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Abstract: Android has become the leading operating system for mobile devices, and the most
targeted one by malware. Therefore, many analysis methods have been proposed for detecting
Android malware. However, few of them use proper datasets for evaluation. In this paper, we
propose BrainShield, a hybrid malware detection model trained on the Omnidroid dataset to reduce
attacks on Android devices. The latter is the most diversified dataset in terms of the number of
different features, and contains the largest number of samples, 22,000 samples, for model evaluation
in the Android malware detection field. BrainShield’s implementation is based on a client/server
architecture and consists of three fully connected neural networks: (1) the first is used for static
analysis and reaches an accuracy of 92.9% trained on 840 static features; (2) the second is a dynamic
neural network that reaches an accuracy of 81.1% trained on 3722 dynamic features; and (3) the third
neural network proposed is hybrid, reaching an accuracy of 91.1% trained on 7081 static and dynamic
features. Simulation results show that BrainShield is able to improve the accuracy and the precision
of well-known malware detection methods.

Keywords: android device; BrainShield; hybrid model; machine learning; malware detection;
Omnidroid

1. Introduction

Due to their popularity, mobile devices are becoming more and more part of our
daily life. However, these devices, which handle both private and confidential data, are
vulnerable to attacks by malicious people, and these are known as cyberattacks. Some of
the most well-known recent examples of cyberattacks include the distributed denial of
service (DDoS) attack by Mirai Botnet [1], and the massive data hijacking carried out by the
WannaCry ransomware [2]. Therefore, this situation makes malware detection techniques
worth investigating and improving. Malware can be any type of software that serves illegal
purposes, such as spoofing or extortion [3]. This is often the case with adware that sends a
lot of ads. In this paper, we generally focus on mobile app malware, and therefore, we use
packages to allow us to install them.

Malware can be found in Google Play, which is the official market for Android apps.
Indeed, since 2015, the number of malware has increased rapidly, which has encouraged
many researchers to develop a number of malware detection methods, such as antivirus
available on the Google Play Store, static method, dynamic method and hybrid method,
as detailed in Section 3. However, these methods still have some limitations in terms of
performance to detect the malware on the newly installed applications on Android devices,
as presented in Section 3.5.

Therefore, this paper presents an extension of our previously published research work
in [4] regarding malware detection on Android devices.
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In [4], the proposed model is based on client/server architecture to reduce the heavy
computation of data on the mobile device and perform the processing remotely on the
server for prediction of the newly installed applications. We focused on the static analysis
method for malware detection using the random forest regression algorithm ranging from
−100 (benign) to 100 (malware) to manage the uncertainty predictions. We obtained good
prediction results in terms of performance with good correlation coefficients, minimum
computation time, and the smallest number of errors for malware detection.

Consequently, in this paper, we propose BrainShield, a hybrid malware detection
model trained on the Omnidroid dataset [5] to reduce the attacks on Android devices,
by improving the accuracy and the precision of well-known malware detection methods.
More specifically, our main goal is to determine whether new samples provided to our
classification model are malware or not, based on the rules previously established by the
learning algorithm.

The main contributions of this paper are as follows:

1. Describe the architecture of the proposed Model called BrainShield, which is based
on (1) a hybrid machine learning malware detection model for Android devices;
(2) the fully connected neural networks (i.e., dense layers) composed of three layers
(i.e., input layer, hidden layer and output layer) adopting one vector Tensorflow
algorithm; and (3) a binary class classification that provides, as output, a probability
value between 0 (i.e., benign apps) and 1 (i.e., malware apps);

2. Implement the proposed model to perform the prediction;
3. Provide the methodology that brings the detection results;
4. Train the Model with Omnidroid [5], which is the most known and diversified dataset.

This dataset contains 22,000 samples and about 32,000 features (i.e., 26,000 static
features and 6000 dynamic features);

5. Use the machine learning techniques [6], such as dropout and feature selection, to
increase the accuracy of the proposed neural networks.

The rest of the paper is organized as follows. Section 2 details the technical back-
ground. Section 3 presents an overview of the existing malware detection methods for
Android devices and their limitations. All the components of BrainShield’s architecture are
detailed in Section 4. In Section 5, the implementation of the BrainShield prototype and
the methodology that brings the detection results are described. In Section 6, the results
obtained in terms of accuracy, recall, precision, area under curve (AUC) and F1 score are
illustrated, and a discussion of these results is presented. Finally, Section 6 concludes the
paper by emphasizing our contribution and future work.

2. Background

In this section, we introduce a set of definitions related to Android apps, machine
learning, and features used by BrainShield to detect malware apps.

