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Abstract: The application of unmanned aerial vehicles (UAV) as base station (BS) is gaining popularity.
In this paper, we consider maximization of the overall data rate by intelligent deployment of UAV BS
in the downlink of a cellular system. We investigate a reinforcement learning (RL)-aided approach
to optimize the position of flying BSs mounted on board UAVs to support a macro BS (MBS). We
propose an algorithm to avoid collision between multiple UAVs undergoing exploratory movements
and to restrict UAV BSs movement within a predefined area. Q-learning technique is used to optimize
UAV BS position, where the reward is equal to sum of user equipment (UE) data rates. We consider a
framework where the UAV BSs carry out exploratory movements in the beginning and exploitary
movements in later stages to maximize the overall data rate. Our results show that a cellular system
with three UAV BSs and one MBS serving 72 UE reaches 69.2% of the best possible data rate, which is
identified by brute force search. Finally, the RL algorithm is compared with a K-means algorithm to
study the need of accurate UE locations. Our results show that the RL algorithm outperforms the
K-means clustering algorithm when the measure of imperfection is higher. The proposed algorithm
can be made use of by a practical MBS–UAV BSs–UEs system to provide protection to UAV BSs while
maximizing data rate.

Keywords: UAV BS; reinforcement learning; K-means clustering

1. Introduction

The use of unmanned aerial vehicles (UAVs) in combination with terrestrial communi-
cation networks, in various capabilities, was initially considered for long-term evolution
(LTE). In LTE, UAVs were considered both as flying user equipment (UE), widely known
as cellular connected UAVs, and as flying base station (BS). The cellular connected UAVs
were used extensively for surveying, acquiring sensor data etc., whereas the UAV BSs are
proposed to play a major role especially during natural calamities and similar situations
where ground based structure might be absent [1]. Apart from providing the necessary
communication service during a natural calamity, a UAV can also be used to improve the
performance of an existing network. However, the UAV BSs are still costly, and researchers
from all over the world are working on prototypes of various capacities. In 2020, Verizon
experimented with a 300 pound prototype [2], clearly concluding that a cost effective UAV
BS is not yet available.

Despite the contribution of UAVs in cellular communication, the UAV requires consid-
erable overhead and additional training to provide satisfactory performance, and machine
learning (ML) is used extensively to achieve the same [3]. ML algorithms in different
categories are used extensively in optimization and automation purposes. Optimizing
multiple network parameters, intelligently adapting to modulation schemes, and optimiza-
tion in networked UAVs are just few among many research activities. Recent research
considers positioning of UAVs using ML algorithms to improve spectral efficiency, increase
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coverage, and/or provide connectivity during disasters [4]. Various categories of algo-
rithms in supervised, unsupervised, and reinforcement learning (RL) division are used in
the literature.

One of the main challenges in using supervised and unsupervised algorithms is to
have a huge set of training data, whereas RL does not require any training. RL, on the
other hand, learns from the environment (observes different parameters such as data
rate) and improves the performance with time. However, the complete possibilities of
RL, considering practical deployment, in intelligent positioning of UAV BS along with
macro base station (MBS), have not been extensively studied. In this paper, we consider
maximizing the overall data rate by intelligent deployment of UAV BS in the downlink of a
cellular system. We investigate an RL-aided approach to optimize the position of UAV BSs
to support the MBS.

The main contribution of this paper is the application of RL to optimize UAV BSs
position in UAV BSs–MBS cellular architecture, with an eye to practical deployment. In
addition to application of RL, considering the practical UAV BSs deployment, we also use:
(i) an algorithm to avoid collision between multiple UAV BSs; (ii) a greedy approach to
enhance the learning process in initial stages and achieve for data rate in later stages.

The paper is organized as follows. A review of related works is given in Section 2.
Section 3 provides system model and the problem formulation. In Section 4, we provide a
basic introduction to RL and further elaborate the application of RL to UAV BS position
optimization. Simulation results are presented in Section 5, comparisons with other works
are mentioned in Section 6, and finally, conclusions are drawn in Section 7.

2. Related Work

Various ML algorithms are used extensively in UAV-related research [5–15]. Energy
spent on UAV movement is a bottleneck in determining the operating time of the UAV. Opti-
mizing energy in UAV by trajectory optimization is discussed in [5]. Another work focuses
on resource allocation in a cache-enabled UAV network [6]. A solution for interference
management using artificial neural networks (ANN) is proposed for UAV networks in [7].
UAVs are also used in image processing and object detection, and they find application in
agriculture and forest based research [8].

