polybench [14] were tested. The remaining options were used to report the
vectorization optimization statistics.
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3.2. Alternative: Parallel Execution of Scalar Workloads on CPUs and Vector Units

As discussed, it is difficult to fully utilize vector units using conventional approaches.
Therefore, an advanced approach to efficiently utilize frequently idle or underutilized
vector units without vectorization and to achieve significant performance improvement is
required. To efficiently utilize the vector units, we decided to use them as additional scalar
units through simple instruction translations. To improve the total performance, the task of
the vector units can be offloaded partially. In this regard, the CPU and vector units should
be able to execute in parallel, which is possible because most vector units are decoupled
from the main CPUs. As a remaining issue, because CPUs must assign the tasks to the
vector units, the task offloading cost on the CPU-side must be less than the corresponding
execution cost such that offloading can be utilized.

To verify the execution latencies of each work on the CPU side, the offloading overhead,
and the corresponding vector unit-side work, we measured the difference in execution time
when executing a general matrix multiplication (GEMM) application from the Polybench
suite [14]. A cycle-accurate simulation was performed to achieve a more accurate measure-
ment of the execution time. Figure 3 shows the hot code region execution time (number of
cycles) for the CPU and vector unit-side work with the offloading overhead on the CPU.
Figure 3a shows the execution time of the CPU-side work when a CPU executes the hot
code region in the CPU alone. Figure 3b shows the execution time when the vector unit
is utilized. The offloading overhead is the time when a CPU configures the vector unit’s
registers and offloads the hot code region to the vector unit. The vector unit-side work is
the time when the vector unit executes the hot code region allocated from the CPU side.

As shown in Figure 3, the offloading overhead time is much shorter than the time
required by the CPU-side work; therefore, it is proven that offloading can reduce the
CPU overhead. However, as a key observation, the time required by the CPU-side work
(as shown in Figure 3a) differs from that for the vector unit-side work (as shown in
Figure 3b). The time required by the CPU-side work is less than the time required by the
corresponding vector unit-side work, and the same trend was observed for all benchmarks
in the Polybench suite [14]. This result appears reasonable because each execution unit
of the vector unit has a longer latency than the CPU, and the vector unit performs better
than the CPU only when multiple execution units of the vector unit are executed in a
lockstep. Therefore, because full offloading does not result in a sufficient performance gain,
and the job offloading overhead on a CPU is much smaller than the native execution on
the CPU, the parallel execution of the workload on both the CPUs and the vector units by
segregating them into two partitions is a promising approach.

1000

Vector unit

CPU

(a)

0

Vector unit

CPU

Time (#cycles)

CPU side work Offloading task Vector unit side work

200 300 400 500 600 700 800 900

100 200 300 500 600 700 800 900

(b)

Time (#cycles)

400

Figure 3. Execution latencies of the GEMM application on the baseline system. The x-axis represents
the number of executing cycles: (a) the CPU-only execution latency, and (b) the vector unit-only
execution latency through job offloading.
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3.3. Maximizing Total Resource Utilization

A command queue in the vector unit is a container in which a vector scalar unit
fetches instructions offloaded from the CPU. If the command queue size is unlimited,
the performance will be the best under a parallel execution. Figure 4a shows that, based
on this assumption, the CPU can initially offload all partitioned work on the vector unit
in order to utilize the vector unit, and then execute the remaining tasks on the CPU-side.
Because resource idleness does not occur at any time, the best performance is achieved.
However, owing to the limited queue size, CPU stalls often occur when all tasks are
assigned to the vector unit. Hence, the CPU should repeat the offloading of some of the
tasks (bundle) and, as the vector unit is operating, execute the other tasks on the CPU side
until the entire task is completed.

(a)

CPU side work Offloading task Vector unit side work

Vector unit idleness

On CPU

On Vector unit

…

All of these can be sent to a queue

…

…

…

CPU stall

Case 1. (Offloading task time + CPU side work time) < Vector unit side work time

On CPU

On Vector unit

CPU stalls to avoid the queue full condition.

Case 2. (Offloading task time + CPU side work time) > Vector unit side work time

…

…

Vector unit idleness is occurred

On CPU

On Vector unit

(b)

…

…

Figure 4. Repeated execution of workload bundles due to the limited command queue capacity:
(a) an ideal scenario with an unlimited queue capacity, and (b) potential performance degradation
scenarios on load imbalance between the CPU and the vector unit.