Malware detection is a classification problem [7], which consists of determining the
class of an app. The different classes presented in this paper are of two types: (1) malware
app; and (2) benign app. Malware is an Android package kit (APK), also known as an
Android app, used to serve illegal purposes, such as espionage or extortion. An app is
benign if it is legitimate and harmless.

Machine learning [8] is a discipline that consists of many different methods and
objectives. We use: (1) the fully connected neural networks (i.e., dense layers) with one
vector Tensorflow algorithm; the Dropout regularization on the hidden layer for reducing
overfitting and improving the generalization error of deep neural networks; (2) the Sigmoid
activation function on the output layer to give a probabilistic distribution between 0 and 1;
and (3) the optimizer ADAM to optimize the error.

The common point of these machine learning methods is to provide them with many
features, labeled for supervised learning or not for unsupervised learning, which serve
as input to the learning algorithm. The quantity of data and a balance of data are very
important to build a precise classification model that we adopt in our proposed model.
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Labeling is the act of considering an app as a malware app (i.e., value = 1) or as a benign
app (i.e., value = 0). Therefore, we use the binary class classification method that gives, as
output, a probability value between 0 (i.e., benign apps) and 1 (i.e., malware apps).

Features are needed in the case of supervised learning. They represent an app as
faithfully as possible. Static features are those obtained using static tools, while dynamic
features are those obtained using dynamic tools [9].

Evaluation metrics [10] are quantifiable measures, which determine if the detection
model efficiently differentiates malware from benign apps. Among these metrics, let us
quote the ones used for the evaluation of the performance of our proposed model. The
accuracy represents the proportion of correct predictions. The precision is the proportion of
correct positive predictions. A detection model producing no false positive has an accuracy
of 1. The recall is the proportion of actual positive results that have been correctly identified.
In addition, the recall is called the true positive rate (TPR). A detection model producing
no false negative has a recall of 1. The F1 score is the harmonic mean of the precision and
the recall. Therefore, this score considers both false positive and false negative. The area
under the receiver operating characteristic (AUROC) curve measures the two-dimensional
area underneath the receiver operating characteristic (ROC) curve. It gives an aggregate
measure of performance across all classification thresholds.

3. Related Work

In this section, we present a literature review based on four categories of malware
detection methods for mobile devices using the Android operating system: (1) company
solutions; (2) static method; (3) dynamic method; and (4) hybrid method. At the end of this
section, we present the limitations of the existing methods.

3.1. Company Solutions

In this section, we present a non-exhaustive list of the most popular Android apps,
known as antivirus, available on the Google Play Store. This list provides solutions
proposed by companies that have additional features to detect malicious apps. Table 1
illustrates a comparison of these Android apps, including the descriptive information for
each app, according to Google Play Store in autumn 2019, as well as the prices offered by
each app publisher.

Table 1. List of antivirus software on Google Play Store.

Play Store Name Publisher Free App Price Number of
Downloads

Security Master Cheetah Mobile Yes 20 $/year 500,000,000+
AVG Antivirus AVG Mobile Yes 16 $/year 100,000,000+
Avast Antivirus Avast Software Yes 13 $/year 100,000,000+

Kaspersky Mobile Kaspersky Lab Yes 20 $/year 50,000,000+
Security Center Hyper speed Yes No 50,000,000+
Mobile Security ESET No 7 $/year 10,000,000+

McAfee McAfee LLC No 41 $ 10,000,000+
Malware Bytes Malwarebytes No 14 $/year 10,000,000+

Norton Antivirus Norton Mobile Yes 20 $/year 10,000,000+
Sophos Mobile Sophos Limited Yes No 1,000,000+

The detection methods used by Android apps and presented in Table 1 are not known.
This opacity does not allow us to develop our own detection method, but guides us to study
more existing detection methods on the market. In addition, most of these Android apps
provide additional functionalities besides malware detection, such as network scanner,
virtual private network (VPN) service, AppLock, and permissions scanner. Typically, these
features are accessible through a monthly or annual paid subscription.

Even Google Inc. cannot be certain of the 100% detection rate. Although Google Inc.
made huge strides in 2019, its Google Bouncer in 2012 detection system was bypassable.
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Indeed, the official announcement of its existence in February 2012 [11] caused a boom in
the field of research. Several researchers have studied Google Bouncer to find out more. On
4 June 2012, Jon Oberheide and Charlie Miller [12] presented interesting results. They were
able to explore the system using a command system to search for attributes of the Bouncer
environment, such as the version of the kernel running, the contents of the file system,
or information on some of the devices emulated by the Bouncer environment. Against
all these new and increasingly virulent threats, Google Inc. has revised its policy and
established Google Play Protect [13], which is the integrated malware protection platform
for most Android devices. The Google Play Protect is supported by machine learning
techniques to analyze more than 50 billion apps per day. Despite those advancements,
malware is still found in the Google Play Store [14].