UAV BSs are also suggested to provide swift connectivity in disaster resilient net-
works [9]. In fact, under such circumstances, they can replace a fixed pico BSs (PBSs), thus
resulting in a UAV PBS assisted heterogeneous network (HetNet) architecture [10]. The
deployment of UAV BSs in HetNet with a central unit minimizes the inter cell interference
and leads to a cell-free network [11].

Considering the randomness in the UEs positions, predetermined movements of
UAV BS will not bring the advantages as envisaged. A sectoring-based approach is
proposed to provide 2D placement of UAV BS in [16]. Various UAV BS positioning strategies
were proposed, where the problem of UAV BS positioning is framed as an optimization
problem [17–20]. A UAV BS can use artificial intelligence (AI) to move to the best position,
thereby enhancing the performance [3,21]. ML, which is a branch of AI, provides the
ability to learn and adapt to situations through experiences. UAV BSs deployed with the
help of ML algorithms can provide a reliable service to users, despite the user pattern
variation. Different strategies of ML, such as bio-inspired algorithms, unsupervised, and
reinforcement learning (RL), have already been considered for optimal positioning of
UAV BS in [22,23]. In [22], authors implemented a three dimensional UAV positioning
with K-means clustering algorithm, an unsupervised ML algorithm that groups UEs to
neighbouring cluster heads. Another strategy is to use device-to-device communication to
expand the coverage of the UAV BS using clustering algorithms [23].

In this paper, we use RL technique to learn and adapt based on the responses from
the environment. Approaches with RL, where UAVs are used in HetNet, are considered
in [24–26]. The work in [24] considers UAV BSs along with terrestrial networks. However,
in [24], multiple MBSs along with single UAV BS are considered, which is not the case in a
practical HetNet architecture. The optimization of the UAV BSs position in the downlink
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of a UAV BSs-UE network for overall data rate maximization is considered in [26]. An
extended version of [26], where an optimized UAV positioning algorithm with an MBS
that provides backhaul to UAV BS is considered in [25]. The UAV BS acts as relay, and
the capacity of the system is defined by the minimum of backhaul and UAV-BS to UE
communication in [25]. However, we consider both MBS and UAV BS to serve users, unlike
in [25]. Table 1 lists related works and comparisons with existing works.

Table 1. Comparison with the existing work.

Ref. Highlighted Technique Used Limitation and Future Directions

[16] 2D UAV BS positioning -Sectoring-based UAV positioning not an ML-based solution.

[17] Efficient placement of UAV BS to
maximize revenue

-Mixed integer non-linear optimization problem
-Focus on revenue maximization not an ML-based solution

[18] Placement Optimization of UAV MBS -Polynomial time algorithm non-ML algorithm, which cannot be used
with dynamic UE patterns

[19] UAV BS position optimization using
non ML optimization

-Brute force search
-Maximal weight area algorithm to maximize
coverage

non-ML solution

[20] UAV trajectory optimization -Framed as a convex optimization problem -Applicable to fixed wing UAV at fixed
height

[22] Data-driven UAV position
optimization

-K-means clustering algorithm
-Fixed user positions obtained using PPP

UE locations must be known prior to
optimization

[24] UAV BS position optimization using
Q-learning -RL based Single UAV BS is used

[25,26] Same as above -Rate maximization
-Q-learning

-MBS is not used to serve UEs
-Concept of varying exploration and
exploitation is not attempted
-Practical aspects like UAV BS collision etc
are not addressed

[27] UAV BS trajectory design using RL -Deterministic Policy Gradient algorithm
-Applied in uplink -Computationally complex

[28] Q-learning-assisted UAV trajectory
design

-UAV BS changes it position based on UE
positions

Scenario considered is unreal and limited
to 15 × 15 square

The main contribution of our work compared with existing work is as follows: (i) the
MBS is considered only as backhaul in [25], whereas, in this work, the MBS serves users, in
addition to backhaul; (ii) we make use of a scheme proposed in [29], where the UAV BSs
explore more in the initial stages and exploit in later stages, with an aim to maximize the
overall data rate; (iii) in addition to implementation of RL assisted UAV BS positioning, we
also propose a scheme to avoid collision among multiple UAV BSs; and (iv) considering
the exploratory nature of UAV BS, we propose a method to avoid UAV BSs from moving
out of the desired service area.