Figure 4b shows the inefficient offloading scenarios, including those on the bundled
execution, to avoid the full command queue problem. As shown in Figure 4b, case 1
indicates that the vector unit-side work required a longer time compared with the time
required for both the CPU-side work and the offloading overhead combined. In this case,
although both the CPU-side and offloading tasks for a bundle are completed, the corre-
sponding offloaded task on the vector unit is not accomplished. Therefore, the total CPU
resources cannot be fully utilized. By contrast, Figure 4b shows an example for case 2,
in which the time required for the vector unit-side work is less than that for the CPU-side
task and offloading overhead combined. In this case, the vector unit will be in an idle state
until the CPU completes the next offloading task. Therefore, the assigned workload should
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be segregated at an appropriate ratio to fully utilize the CPU and vector unit in parallel,
thereby minimizing CPU or vector unit stalls.

3.4. Summary and Insight

To utilize the vector unit efficiently, we considered using the vector unit as an addi-
tional scalar computation unit to achieve performance improvements without vectorization,
as well as distributing a target workload across the CPU and vector unit to simultaneously
execute the partitioned workloads. However, because of problems such as pending com-
munication or resource idleness, it is crucial to determine the amount of work that needs to
be transferred to the vector unit. Hence, we proposed a profile-guided optimal offloading
ratio search algorithm, which will be discussed in detail in the next section.

4. Vector Offloader

As discussed in Section 3, programmers or compilers face difficulties in extracting the
underlying data parallelism for the vectorization of various target applications. To solve
this problem, we propose a code translation technique that offloads some portion of the
workload to underutilized vector units without explicitly exploring data parallelism, but by
retaining the original scalar code. Thus, we first generate instructions to be executed on the
vector hardware from the original scalar code. We also insert additional codes to set up the
vector hardware and prepare the data on the host-side code. Section 4.1 describes the main
concepts for offloading operations to vector units. Moreover, in Section 4.2, we describe how
to distribute the workloads on the CPU and vector units simultaneously. A profile-based
algorithm for determining the optimal offloading ratio is proposed in Section 4.3.

Figure 5 provides an overview of the workload distribution process for the CPU and
vector units. As shown in the figure, we apply optimization techniques to expand the
workload distribution area and rewrite the application based on the optimal offloading
ratio of the vector unit. The application is initially executed only on the CPU. In sequence,
the optimal offloading ratio is calibrated using a profile-guided search algorithm. Finally,
the resulting execution binary generated based on the optimal offloading ratio is executed
on both the Rocket core-based CPU and the Hwacha vector unit.

4.1. Workload Offloading to Vector Units without Considering Data Parallelism

As previously explained, we propose the Vector Offloader in order to make use of an
underutilized vector unit as an additional unit for scalar computation. To conduct scalar
operations on the vector unit without hardware modification, we rewrite the application
code using the vector unit ISA. Figure 6 shows the code rewriting process for running a
target application on a vector unit without exploiting data parallelism. As shown in the
figure, the code rewriting process consists of three steps: (1) adding the setup and cleanup
codes (host side), (2) translating the scalar instructions into vector instructions (vector unit
side), and (3) adding a data preparation code for use in the vector hardware (host side).

As a key to the rewriting process, the vector code should behave like a scalar unit
without causing other critical side effects, such as the storage of garbage data in unintended
memory locations. Vector operations on a vector unit with multiple vector lanes, especially
stores, can produce unintended results and update the data in the main memory. However,
in modern vector architectures, masking instructions or a reconfigurable vector length
support capability can solve this problem by allowing the instructions to be performed
only in a single lane. As a result, by changing the scalar registers to the corresponding
vector registers and converting scalar instructions to the corresponding vector instructions,
an identical vector code can be created from the original scalar code while producing the
same result. Unlike arithmetic operations, in memory access instructions such as load and
store, a simple translation into vector instructions does not guarantee the same behavior
because of the complexity of memory addressing. Therefore, the CPU thread may need
to preload the data into vector registers or pass memory addresses to the vector units,
depending on the structures of the specific target vector unit.
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Figure 6. Detailed illustration of a code rewriting technique to offload workloads to vector units: (a) inserting vector
hardware setup and cleanup codes, (b) converting scalar registers and instructions to corresponding vector registers and
instructions, and (c) adding memory connection fix-up codes.
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Based on these key considerations, we first insert the vector hardware setup and
cleanup codes (Figure 6a) at the start and end points of the host-side workload (an original
program code executed on the CPUs). At this point, the vector hardware is set to use
only a single lane. Vector instructions are then generated based on the original CPU-based
assembly code by converting the scalar instructions into the equivalent vector instructions
(Figure 6b). If the vector hardware cannot be configured to use only a single lane in the
setup code, masked vector instructions are used depending on the target vector hardware.
The memory connection fix-up code is additionally generated in order for the vector unit-
side memory operations to execute correctly; this is performed by preloading the memory
data or by passing memory addresses from the CPU registers to the vector unit registers
(Figure 6c). Finally, as shown in Figure 6, to perform the memory preparation and partial
offloading workloads in the vector unit instead of the original computations on the CPU,
we create modified codes by including the generated codes in the original application code.