3.2. Static Method

The static analysis method does not require running the app on a device. It focuses on
the app code rather than on its actual behavior when it is executed, since the app code is
supposed to be faithful to the app functionality.

Fournier et al. [4] proposed a static detection method based on 151 Android system
permissions trained with Waikato environment for knowledge analysis (WEKA). The
model is based on training a set of 10,000 apps, consisting of 5000 benign apps and 5000
malware. Malware is from the Drebin dataset [15] dated from 2010 to 2012. The benign
apps come from the top 500 in each category of the Google Play Store. The inconvenience
is that no security check was offered to verify that such apps were non-malware. In the
same vein, the accuracy announced on the test set is 94.62%.

IntelliAV [16] is an on-device malware detection system, which uses static analysis
coupled with machine learning. The app is available on Google Play Store. Based on
a training and validation set of 19,722 apps, including 9664 malware ones, the authors
obtained a TPR of 92.5% and a false positive rate (FPR) of 4.2% on the validation set, with
1000 attributes generated by the training process. Moreover, the authors evaluated their
model on a set of 2898 benign apps and 2311 malware from VirusTotal dated from February
2017. The accuracy is 71.96%.

MaMaDroid [17] detects malware from a behavioral perspective, modeled as a se-
quence of abstract API calls. It is based on a static analysis system that collects API calls
made by an app, and then builds a model from the sequences obtained from the call graph
in the form of Markov chains. This ensures that the model is more resilient to API changes,
and that the feature set is manageable in size. MaMaDroid has been tested using a dataset
of 8500 benign apps, and 35,500 malware collected over a six-year period, with F-measure
reaching 99%.

DroidSieve [18] adopts a combination of features, which is suggested by authors as
crucial for the robust detection of simple and obfuscated malware. Thus, syntactic features
(e.g., API calls and system permissions) are integrated into such a detection method. These
features have been used to build a classifier that is robust for both old and new malware,
which tend to be increasingly obfuscated. To enrich all the syntactic functionalities, new
features based on explicit intentions, meta-information and Dalvik Virtual Machine (DEX)
files have been added. The authors created a ranking system of the most relevant features
for detecting malware, where Android permissions and intents come first. The system
achieves an accuracy of 99.82% with zero false positives.

FlowDroid [19] is a tool that performs taint analysis on the app code, which enables
the discovery of connections where the device’s International Mobile Equipment Identity
(IMEI) is sent to a third party, using the network. It achieves 93% as recall, and 86%
as precision.

Maldozer [20] is based on the classification of raw sequences of calls to API methods,
using deep learning techniques. Maldozer can be used as a malware detection system on
servers, on mobile devices, and even on Internet of Things (IoT) devices. It achieves an
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F1-Score of 96–99% and a false positive rate of 0.06%. The datasets used were from the
Malgenome project (2010–2011).

AndroGuard [21] is a Python library that extracts various information from code, re-
sources or the AndroidManifest.xml file from Android. It is used for static feature extraction.

3.3. Dynamic Method

The dynamic analysis method requires running the app code on a device. Dynamic
analysis is used in the literature, since techniques, such as encryption, obfuscation of code,
dynamic loading of code or reflection, can be implemented to avoid detection by the static
analysis method. A significant number of searches attempt to work around this problem
by monitoring the actions of the app in an emulator or on a real device.

TaintDroid [22] introduces and prototypes a taint tracking method, which is widely
used. The authors had to manually explore the apps, which greatly limits the number of
apps that can be analyzed. Indeed, only 30 random apps have been selected.

AppsPlayground [23] takes the concept of taint tracking and develops an intelligent
method of input generation and app path for dynamic analysis, which makes the detection
automatic, and where the tests are performed on emulator. On the other hand, like
TaintDroid, it requires a modification of the Android operating system to track data via
taint tracking. AppsPlayground was evaluated with 3968 apps from the Google Play store.

Chen et al. [24] proposed the detection of systems based on data mining by ransomware
for automatic detection. The actual behavior of the apps is controlled and generated in the
call flow graph API (Application Programming Interface) as a set of functionalities.

Emulator vs. real phone [25] offers a detailed study of the differences between the exe-
cution environments. This study is recommended to perform the detection on a real device.

DroidBox [26] allows monitoring a wide range of events, such as file access, network
traffic or DEX files loaded dynamically at runtime. DroidBox uses API 16, which covers
99.6% of smartphones according to Android. It is used for feature extraction in the context
of dynamic analysis.

3.4. Hybrid Method

We define the hybrid analysis method as a method that combines static and dynamic
analysis methods.