3. System Model

We consider a UAV-assisted cellular architecture with one MBS and N UAV BSs.
Let us define the set BS= {BS0, BS1, . . . , BSN}, where BS0 corresponds to the MBS and
{BS1, . . . , BSN} represent N UAV BSs. The UAV-assisted cellular system serves M users,
denoted by the set UE= {UE1, UE2, ..., UEM}. The users are distributed using poisson
point process (PPP). We assume that a UE is connected to one BS at a time.

Figure 1 shows the system model with an MBS, N UAV BSs, and M UEs. We consider
a downlink system having M sub-channels, each having bandwidth W, thereby making
the total bandwidth allotted to the system M ×W. We also assume that each UAV BS
has the same transmitting power PUAV , while that of the MBS is PMBS. As in [30], we use
partially shared deployment (PSD) strategy to allocate spectrum to MBS and UAV BSs. That
is, out of Ktot sub-channels allocated to MBS-UAV BSs, Ksh channels are shared by UAV
BSs and MBS, while the remaining (Kex = Ktot − Ksh) ones are specific to the MBS. This
resource allocation strategy is appropriate for a cell-free architecture, where a user obtains
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the same spectrum even after changing the position. The notations and their descriptions
are summarized in Table 2.

Table 2. Notations and description.

Variable Description

N, M Number of UAV BS and UE respectively
W Bandwidth
PUAV , PMBS Transmit power of UAV BS and MBS respectively
Ktot Total sub-channels allocated to MBS-UAV BSs
Ksh Number of channels shared by UAV BSs and MBS
Kex Number of channels specific to MBS
dij Distance between BS j and UE i
(xj

BS, yj
BS, hj

BS) Coordinates of BS j
(xi

UE, yi
UE, 0) Coordinates of UE i

PL(dij), PL(di0) PL associated with BS j and UE i, PL associated with MBS and UE i
Gij, Gi0 Channel gain between BS j and UE i, channel gain between MBS and UE i
SINRk

ij, SINRk
i0 SINR at UE i using the sub-channel k of BS j, SINR at UE i using the

sub-channel k of MBS
SINRk

ij SINR at UE i using exclusive sub-channel l of MBS
Rij, Rij Data rate of UE i associated to BS j, data rate of UE i associated to MBS
αij UE i’s normalized time of association with BS j
γ SINR threshold
r, s, a Reward, State, Action
s′, a′ Next state, set of actions that can be performed when agent is in s′

β Discount factor
ε Parameter defining probability of exploration-exploitation movements
ψ Decay rate
J Loss function
ψ Decay rate
π Parameter specifying association of point to cluster
µ Vector carrying location of centroid
ρ Parameter specifying the effect of imperfection in position data

Figure 1. Architecture of the UEs–UAV BSs–MBS system.

The distance between BS j, j ∈ {0, 1, ..., N}, and UE i, i ∈ {1, ..., M}, can be expressed as

dij =

√
(xi

UE − xj
BS)

2 + (yi
UE − yj

BS)
2 + (hj

BS)
2, (1)
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where (xj
BS, yj

BS, hj
BS) and (xi

UE, yi
UE, 0) represent the coordinates of BS j and UE i, respec-

tively. The path loss (PL) associated with MBS and UE i can be expressed as [30]

PL(di0)[dB] = 128.1 + 37.6 log10(di0/1000) [dB]. (2)

Similarly, the PL associated with UAV BS j and UE i can be expressed as [31]

PL(dij)[dB] = 92.45 + 20 log10(dij/1000) [dB]. (3)

Subsequently, we can write channel gain Gij[dB], for a given distance dij, as

Gij[dB] = PL(dij)[dB] + ζ[dB]− ξ[dB], (4)

where ζ[dB] and ξ[dB] represent shadow fading and antenna gain, respectively.
The signal-to-interference noise ratio (SINR) at UE i using the shared sub-channel k of

UAV BS j can be expressed as

SINRk
ij =

PuGij

N0 + Pu

N

∑
h=0,h 6=j

Gih

, (5)

where Pu = PUAV/Ksh, and N0 is the noise power. Without loss of generality, we can
calculate the SINR at UE j using shared sub-channel k of MBS as