4.2. Workload Distribution between CPUs and Vector Units

As discussed in Section 3, offloading entire workloads often results in worse perfor-
mance on the vector units than on the CPUs in case a highly optimized vector code is not
generated by fully exploiting data parallelism. To solve this problem, we support a collab-
orative execution using the CPU and the vector unit simultaneously. Figure 7 shows the
potential opportunities in a general matrix multiplication application (GEMM) for distribut-
ing the workload to the CPU and vector units and concurrently performing the workload.
We first apply several traditional compiler optimizations, such as the loop unrolling tech-
nique, to generate long and straight codes without branch divergence. Figure 7a shows
the result of applying loop unrolling to the GEMM. As shown in Figure 7a, although the
unrolled code is difficult to vectorize owing to the data dependencies within the loop
body (intra-iteration data dependency), a parallel execution over different iterations is
possible because there is no inter-iteration dependency. For more fine-grained workload
balancing, we propose to split each iteration into CPU- and vector unit-side portions, and
to concurrently execute the vector unit-side partition for the current (j) iteration and the
CPU-side partition for the next (j + 1) iteration, similar to a two-stage pipeline execution.
The concurrent execution of the CPU and vector units can be easily implemented by enforc-
ing a partial order between the CPU and vector unit partitions within an iteration using
fence instructions.

In addition, as more instructions are offloaded to the vector unit through loop un-
rolling, the vector code can be further optimized. For example, redundant instructions to
access the same memory addresses within the vector code can be eliminated, as shown in
Figure 7b. This vector code optimization can increase the vector performance; therefore,
more workloads can be offloaded to improve the total performance. However, because the
exact degree of additional performance improvement cannot be statically predicted, profile-
guided optimization is required to determine the optimal offloading ratio of the vector unit
partition over the entire workload. When all vector registers are utilized, the offloading
ratio cannot increase further; hence, another important factor for the offloading ratio is the
target vector unit specification, such as the number of vector registers.

Figure 8 shows the modified code for concurrently executing the GEMM workload
on the CPU and the vector unit. As shown in the figure, the CPU-side code is updated
by adding vector hardware setup/cleanup codes, data preparation codes, and offloading
control codes. A vector assembly code is also generated, and the code is fetched from the
target vector unit directly when the host code executes the offloading control codes (vf
gemm_offload_balanced). The fence instruction is added to guarantee the correctness of
concurrent execution, and the ratio of the vector unit-side portion to the CPU-side portion
can change depending on the offloading ratio.
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void gemm_unrolled_on_vector_unit(double** A, …) {

asm volatile ( “vsetvl …” );

int i, j;

for( i=0; i<ni; ++i ) {

for( j=0; j<nj; ++j ) {

C[i][j] = 0;

asm volatile (“vmca …”);

asm volatile (“vf gemm_offload_all”);

asm volatile (“fence”);

}

}

asm volatile ( “fence” );

}

Vector Assembly Codes

Vector code can contain more computations

until limited by ISA specifications

gemm_offload_all:

vlw vv1, va1

vlw vv2, va2

vlw vv3, va3

vfmul.d vv1, vv1, vv2

vfadd.d vv3, vv3, vv1

vlw vv4, va4

vlw vv5, va5

vfmul.d vv1, vv1, vv2

vfadd.d vv3, vv3, vv4

# …

vsw vv3, va3

1

2

3

4

5

6

7

8

9

10

11

12

A[i][0] * B[0][j]

A[i][1] * B[1][j]

(b)

1

2

3

4

5

6

7

8

9

10

11

12

13

(a)
Intra-iteration

data dependency

C[i][j] C[i][j]