MADAM [27] is a hybrid framework using machine learning to detect malware.
It classifies them based on suspicious behavior observed at different levels of Android:
kernel, application, user, and package. MADAM requires administrator privileges on
the phone used, since it works at the kernel level. Thus, the authors specify that their
solution is not intended for the general public, but seeks to prove the strength of such an
approach (i.e., multi-level, dynamic, and on the device). The 2018 version offers real-world
experiments on 2800 malware of 125 different families from three datasets.

SAMADroid [28] uses machine learning to detect malware. It works on both local
hosts (i.e., on-devices) to perform dynamic analysis, and remote hosts, to obtain static
analysis and prediction. The SAMADroid client app is developed for Android devices. The
dataset for neural network training is Drebin (2010–2012) [15], which contains old malware.
However, SAMADroid claims to achieve an accuracy of 99.07%.

AndroPyTool adopted by Martin et al. [29] presents two tools that are of great im-
portance for our own detection method: (1) the AndroPyTool framework; (2) and the
Omnidroid dataset. AndroPyTool is developed in Python, and the code is hosted on
GitHub. It can perform a complete extraction of static and dynamic features. It integrates
the most used Android malware analysis tools (i.e., FlowDroid [19], DroidBox [26], Andro-
Guard [21] and Strace [30]) to perform a source code inspection, and to retrieve information
on behavior when the sample is run in a controlled environment.

3.5. Limitations of the Existing Methods

Static, dynamic or hybrid approaches have the following shortcomings:
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1. Little or no diversified features [4,16,20]
2. Evaluation of the model based on a poor dataset in terms of sample quantities [4];
3. An evaluation of the model based on a dataset containing old apps [4,28];
4. Obsolete methods due to new Android versions [31].

For dynamic analysis, (1) manual intervention may be required [22,32] to guarantee
full exploration of the app; and (2) the app could determine if the runtime environment
is an emulation. In this case, the malicious code would not be triggered, which would
prevent its detection [23].

In addition to the previous shortcomings, hybrid approaches may have the following
drawbacks: (1) the average performance; and (2) the device must be necessarily rooted.

Finally, all the methods presented above have high accuracy only if they are associated
with: (1) many apps in the dataset for training and evaluation; and (2) recent malware.
Indeed, any method that claims to achieve an accuracy of around 99%, while using old
databases for evaluating the model, is considered to be obsolete.

4. BrainShield

In this section, we present the proposed hybrid malware detection model called
BrainShield. BrainShield consists of three components: (1) dataset; (2) neural networks;
and (3) client/server architecture.

4.1. Dataset

Omnidroid has obtained, thanks to AndroPyTool [29], a hybrid malware detection
tool. The Omnidroid dataset [5] is selected for its static and dynamic features. To the best
of our knowledge, it is the most diversified existing dataset in terms of types of features
(i.e., static or dynamic). The static features are permissions, receivers, services, activities,
Application Programming Interface (API) calls, API packages, opcodes, system commands
and FlowDroid, whereas the dynamic features are opennet, sendnet, fdaccess, dataleaks,
recvnet, cryptousage, and dexclass. Moreover, this dataset is balanced in terms of a number
of copies, sample dates, and features. In addition, the number of apps in this dataset is
significant, since there are 22,000 samples, as well as the number of features, is substantial:
25,999 static features and 5932 dynamic features. Omnidroid’s samples date from 2012 to
2018, which covers a long period.

Moreover, we define a test set, which allows us to avoid over-fitting on the validation
set. The test set is used at the very end of learning, and only once, to verify that the model
can adapt to new samples. We have chosen to distribute our dataset as follows:

1. 70% (15,400) for the training set;
2. 15% (3300) for the validation set;
3. 15% (3300) for the test set.

4.2. Neural Networks

The use of neural networks is preferred, since it offers advantages of adaptation to new
samples, which cannot be overlooked, unlike traditional detection systems operating with
security rules. In particular, we chose to use fully connected neural networks (i.e., dense
layers) with one vector Tensorflow algorithm. We build our model with three layers:
(1) one input layer; (2) one hidden layer; and (3) one output layer. We use: (1) the Relu
activation function on the input layer, which, as input, the features (i.e., static and dynamic)
collected from the Omidroid dataset [5]; (2) the Dropout regularization on the hidden layer
for reducing overfitting and improving the generalization error of deep neural networks;
(3) the Sigmoid activation function on the output layer to give a probabilistic distribution
between 0 and 1; and (4) the optimizer ADAM to optimize the error. During the training,
we aim to minimize the loss function [33]. In our case, it is the binary cross entropy, which
measures the performance of a classification model whose output is a probability value
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between 0 (i.e., benign apps) and 1 (i.e., malware apps). The binary cross entropy is denoted
in Equation (1) [33]: This is example 1 of an Equation:

Binary cross entropy = −(ylog(p) + (1 − y) × log(1 − p)), (1)

where p is the predicted probability observation and y is the binary indicator (0 or 1). To
carry out good training on a dataset, it is necessary to adjust certain parameters, called
hyperparameters, such as (1) the number of iterations (i.e., 200) as presented in Section 6;
the dropout rate (i.e., 0.3), the learning rate (i.e., 0.002) and the activation function (i.e.,
Relu) proposed by Keras [34]; and (3) the number of neurons as input, as discussed
in Section 5.2.1.