SINRk
i0 =

PuGi0

N0 + Pu

N

∑
h=1

Gih

. (6)

Unlike sub-channels shared by UAV BSs and MBS, the use of an exclusive sub-channel
in MBS does not result in interference. Thus, SINR at UE i using exclusive sub-channel l of
MBS can be obtained from

SINRl
i0 =

PmGi0
N0

, (7)

where Pm = PMBS−PUAV
Kex−Ksh

and PMBS > PUAV . The data rate of the ith UE associated with MBS
is written as

Ri0= KexWlog10(1 + SINRl
i0) + KshWlog10(1 + SINRk

i0). (8)

Similarly, the data rate of UE i associated to UAV BS j can be expressed as

Rij = KshWlog10(1 + SINRk
ij). (9)

Problem Formulation

The data rate experienced by UE i can be written as

Ri =
N

∑
j=0

αijRij, (10)

where αij represents the scheduling factor, which describes UE i’s normalized time of
association with BS j [30]. The UE is connected to the UAV BS, for which there is the
maximum SINR. Additionally, we associate a UE with the MBS, if the maximum of SINR
offered by UAV BS is less than a predefined threshold γ. That is, if max(SINRmn) < γ, the
UE m gets connected to MBS.
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Considering that UAV BSs vary the position, the problem can be formulated as the
maximization of the sum-rate of the entire UE-UAV BS-MBS system as

arg max
(xi ,yi)

M

∑
i=1

Ri/M. (11)

Assuming a UAV BS at fixed height, the problem can be formulated as an optimal
two-dimensional UAV BS positioning one. We rely on RL to find the optimal position of
UAV BS.

4. Reinforcement Learning

RL is a branch of ML, where the agent learns and adapts to the situations based on the
environment it is in. The agent performs action a from state s and reaches state s′ by receiving a
reward r. The agent performs a fixed number of steps called ‘episodes’ and learns by collecting
entries to the Q-table. A Q-table is a matrix, with dimension possible states × possible actions,
that finally makes the agent intelligent and allows it to choose the best action at a particular
state. The agent can either choose an action that gives best reward (exploit) or can explore more
options in order to maximize the cumulative discounted reward.

The Q-table is updated using the following equation:

Q(s, a) = r + β max
a′

Q(s′, a′), (12)

where the agent gets reward r on performing action a in state s and move to state s′, a′

is the set of actions that can be performed when agent is in state s′, and β ∈ [0, 1) is the
discount factor. The Q value update is done by using the well-known Bellman equation

Q′(s, a) = Q(s, a) + λ[r + β max
a′

Q(s′, a′)−Q(s, a)], (13)

where the value of λ ∈ [0, 1) determines how quickly Q values change. We can see from (12)
that [r + β maxa′ Q(s′, a′)] is the target Q-value and Q(s, a) gives the estimated Q-value.

4.1. Application of RL

In order to implement the Q-learning algorithm, it is mandatory to define the agent, the
environment, and the associated states, actions, and rewards, as detailed in the following:

4.1.1. Environment

Set defined by M fixed UEs, represented by {UE1, UE2, ..., UEM}, and the MBS. Based
on the movement of UAV BS, UEs connect and communicate via UAV BS and/or MBS.

4.1.2. Agent

The set of N UAV BSs acts as the agent, owing to the idea that the agent performs action a
from state s and moves to next state s′. In this work, N UAV BSs can move by maintaining a
fixed height. Subsequently, UEs are connected to any of UAV BS or to the MBS.

4.1.3. State

In practice, each UAV BS can move around a vast area, and each possible UAV BS
position must be taken into account, while defining the states. This increases the number
of states, resulting in delayed UAV BSs optimization. Therefore, to reduce computational
complexity, we reduce the number of states by allowing UAV BS to move in incremental
distances dsep. The UAV BS can hold positions with a distance dsep. We also restrict UAV
BS movement to these grid points in the square grid. Consider a 2D area (Ngrid × dsep)×
(Ngrid× dsep), where Ngrid is the number of grid points in a row or column, and the number
of grid points turn out to be Ngrid × Ngrid. Given the area, reducing dsep or increasing
grid points increases the number of states and hence the time required for computation.
However, it is not necessary to restrict the number of states if the server processing RL
algorithm can handle the computational load.
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4.1.4. Action

The agent can choose an action a from set of actionsA(s). We assume that each UAV BS
can either move east/west, north/south, or maintain the same position. Therefore, five actions
are possible for each UAV BS, and the combined number of actions is given by 5N.