No Inter-iteration

data dependency

C[i][j] C[i][j+1]

void gemm_unrolled(double** A, …) {

int i, j;

for( i=0; i<ni; ++i ) {

for( j=0; j<nj; ++j ) {

C[i][j] = 0;

C[i][j] += A[i][0] * B[0][j];

C[i][j] += A[i][1] * B[1][j];

C[i][j] += A[i][2] * B[2][j];

C[i][j] += A[i][3] * B[3][j];

//…

}

}

}

Figure 7. A code rewriting example of workload offloading for a GEMM application. (a) Increased concurrent execution
opportunities from loop unrolling. (b) Additional vector code optimization opportunities with an increased number of
offloaded instructions.
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Vector Assembly Codes

gemm_offload_balanced:

vlw vv1, va1

vlw vv2, va2

vlw vv3, va3

vfmul.d vv1, vv1, vv2

vfadd.d vv3, vv3, vv1

vlw vv4, va4

vlw vv5, va5

vfmul.d vv1, vv1, vv2

vfadd.d vv3, vv3, vv4

# …

vsw vv3, va3

1

2

3

4

5

6

7

8

9

10

11

12

offloading ratio

void gemm_unrolled_on_vector_unit_balanced(double** A, …) {

asm volatile ( “vsetvl …” );

int i, j;

for( i=0; i<ni; ++i ) {

for( j=0; j<nj; ++j ) {

C[i][j] = 0;

C[i][j] += A[i][0] * B[0][j];

C[i][j] += A[i][1] * B[1][j];

//… 

asm volatile (“vmca …”);

asm volatile (“fence”);

asm volatile (“vf gemm_offload_balanced”);

}

}

asm volatile ( “fence” );

}

run simultaneously

with other iteration

CPU-side work

Vector Unit-side work

Figure 8. The generated application code for concurrent execution on both the CPU and the vector unit.

4.3. Profile-Guided Optimal Offloading Ratio Search Algorithm

In this study, we propose a profile-guided search algorithm to determine the optimal
offloading ratio. Algorithm 1 represents a simple search algorithm that gradually increases
the ratio of offloading to the vector hardware until the total performance is saturated. It
first initializes the variables for the search (lines 1–2) and iteratively searches for the optimal
offloading ratio by executing the rewritten program based on the calibrated offloading
ratio (lines 3–10). The offloading ratio continues to increase as the resulting performance
improves (line 9). The algorithm increases the offloading ratio by two in order to reduce the
search cost, while the unit ratio indicates the smallest instruction set that can be offloaded.
The offloading ratio can increase to a given maximum limit value (line 3). To avoid problems
caused by the illegal execution of vector fetch instructions such as branch misprediction,
the maximum value is set to guarantee that the CPU performs the least amount of work
in order to avoid exceptional cases. After determining the offloading ratio at the point
of performance saturation (lines 3–10), the algorithm reduces the offloading ratio by 1
once, and then chooses the final optimal offloading ratio by comparing their performances
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(lines 11–17). The offloading ratio can increase up to the maximum offloading ratio (line 3)
without a break (line 6), which means that vector-only execution is the best option.

Algorithm 1 Find Optimal Offloading Ratio

Require: Application, Maximum Offloading Ratio
Ensure: Minimum Cycles and their Offloading Ratio

1: initialize OffloadingRatio := 1
2: initialize MinResultCycles, ResultCycles
3: while OffloadingRatio < MAX_OFFLOADING_RATIO do
4: ResultCycles := RunApp (OffloadingRatio)
5: if ResultCycles > MinResultCycles then
6: break
7: end if
8: MinResultCycles := ResultCycles
9: OffloadingRatio += 2

10: end while
11: if OffloadingRatio < MAX_OFFLOADING_RATIO then
12: ResultCycles := RunApp (OffloadingRatio - 1)
13: if ResultCycles < MinResultCycles then
14: MinResultCycles := ResultCycles
15: OffloadingRatio -= 1
16: end if
17: end if
18: return OffloadingRatio, MinResultCycles

5. Experiments
5.1. Experimental Setup

Hardware Setup : Vector Offloader was evaluated on a VCU118 [13] embedded board
equipped with a Xilinx Virtex UltraScale+ FPGA. A RISC-V Rocket core [19], which is a
five-stage in-order scalar processor, and a Hwacha [12] vector coprocessor provided by the
Chipyard framework [22] were used as the CPU and the vector unit, respectively.