4.3. Architectural Design

A client/server architecture is chosen, in order to perform more flexibility with solu-
tions and to use the feature extraction tools. Static, dynamic and hybrid proposed methods
can be executed separately. Moreover, dynamic methods need to run the apps on a device,
thus it makes sense to run the app in a specific environment. This device can be a real
phone or a virtual machine.

BrainShield’s architecture consists of two parts, as shown in Figure 1: (1) client; and
(2) server.

1. The client is the Android device on which the apps must be analyzed;
2. The server is the place on which malware is detected, and it is developed with Python.

Feature extraction and prediction are done on the server.

After feature extraction, each app corresponds to a feature vector. This vector is the
input of the neural networks. The architecture is common to the static method, dynamic
method, and hybrid method. The differences between these three methods rely on the
static and dynamic feature extractions, as well as on the neural networks. Indeed, An-
droGuard [21] is used for static features, while DroidBox [26] is used to extract dynamic
features. The hybrid prediction is based on both static and dynamic features.

Electronics 2021, 10, 2948 8 of 20 
 

 

5.1. BrainShield’s Prototype Implementation 
The architecture of BrainShield’s prototype, as shown in Figure 1, is divided into two 

parts: (1) the client; (2) and the server. 

 
Figure 1. Architecture of BrainShield. 

1. The client is the Android app written in Kotlin 1.3.70 (https://kotlinlang.org/ (ac-
cessed on 20 November 2021)) that runs on the Huawei P20 Lite (ANE-LX3) (Huawei, 
Shenzen, China) phone; 

2. The server is a Python 3.7.6 app (Python, Wilmington, DE, USA) developed with 
Flask 1.1 that runs on an Amazon server. This is an Ubuntu Server 18.04 LTS (HVM), 
SSD Volume, type t2.xlarge server with 4 vCPUs, x86_64 architecture, 16384 MiB of 
RAM and 16 GB of SSD memory. 
In this architecture, we present the nine steps to perform the prediction, as shown in 

Figure 2: (1) labelling by assigning a class as benign or malicious to each app; (2) training 
the fully connected neural networks; (3) acquisition of APKs to be able to predict unknown 
apps; (4) client sends the analysis request to the server; (5) server returns the missing 
APKS to the client; (6) client sends APKs missing on the server; (7) feature extraction on 
the server; (8) prediction provided by the neural network for each app; and (9) sending 
prediction to the client. 

 
Figure 2. Steps of BrainShield. 

Figure 1. Architecture of BrainShield.

Chen et al. [24] proposed the detection of systems based on data mining by ran-
somware for automatic detection. The actual behavior of the apps is controlled and
generated in the call flow graph API as a set of functionalities.

Emulator vs. real phone [25] offers a detailed study of the differences between the exe-
cution environments. This study is recommended to perform the detection on a real device.

DroidBox [26] allows monitoring a wide range of events, such as file access, network
traffic, or DEX files loaded dynamically at runtime. DroidBox uses API 16, which covers
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99.6% of smartphones according to Android. It is used for feature extraction in the context
of dynamic analysis.

5. Implementation

In this section, we present the architecture of BrainShield’s prototype and the steps
of the implementation to perform the prediction. Then, we provide the methodology that
brings the detection results.

5.1. BrainShield’s Prototype Implementation

The architecture of BrainShield’s prototype, as shown in Figure 1, is divided into two
parts: (1) the client; (2) and the server.

1. The client is the Android app written in Kotlin 1.3.70 (https://kotlinlang.org/
(accessed on 20 November 2021)) that runs on the Huawei P20 Lite (ANE-LX3)
(Huawei, Shenzen, China) phone;

2. The server is a Python 3.7.6 app (Python, Wilmington, DE, USA) developed with
Flask 1.1 that runs on an Amazon server. This is an Ubuntu Server 18.04 LTS (HVM),
SSD Volume, type t2.xlarge server with 4 vCPUs, x86_64 architecture, 16384 MiB of
RAM and 16 GB of SSD memory.