4.1.5. Reward

We define reward as

r =
M

∑
i=1

Ri/M. (14)

It is worth noting that reward is a parameter in measuring data rate resulting from
UAV BS locations. Note that reward varies with UAV BS positions and associations.

4.1.6. Training Process

The agent’s learning process starts from an initial state and carries out numerous
transitions through different states and ends at a terminal state. After performing each
action, the Q-table is updated. The Q-learning algorithm used in this paper is exemplified
in Algorithm 1.

Algorithm 1: Proposed algorithm based on Q-learning
Input: UE number and locations, learning rate λ ∈ (0, 1], epsilon (ε), maximum
epsilon (εmax), minimum epsilon (εmin), decay rate (ψ).

Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily, except that
Q(terminal, ·) = 0;

while episode 6= 0 do
reset UAV BS locations;
Initialize S;
while step of episode ≤ maximum number of episodes do

Choose action a from s using policy derived from Q (ε-greedy);
Take action a; Reward, r = ∑M

i=1 Ri/M;
observe next state s′;
Q(s, a)← Q(s, a) + λ[r + β maxa Q(s′, a)−Q(s, a)];
s← s′;
ε = εmin + (εmax − εmin)× exp(−ψ× episode)
while UAV BS location (xj

BS,yj
BS,hj

BS) 6= (0, 0, 0) do
if ((xj

BS > Ngrid × dsep)‖(yj
BS > Ngrid × dsep)) then

r = −∞ ; /* To prevent movement of UAV BS outside
required area */

else
if (xj

BS,yj
BS,hj

BS) 6= (xk
BS,yk

BS,hk
BS), where k 6= j then

r = −∞ ; /* To prevent UAV BS collision */
else

use Equation (14);
end if

end if
end while

end while
end while

To improve the overall data rate, we implement a framework where the UAV BSs carry
out exploratory movements in the beginning and exploitary movements in later stages. We
allow a UAV BS to explore newer locations by performing random actions at the beginning.
With a lot of Q-table entries acquired using exploration, the agent performs exploitary
actions in the subsequent episodes [29].
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This is undertaken by varying ε according to the equation

ε = εmin + (εmax − εmin)× exp(−ψ× episode), (15)

where ε, εmax, εmin, and ψ are epsilon value, maximum epsilon value, minimum epsilon
value, and decay rate, respectively. When ε is close to zero, exploitary movement is more,
and when ε is near one, exploration movement is more.

4.1.7. Collision Avoidance and Limiting UAV Location

In Algorithm 1, each episode begins from an initial state, where all UAV BSs have
certain initial positions. Further, to prevent UAV BS collision, we check (xj

BS,yj
BS,hj

BS) 6=
(xk

BS,yk
BS,hk

BS), where k 6= j. That is, we prohibit UAV BS j and k to be at same location by
setting reward r =−∞. By setting the reward to −∞, we prevent such future occurrences.

Similarly, we assign r =−∞, when ((xj
BS > Ngrid × dsep)‖(yj

BS > Ngrid × dsep)) to
prevent situations where UAV BSs explore outside specified area. We provide reward
r =−∞ for an action to move the UAV BS from edge of the specified area to a position
outside the specified area. Algorithm 1 also describes the strategy used to avoid any UAV
BS movement outside the grid locations. To analyze the performance of the proposed
algorithm, we compare results of the proposed algorithm with K-means algorithm.

4.2. K-Means Clustering

K-means clustering is a very powerful algorithm that falls under the category of
unsupervised ML algorithm. The role of the algorithm is to cluster data points into K
non-overlapping subsets called clusters.

The K-means algorithm operates N data points, where each data point is repre-
sented by x ∈ {1, 2, .., N}. The goal is to find the association r, such that it minimizes the
loss function,

J = ∑
n

∑
k

πnk||xn − µk||, (16)

where

πnk =

{
1, if k=argminj||xn − µk||.
0, otherwise.

(17)

This means that the value of πnk is set to 1 if the data point xi is assigned to cluster k
and 0 for other clusters. µk is an n-dimensional vector that carries the location of centroid
of the cluster.