Benchmark and Software Setup : Target applications were compiled with the opti-
mization level 3 option (-O3) using the RISC-V GNU Compiler Toolchain [23] by default.
To measure the performance gain of the proposed solution, various applications from
well-known Polybench benchmark suites [14] with three different data types (double, float,
and integer) were used. Mini and small data sizes from Polybench were used to run
the benchmarks. Detailed information on the target benchmarks is presented in Table 1.
To evaluate performance, RISC-V “RDCYCLE” instruction was used to count the number
of cycles of target applications. Note that the experimental result shows the number of
cycles for a core computation of each benchmark because other processes, such as data
initialization, do not affect the resulting performance.

Table 1. Benchmark and Evaluation Environments.

Name Input Size Data Type Compile Option Description

Gemm

• Mini
• Small

• Double
• Float
• Integer

• O0
• O1
• O2
• O3

Matrix-multiply C=alpha.A.B+beta.C

2 mm Two Matrix Multiplications (D = A.B; E = C.D)

Stax Matrix Transpose and Vector Multiplication

Bicg BiCG Sub Kernel of BiCGStab Linear Solver

Gesummv Scalar, Vector, and Matrix Multiplication

Mvt Matrix Vector Product and Transpose

Syrk Symmetric rank-k operations

Syr2k Symmetric rank-2k operations

Gemver Vector Multiplication and Matrix Addition
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5.2. Experimental Results
5.2.1. Performance Evaluation

To evaluate the effectiveness of the technique, the performance of the solution was
compared with the baseline CPU-only version by executing the Polybench benchmark pro-
grams with three different data types for the two datasets. Furthermore, the performance of
the vector unit-only execution was compared with that of the baseline. This was intended
to show the inefficiency when simply using the vector unit as an additional unit for scalar
computations and offloading all workloads to the vector unit. Each bar in Figure 9 indicates
the relative performance improvements in the Vector Offloader and the vector unit-only
execution, normalized to the baseline performance. The graphs on the left side of Figure 9
show that the Vector Offloader achieves a speedup of 1.26×, 1.23×, and 1.21× with respect
to double, float, and integer types on the mini dataset, respectively. In addition, speedups
of 1.35×, 1.36×, and 1.27× were achieved on double, float, and integer types on the small
dataset, respectively, as shown in the graphs in the middle portion of Figure 9.
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Figure 9. Performance evaluation and optimal offloading ratios on two datasets (mini, small) with three data types of
(a) double, (b) float, and (c) integer.

An interesting point here is that a substantial performance degradation is shown in the
vector unit-only execution. This is because the vector unit-only execution, as illustrated in
Figure 3, requires an additional offloading overhead on the CPU side, and scalar operations
without vectorization on the vector unit are much slower than a CPU-only execution. The
average speedup of the Vector Offloader on the small dataset was higher than that of the
mini dataset. This is because a loop tiling optimization technique is applied to support
the small dataset efficiently by solving the vector register number limitation, and the
optimization can improve the cache performance.

5.2.2. Optimal Offloading Ratio

The graphs on the right side of Figure 9 show the optimal offloading ratio of each
evaluation, which was determined when the profile-guided search was completed. In these
graphs, the optimal offloading ratio varies significantly depending on the benchmark
characteristics, such as the computation/memory instruction ratio, data type, and dataset
size. In general, allocating more workload to the CPU than the vector unit tends to be
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optimal because the process of scalar operations without vectorization on the vector unit is
relatively slower than the CPU-only execution, and vector unit offloading incurs additional
overhead on the CPU side. When comparing the performance of the benchmarks with
different variables of double and float types, the optimal offloading ratios are shown when
the CPU portion is slightly higher than the vector unit portion. However, much more
work should be allocated to the CPU side than the vector unit side when executing integer-
type benchmarks because the CPU can execute integer operations much faster than the
vector unit.

5.2.3. Performance Comparison with Different Compile Options

To demonstrate the effectiveness of the profile-guided optimization, the performance
of the Vector Offloader was compared with the baseline with different compiler optimiza-
tion levels from -O0 to -O3. For these experiments, although CPU-side codes were compiled
with different optimization levels, vector unit-side codes that were generated from the CPU
side compiled with an -O3 option were used to change the performance ratio of the CPU
to the vector unit. In this environment, when a CPU-side code is compiled with an -O0
option, the performance of the CPU side can be considered slow, and when the CPU-side
code is compiled with an -O3 option, the performance of the CPU side can be considered
fast. Therefore, the ratio of the vector unit-side workload to the total workload and the
performance gain over the CPU-only execution at lower optimization levels are expected
to be higher than those at higher optimization levels.