In this architecture, we present the nine steps to perform the prediction, as shown in
Figure 2: (1) labelling by assigning a class as benign or malicious to each app; (2) training
the fully connected neural networks; (3) acquisition of APKs to be able to predict unknown
apps; (4) client sends the analysis request to the server; (5) server returns the missing APKS
to the client; (6) client sends APKs missing on the server; (7) feature extraction on the server;
(8) prediction provided by the neural network for each app; and (9) sending prediction to
the client.
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5.2. Methodology

We present hereafter the methodology, which consists of four parts: (1) hyperparame-
ter tuning; (2) feature selection; (3) impact of feature selection; and (4) relabeling.

5.2.1. Hyperparameter Tuning

This section describes how to set the training hyperparameters values of our proposed
model BrainShield based on the neural networks to detect malware.

As initial settings, the dropout rate (i.e., 0.3), the learning rate (i.e., 0.002) and the
activation function (i.e., Relu) are by default proposed by Keras [34]. Moreover, the number
of 50 iterations and the number of 1119 neurons as input are chosen as those large enough
to have viable results and to complete hundreds of training in a suitable time. The final
values of hyperparameters are illustrated in Table 2.

Table 2. Final values of hyperparameters.

Epoch Number Static Dynamic Hybrid

Epoch number 200 250 200
Learning rate 0.002 0.002 0.002
Dropout rate 0.5 0.5 0.5

Batch size 512 512 512
Number of features 840 2800 Static: 840; Dynamic: 2800

Number of neurons as input 280 933 Static: 280; Dynamic: 933
Loss function Binary crossentropy Binary crossentropy Binary crossentropy

Activation function Relu Relu Relu
Function of prediction Sigmoid Sigmoid Sigmoid

In order to obtain the best value for the epoch number (i.e., number of iterations),
we consider 7 values for the epoch number (i.e., 50, 100, 150, 200, 250, 300, 400), and we
compare the different results of training using the evaluation metrics (i.e., the accuracy, the
recall, the precision, the AUC, and the F1 score). The results are obtained from statistical
averages over 10 training sessions and are illustrated in Figure 4. Such results show that
the evaluation metrics are being improved for up to 250 iterations. Then, for higher values
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of epoch number, no improvement in the evaluation metrics is observed (e.g., 70 training
sessions with a total duration of 157 min were performed).
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Hereafter, we justify the choice of (1) the dropout rate; (2) the learning rate; (3) the
number of neurons, and (4) the activation functions.

Dropout Rate

In the same vein, we vary the value of the dropout rate from 0 (no dropout at all) to
0.9 (we forget 90% between each epoch) to obtain its best value. In Figure 5, we observe
that a dropout rate of 0.3 makes it possible to obtain the best accuracy, as well as the best
F1 score.
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Learning Rate

A too high learning rate may result in exceeding the minimum value of the loss
function, while a too low learning rate may lead to an unnecessary too long learning
process [35]. In order to obtain the appropriate learning rate value, we vary the learning
rate from 0.00002 to 0.2. Figure 6 illustrates that neural networks with the default value of
0.002, as well as those with the value of 0.0002, enable us to obtain the best results, in terms
of F1 Score. In this context, we choose to keep the default value of 0.002, as proposed by
Keras. Indeed, both recall and AUC are being improved for detecting the false negatives
(malware not detected), which constitutes the basis of malware detection.
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Number of Neurons

In order to obtain the best value for the number of neurons as input, we vary the
number of neurons from 10 to 4359 neurons. To attain these limits, we started by choosing
a number of neurons equal to the number of features (i.e., 3359). Then, we increased and
decreased this number with a pace of 250. Moreover, when the number of neurons is less
than 100, we tightened the pace. In Figure 7, we observe that increasing the number of
neurons above the number of features does not improve the results, in terms of accuracy,
recall, precision, AUC, as well as F1 score. In addition, we can notice that the results are
roughly the same from 3359 neurons to 350 neurons. Beyond this threshold, the results
deteriorate. In light of such results, we estimate that the minimum number of neurons as
input must be equal to 10% of the number of features to keep the same results.
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Activation Function

In order to choose the activation function allowing us to obtain the best results, we
choose to compare all the activation functions offered by Keras [34]. Depending on the
dataset, each activation function has its advantages and disadvantages. In Figure 8, we
note that all the activation functions barely give the same results, except the softmax and
the linear activation functions.
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5.2.2. Feature Selection

Omnidroid initially consists of 25,999 static features. In Table 3, we present three
distributions of different features. The initial distribution is Omnidroid, to which no filter
is applied. The other two distributions come from the results of the selection method that
we proposed.

Table 3. Static features repartition.