4.3. Effect of Imperfect Locations in K-Means

Though K-means algorithm (Algorithm 2) provides optimal location of UAV BSs after
multiple iterations, unlike RL, the algorithm requires knowledge of UEs location prior to
optimization. If the locations given to K-means algorithm has imperfection, then the UAV
BSs will be positioned in completely different locations. To understand this behaviour, we
model the imperfection in position data as

x̂ = ρx + (1− ρ)φ, (18)

where x is the set of UE locations with size M× 2, ρ is the effect of imperfection, where
0 < ρ < 1 and φ is normally distributed matrix with size M× 2.

Unlike K-means algorithm, RL does not need prior UE locations to compute UAV BSs
locations. The RL algorithm takes r as the parameter to decide UAV BSs location, which is
independent of location information x.
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Algorithm 2: K-means algorithm based UAV BS positioning
Data: M UE positions where each UE is represented by UEx, x ∈ {1, 2, .., M} and

K
Result: cluster head locations, CHi, i ∈ {1, 2, .., K}
for k← 1 to K do

µk ← some random location
end for
while until converged do

for n← 1 to N do
πnk ← argmink||xn − µk||2

end for
for k← 1 to K do

µk ←mean(πnk, xn)
end for

end while

5. Numerical Results

The analysis is carried out in two phases. In the first, we keep MBS along with N
UAV BSs and apply Q-learning algorithm, whereas in the second, we consider N UAV
BSs to provide service to M UEs without considering UE association with MBS. Users are
distributed in area spanning 1500 m× 1500 m, whereas the UAV BS can hold locations in the
grid spanning 1500 m× 1500 m with 150 m separation between neighbouring grid vertices.
The output after running the Q-learning algorithm is compared to the best position obtained
from brute-force search. The brute-force search reveals the reward for each possible state,
corresponding to UAV BSs location and UEs association.

First, we consider three UAV BSs and an MBS providing service to 72 UEs. The agent
is trained for 2000 episodes, 90 steps per episode, β= 0.618. The UEs are not associated to
any UAV BS or MBS in the initial stage. Figure 2a shows the initial UAV BSs position for
the system with three UAV BSs and an MBS. In the first step corresponding to episode 0,
UAV BSs are placed at origin. Since the UAV BSs are not active, all the UEs are associated
to the MBS. After running the Q-learning algorithm for 2000 episodes, the optimized UAV
BSs position and UEs association is calculated.

Figure 2b shows the optimized UAV BSs position using the Q-Learning algorithm.
However, the Q-learning algorithm does not reach the best UAV BSs position, which may
the case after numerous episodes. The UEs association is represented by providing the
same colour code as that of the associated UAV BS or MBS. A circle representing coverage
area of each UAV BS and MBS is also shown. It is important to note that a re iteration
of RL from the initial stage may not result in same UAV BS positions as shown in the
figure. However, a data rate or reward that is close to the value obtained with the present
setting expected.

The UAV BSs position offering maximum data rate and corresponding UEs association
found using brute force algorithm is shown in Figure 2c. This is equivalent to running the
RL algorithm for large number of iterations or till infinity. The UAV BSs are positioned
in such a way that the association of UEs with UAV BSs and MBS results in maximum
data rate. The UEs are coloured according to their associated UAV BSs colour. The UEs
associated with the MBS are also coloured in the same manner. It is worth noting that the
index of UAV BSs may be different if iterations of the RL algorithm are carried out from
the beginning. This is because the UAV BSs decides the next state based on exploratory
actions, resulting in a random state. However, the maximum data rate of the system at the
final stage will be same, even though there might be a change in index of UAV BSs.

Now, we consider a situation where only UAV BSs are used to provide service to UEs,
which is illustrated in figures below. Figure 3a shows the UAV BSs’ initial position for the
system with three UAV BSs only. UAV BSs are placed at origin in the beginning of episode
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0. Since there is UAV BSs–UEs association, the UEs are coloured black. The MBS in this
system is inactive and does not serve any UEs.

(a) (b)

(c)

Figure 2. UAV positions and UEs assignment in a 3 UAV BS–MBS system. (a) Initial UAV BS positions; (b) Optimized UAV
BSs positions; (c) Best UAV BSs positions.