Figure 10a shows the speedups of Vector Offloader relative to the CPU-only execution
at different optimization levels. The x-axis shows the benchmarks, and the y-axis shows the
speedup of the CPU-only execution at the same compiler optimization level. As expected,
higher performance gains over the baseline were achieved at lower optimization levels. This
is because a larger workload partition is offloaded to the vector unit at lower optimization
levels, as shown in Figure 10b. As the optimization level increased from 0 to 3, the average
portion of the offloaded workload decreased from 100 to 47. In this graph, the optimal ratio
at the -O0 optimization level is 100, which means that vector unit-only execution is optimal
because the CPU side execution is too slow. The results for the -O2 and -O3 optimization
levels are identical because the generated binaries are the same at these optimization levels.
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Figure 10. Performance evaluation and optimal offloading ratios when changing the CPU-side
performance using different optimization levels (O0, O1, O2, and O3). (a) performance evaluation
and (b) optimal offloading ratios.

6. Related Work

To efficiently utilize vector hardware, many studies have focused solely on the ef-
ficient scheduling of SIMD instructions, using improved auto-vectorization techniques
or hardware modifications. However, these approaches could not fully utilize the vector
unit. In this study, we proposed an alternate approach of utilizing the vector unit as an
additional scalar unit rather than leaving it idle or underutilized.

Previous studies [24–26] have focused on utilizing all available resources in parallel.
SKMD [24] presented a framework that manages the execution of a single kernel on avail-
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able CPUs and GPUs by distributing the target workload. To maximize the performance in
this framework, subsets of the data-parallel workload were assigned to multiple CPUs and
GPUs by considering the performance differences and data transfer costs depending on
the type of device. Paragon [25] proposed a compiler platform to run possible data-parallel
applications on CPUs and GPUs, which checks the dependency of speculatively running
loops on the GPU. When a dependency is detected, it transfers the execution to the CPU,
and after the dependency is resolved on the CPU, the execution is restarted on the GPU.
Qilin [26] is a heterogeneous programming system that generates code for both the CPU
and GPU. It automatically partitions threads to the CPU and GPU by applying offline pro-
filing and adaptive mapping of the computation to the target hardware. The key difference
between our approach and these prior studies [24–26] is that they considered the GPU as
the target, whereas our method considers the vector unit as the target.

On the hardware side, SIMD-Morp [27] introduced a flexible SIMD datapath to ac-
celerate non-data-parallel applications by adding connectivity between the SIMD lanes.
However, this method requires complex hardware configurations and good program-
ming skills; moreover, efficient compiler support is necessary. Contrarily, our method
does not change the baseline vector unit structure, and compiler support is much easier
than vectorization.

7. Conclusions and Future Work

Most modern processors are equipped with vector units to exploit data-level paral-
lelism. However, accelerating target applications using a vector unit is highly limited by
the non-vectorizable (scalar) portions; therefore, the vector unit often remains underutilized.
To overcome the underutilization of existing vector units, in this study, we proposed a tech-
nique for executing scalar programs by considering the vector unit as an additional scalar
operation unit. We applied a code rewriting process and offloaded the split workloads based
on the optimal offloading ratio into both the CPU and the vector unit. To identify the optimal
offloading ratio, we presented a profile-based search algorithm that gradually increased the
ratio of offloading to the vector unit until no additional improvement in performance was
achieved. Our proposed method showed average speedups of 1.26×, 1.23×, and 1.21× with
respect to double, float, and integer types on a mini dataset, and average speedups of 1.35×,
1.36×, and 1.27× for double, float, and integer types on a small dataset, respectively.

This study includes the following directions for future research: First, we believe
that the Vector Offloader can be utilized in existing general parallelization infrastructures.
Therefore, we will attempt to generalize our technique using existing parallel programming
APIs such as OpenMP. Second, we will maximize the effectiveness of our technique using
additional hardware modifications. Since our work can limit the vector width to support
scalar codes on target vector units, fine-grained power control can substantially improve
the power efficiency of our technique. To realize this, we have already applied the fine-
grained clock gating logic to the baseline Hwacha architecture; to handle it, we will utilize
the lane-wise clock gating for offloading with the use of customized instructions.
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