Initial Step 1 Step 2

Features Nb % Nb % Nb %
Receivers 6415 24.7 216 6.4 171 8.7
Activities 6089 23.4 27 0.8 1 0.1

Permissions 5501 21.2 710 21.1 82 4.2
Services 4365 16.8 82 2.4 3 0.2
API calls 2129 8.2 1914 57.0 1369 69.4

FlowDroid 961 3.7 95 2.8 83 4.2
Opcodes 224 0.9 224 6.7 221 11.2

API Packages 212 0.8 0 0.0 0 0.0
Commands 103 0.4 91 2.7 43 2.2

Total 25,999 100 3359 100 1973 100

Step 1 consists of removing the empty features, as well as eliminating the features for
which the sum of features of an app is equal to 1. In other words, only one feature over
25,999 is equal to 1. As a result, the number of features gets reduced from 25,999 to 3359.
The first step proposed is therefore relevant.

Step 2 consists of removing the features whose sum does not exceed 220 for permis-
sions, opcodes, API calls, system commands, and activities; and which does not exceed
22 for services, receivers, API packages and for FlowDroid, thus going from 3359 to 1973.
The objective is to reduce the size of the dataset to allow faster training, as well as greater
simplicity when loading the dataset into the RAM. We noticed a reduction of 96.8% in load-
ing time. Although the results for the recall and precision assessment metrics are different
in Figure 9, the F1 score shows that the results are very similar for the dataset of 25,999
and 3359 features, and we lose 0.1% of F1 score for that of 1973 features. Therefore, we
confirm that the empty columns do not allow the neural network to improve the detection
results. These features, although not useful for learning, slow down the learning time and
considerably increase the allocated resources.

We now try a selection of static features, using Pearson’s correlation method [36].
It allows us to select the features with the highest correlation between the features and
the malware or benign apps. In Figure 10, we observe that the selection of features with
Pearson’s correlation enables us to improve the results obtained from the model with 3359
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features. Indeed, the neural networks of 1680 and 840 features enable us to obtain an F1
score of 86.44%, compared to 85.3% in Figure 9.
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Figure 10. Feature selection with Pearson Correlation.

In the same vein, the approach that we propose for the selection of static features is
carried out for the selection of dynamic features. According to this approach, we remove
the features whose columns are empty or equal to 1, which reduces the number of features
from 5.932 to 3722, as illustrated in Table 4.

Table 4. Dynamic features repartition.

Initial Step 1 Step 2

Features Nb % Nb % Nb %
Opennet 1483 25.0 862 23.2 0 0.0
Sendnet 1186 20.0 718 19.3 0 0.0
Fdaccess 937 15.8 630 16.9 0 0.0
Dataleaks 867 14.6 509 13.7 134 43.2
Recvnet 837 14.1 540 14.5 0 0.0

Cryptousage 488 8.2 369 9.9 156 50.3
Dexclass 134 2.3 94 2.5 20 6.5

Total 5932 100 3722 100 310 100

In Figure 11, we note that 2210 dynamic features of Omnidroid are empty. To obtain
the dataset of the 310 most diverse features, we remove all the features whose sum was less
than or equal to 20. In Figure 11, we note an improvement in the results for 3722 features,
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which is not the case for 310 features, as presented in Table 3. In this context, we have
chosen to keep 3722 dynamic features.
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5.2.3. Impact of Feature Selection

Figure 12 illustrates the impact of the number of features on the accuracy, showing the
differences when training and validating a model with 3359 and 840 static features, respectively.
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In particular, we observe that the reduction in the number of features makes it possible
to increase the accuracy on the training set and the validation set. Indeed, the training
curve and the validation curve of the model with 840 features are above the training curve
and the validation curve of the model with 3359 features, respectively.

5.2.4. Relabeling

The Omnidroid dataset was labeled by VirusTotal with a threshold ε equal to 1. This
threshold ε represents the number of antiviruses that detects an app as malicious. Thus, a
threshold ε set to 1 means that if only one of the sixty antiviruses on VirusTotal detects an
app as malicious, then this app will be labeled as malicious in Omnidroid. Therefore, we
track the number of apps detected by antivirus according to the number of antiviruses.
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The results in Figure 13 are valid as of September 2019. We used the VirusTotal
service [37] thanks to an academic API, to obtain a report for each app identified by its
hash. Therefore, such results date from little more than a year and a half after the initial
results obtained by [29]. Thus, we notice that a year and half later, only 9024 apps are
detected as benign, with a threshold ε equal to 1, which corresponds to 0 antivirus on the
abscissa axis. In addition, we note that 1807 apps are classified as malware, even though
only one antivirus has detected them as malicious. A threshold ε equal to 2 would have
been enough to classify them as benign.
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In Figures 14 and 15, the representations are based on 22,000 app reports from Septem-
ber 2019, which are collected using a python script and a VirusTotal academic key. We have
relabeled Omnidroid for static trainings by setting the threshold ε from 1 to 4 for 2018′s
reports, and from 1 to 10 for 2019′s reports.
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In Figure 14, we note an improvement in the results following the relabeling. We
deduce that there have been new scans of antivirus among VirusTotal for a year and a half,
and that this has an impact on the detection of malware.