After 2000 episodes of Q-learning, the optimized UAV BSs position and UEs associa-
tion are given in Figure 3b. As discussed earlier, the Q-learning algorithm does not provide
the best UAV BSs position after 2000 episodes. However, the performance is improved with
each episode. The MBS do not serve any of the UEs compared to the previous case, and
therefore, the data rate is less compared to the one with MBS. It is also worth noting that a
reiteration of RL from the initial stage may not result in the UAV BS positions as shown in
the figure. However, a data rate or reward that is close to the present value is expected.

The UAV BSs positions that offer maximum data rate and corresponding UEs associ-
ation are found using brute-force algorithm and are shown in Figure 3c. On comparing
with the system with MBS, this is also equivalent to running the RL algorithm for large
number of iterations or till infinity. The UEs associated with the UAV BSs are also coloured
with respect to the associated UAV BS. None of the UE is coloured with the colour cor-
responding to MBS, as the MBS is inactive in the system. The index of UAV BSs may be
different if iterations of the RL algorithm are carried out from the beginning. It is due to
the exploratory actions performed by UAV BSs, resulting in a random state. However, it
is worth noting that the maximum data rate of the system at the final stage will be same,
even though there might be a change in index of UAV BSs.

In Figure 4, positions of UAV BSs that provide the best data rate are calculated. The
UAV BSs positions are found with UEs positions that were used to carry out RL based UAV
BSs positioning. It is interesting to note that the K-means-based algorithm is applied to a
system with no MBS, as MBS position cannot be changed. However, in a system with UAV
BSs and UEs, the UAV BSs are placed at positions, where the UAV BSs were, after a large
number of iterations in an RL based system. More importantly, the K-means algorithm
proposes the UAV BSs positions that provides maximum data rate, without considering
the path followed by the UAV BSs from an initial location.
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(a) (b)

(c)

Figure 3. UAV positions and UEs assignment in a 3 UAV BS system. (a) Initial UAV BS positions; (b) Optimized UAV BS
positions; (c) Best UAV BS positions.

Figure 4. UAV BSs positioning using K-means algorithm.

Figure 5 explores the distribution of rewards in a 72 UE–3 UAV BSs–1 MBS system.
The reward values are collected from a brute force search in the system. The plot follows a
near-Gaussian distribution and has a maximum value corresponding to maximum reward
as 21.1. The reward values correspond to data rates and use Equation (14) for conversion.
From Figure 5, we can infer that the data rate obtained by RL algorithm after 2000 episodes
is 69.2 % of the maximum possible data rate.
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Figure 5. Histogram of rewards of 72 UE–3 UAV BSs–1 MBS system

In Figure 6, the system with 72 UEs–3 UAV BSs system is considered, and a histogram
of rewards is plotted using the values obtained from a brute force search for the same.
Similar to Figure 5, the histogram follows a Gaussian distribution, and the maximum
reward value is found to be 8.1. The reward values correspond to data rates and use
Equation (14) for conversion. From Figure 6, it can be noted that the data rate obtained by
RL algorithm after 2000 episodes is 60.2% of the maximum possible data rate.

Figure 6. Histogram of reward of a 72 UEs–3 UAV BSs system.

Now, we evaluate the rewards obtained for the case with and without MBS. Figure 7
shows the total reward earned by the UEs–UAV BSs–MBS system. The total reward is
the sum of all rewards of all s in an episode. That is, the sum of all rewards in each UAV
BS position is plotted for each episode. The UAV BSs gather information and are trained
with each episode. We can see that the agent learns and improves the total reward from
each episode. The reward corresponding to the first episode is non-zero, as the UEs are
associated with the MBS in the initial stage. A brute force algorithm is used to record data
rate for every possible state. The data obtained using a brute force search reveal that the Q-
learning approach with 2000 episodes provides a maximum sum-rate of 14.54 Mbits/s/Hz
corresponding to 69.2% of the best possible reward.

Figure 8 shows the total reward versus episodes for 72 UEs–3 UAV BSs system. The
total reward is the sum of all rewards observed in each iterations or UAV BS movements.
The total reward of the agent increases rapidly compared to the case where MBS is used
along with UAV BS. However, it can be noted that the reward is less compared to Figure 7.
This is due to absence of the exclusive sub-channels dedicated to the MBS. After training
the agent for 2000 episodes, the data rate corresponding to the optimized UAV BSs location
is identified as 4.88 Mbits/s/Hz, which is 60.2 % of the best possible data rate.
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Figure 7. Reward for a 72 UEs–3 UAV BSs–1 MBS system.