Moreover, we have relabeled Omnidroid for dynamic trainings in Figure 15, but this
time by varying the threshold ε from 1 to 6 for the reports. As with static relabeling, we
notice an improvement in the results following dynamic relabeling. In particular, the recall
is the metric that is improved the most (i.e., up to 10%). Relabeling has made it possible to
detect more malware that were previously undetected by Omnidroid labeling.

6. Results

Following the relabeling, we set the number of iterations to the value that enables us
to obtain the best scores for each type of neural network. Table 2 shows the final values of
the hyperparameters.

The static feature selection was achieved with a manual method consisting in removing
the empty features from 25,999 to 3359 features, as well as with Pearson’s Correlation, from
3359 to 840 features. Table 5 illustrates the results of the static neural network on the test set.

Table 5. Static results.

Accuracy Precision Number of Features

Martin et al. [29] 89.3% 89.3% 25,999
Proposed model 92.9% 92.1% 840

Gain 3.6% 2.8% 96.8%

Table 6 presents the results of the dynamic neural network on the test set.

Table 6. Dynamic results.

Accuracy Precision Number of Features

Martin et al. [29] 78.6% 78.6% 5932
Proposed model 81.1% 83.4% 3722

Gain 2.5% 4.8% 37.3%
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Table 7 shows the results of the hybrid neural network on the test set.

Table 7. Hybrid results.

Accuracy Precision Number of Features

Martin et al. [29] 89.7% 89.7% Static: 25,999; Dynamic: 5932
Proposed model 91.1% 91% Static: 3359; Dynamic: 3722

Gain 1.4% 1.3% 77.8%

7. Discussion

We have chosen the Android operating system, since it is the most widely used
operating system in the world, with more than 80% of the mobile market [38]. Moreover,
the results presented in Figure 16 are valid on the date of the samples in the dataset. For a
reminder, the collection of malware is registered in Omnidroid dates from 2012 to 2018. We
have observed the relabeling impact clearly with more recent reports from VirusTotal on
the evaluation metrics. Accordingly, we can wonder what will happen to the accuracy and
the precision of neural networks in several years.
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Moreover, the apps may have evolved too much to be run on an API 16 emulator,
which is that of DroidBox [26], the tool for extracting dynamic features. API 16 (summer
2012) enables to run of relatively old apps for the period of summer 2020. However, it
is possible that app developers consider this API too old and set the API minimum to
21. Thus, it would be impossible to run their apps on the emulator. However, this can
be an advantage, since we can analyze old apps. In addition, the extraction of dynamic
features can be difficult in the context of apps requiring identification (Facebook, Instagram,
WhatsApp, Messenger type apps, etc.). In fact, the automatic feature extraction tool would
be blocked at the displaying of identification, and would not be able to explore all the app’s
functionalities. As a reminder, the emulator has a feature called Monkey that enables us
to randomly click on the screen to simulate user clicks. The extracted features would be
either nonexistent or in too little representative quantity to be able to make a prediction.
This is an intrinsic limitation of dynamic analysis.

8. Conclusions

We have proposed static, dynamic and hybrid methods for detecting malware tar-
geting Android mobile devices. Our three methods are based on fully connected neural
networks trained by the Tensorflow/Keras libraries. The static network, reaching an ac-
curacy of 92.9% and a precision of 91.1%, is trained on 840 static features. The dynamic
neural network, reaching an accuracy of 81.1% and a precision of 83.4%, is trained on
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3722 dynamic features. The hybrid neural network, reaching an accuracy of 91.1% and
a precision of 91.0%, is trained on 7081 features (i.e., 3359 statics and 3722 dynamics).
Feature selection techniques are used, such as Pearson correlation and a manual method.
In addition, we have presented that 22,636 static features and 2210 dynamic features of the
Omnidroid dataset are empty for a total of 24,846 out of 31,931 (i.e., 77.81%).

As future work, this research could be generalized to other operating systems, such as
iOS, which represents about 20% of the mobile market [38]. At that point, new tools for
extracting static and dynamic features should be developed, in order to build a new dataset
that we would be labeled by using VirusTotal. In addition, all results related to the learning
techniques, the evaluation metrics, as well as the hyperparameter configuration, could be
reused for training the neural networks. For further research, it would be necessary to
update the dataset with the most recent labelling techniques, and to develop an automation
tool for updating neural networks automatically.
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