0 500 1000 1500 2000 2200
Episodes

0

200

400

600

T
ra

in
in

g
 t

o
ta

l 
re

w
a

rd

Reward corresponding to best

UAV BSs locations

60.2% of best

reward

Figure 8. Reward for a 72 UEs–3 UAV BS system.

Rewards vs. ρ values are plotted for a 72 UEs–3 UAV BS system in Figure 9. Smaller
ρ values correspond to lesser imperfection of user location information x, and the K-means
algorithm provides better data rates due to better UAV BSs positioning. However, if
ρ values are higher, due to imperfection of x values, UAV BSs are positioned in locations
resulting in poor data rates. Hence, it is better to use an RL algorithm that is trained for
large number of iterations in this case. In addition to dependency on UE positions, the
K-means algorithm possesses another limitation, that is, the K-means algorithm does not
consider the path the UAV BS follow to reach to the desired location.
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Figure 9. Rewards vs ρ plot of a 72 UEs–3 UAV BS system.
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6. Discussion

An RL-aided UAV BS positioning architecture is proposed in this paper. The RL
architecture improves the performance of the multiple UAV BS based communication
system by exploratory movements, which can lead to collision and movement of UAV
BS beyond the intended search area. The paper considers practical deployment of UAV
BS to maximize downlink data rate, while protecting the UAV BS by avoiding UAV BS
collision and by avoiding UAV BS to explore beyond the prescribed search area. To the best
of our knowledge, such an attempt is not made in works involving UAV BSs. RL-based
UAV BS deployment is considered in [24–28] to improve performance of system. However,
in [24], authors use single UAV BS, where there is no possibility of collision between other
UAV BSs and in [25,26], UAV BSs are only used as backhaul to serve UAV BSs. In [27],
the authors consider the deep deterministic policy gradient algorithm, which is a neural
network-based algorithm. Work in [28] is an extension of epsilon-greedy algorithm, which
is a basic learning scenario in RL, making it an unreal scenario for a UAV BS-based network.
Though several studies [24–28] use RL to optimize UAV BS, they do not address the issue
of UAV BSs collision and movement of UAV BS beyond the intended search area. In our
paper, we not only address these issues, but also produce an RL system to perform more
exploratory movements initially and perform exploitary movements in final stages to
improve sum-reward.

In this paper, we consider two scenarios, where the first uses MBS along with UAV
BSs, and later, we use only UAV BSs. Figures 2b and 3b reveal that the UAV BSs are not
damaged due to collision or loss due to exploratory movements outside the intended
search area. It is worth noting that the system consist of multiple UAV BS and MBS serving
multiple UE; therefore, a comparison with [24–28] in terms of data rate vs. episodes may
not be meaningful, as the underlying system architecture and assumptions are different,
as discussed before. Figures 7 and 8 show the improvement in data rate with RL-assisted
UAV BS position optimization. On comparing it with brute force algorithm, where the
data rate for each possible UAV BSs position is noted, the results reveal that the system
with MBS reaches 69.2% of the best possible data rate. Similarly, the system with UAV BSs
reaches 60.2% of the best possible data rate. Finally, the RL algorithm is compared with the
K-means algorithm with imperfect UE locations information. Results reveal that the RL
performs better when imperfection in UE locations are more.

The RL architecture considered in the paper performs the optimization in a centralized
manner, which means that the UAV BS is not deciding the next movement by itself. This is
a limitation, and a decentralized UAV BS position optimization is a possible future work.

7. Conclusions

In this paper, we propose an RL-aided UAV BSs positioning approach for over-
all downlink data rate maximization in HetNets with possible coexisting macro BSs.
By exploiting the Q-learning algorithm, the UAV BSs position themselves in optimal loca-
tions without collision. Considering the user distribution in area spanning 1500 m× 1500 m,
after 2000 episodes, the cellular system with 3 UAV BSs and an MBS reaches 69.2% of the
best possible data rate. Similarly, the system with 3 UAV BSs reaches 60.2% of the best
possible data rate. The proposed approach makes use of a learning process that explores
more in initial stages, without expecting maximum reward, and then, in later stages, it
takes actions to maximize it. The RL algorithm is compared with the K-means algorithm
with imperfect UE locations information, and it turns out that the RL performs better when
imperfection in UE locations are more.
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