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Abstract: The automated assessment and analysis of employee activity in a manufacturing enterprise,
operating in accordance with the concept of Industry 4.0, is essential for a quick and precise diagnosis
of work quality, especially in the process of training a new employee. In the case of industrial
solutions, many approaches involving the recognition and detection of work activity are based
on Convolutional Neural Networks (CNNs). Despite the wide use of CNNs, it is difficult to find
solutions supporting the automated checking of work activities performed by trained employees.
We propose a novel framework for the automatic generation of workplace instructions and real-
time recognition of worker activities. The proposed method integrates CNN, CNN Support Vector
Machine (SVM), CNN Region-Based CNN (Yolov3 Tiny) for recognizing and checking the completed
work tasks. First, video recordings of the work process are analyzed and reference video frames
corresponding to work activity stages are determined. Next, work-related features and objects are
determined using CNN with SVM (achieving 94% accuracy) and Yolov3 Tiny network based on
the characteristics of the reference frames. Additionally, matching matrix between the reference
frames and the test frames using mean absolute error (MAE) as a measure of errors between paired
observations was built. Finally, the practical usefulness of the proposed approach by applying the
method for supporting the automatic training of new employees and checking the correctness of
their work done on solid fuel boiler equipment in a manufacturing company was demonstrated. The
developed information system can be integrated with other Industry 4.0 technologies introduced
within an enterprise.

Keywords: employee work recognition; employee training support; human resources management;
business intelligence; deep learning; Industry 4.0

1. Introduction

The Fourth Industrial Revolution, often known as Industry 4.0, is based on the Indus-
trial Internet of Things (IIoT) and other technology enablers such as Artificial Intelligence
(AI), digitization and automation [1]. Its goal is to establish direct communication between
industrial machinery, people, and processes. IIoT can more critically bring considerable
gains in productivity, product quality, and safety through proactive detection of problems
by tapping and analyzing such data. While most IIoT research is currently focused on
predictive maintenance of industrial machines (unplanned production stoppages result
in significant increases in costs and lost plant productivity), monitoring, assessing, and
improving worker productivity and performance is a future challenge of the Industry 4.0
system [2]. In fact, human workers are the most dynamic factor in any advanced intelligent
manufacturing system; so, any development in this area must account for the concept of
human-centered intelligent manufacturing (HCIM) [3]. To develop such human-centered
systems, the main task is to understand human behavior that leads to achieving the optimal
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work performance. This field of research is especially significant for large manufacturing
plants, where most production tasks are carried out by several workers in a production
line that follows complex work routines. The factory workers’ assembly labor is still at
the heart of the industrial manufacturing system, and improving assembly work is one of
the most critical tasks for increasing productivity [4]. The awareness of worker activities
in spatially-extant and distributed manufacturing facilities is a pre-requisite for efficient
workflow organization [5]. For example, a worker in a conveyor line-based production
system conducts predetermined operation procedures repeatedly, each of which consists of
a sequence of operations. Automatic and accurate worker activity detection is important
for work performance management [6], evaluating work efficiency [7], assessing workloads
and reducing the risk of injuries [8], and preventing safety accidents [9]. In general, it con-
tributes to the sustainability of work practices [10]. However, observing and analyzing the
worker activity workflow together with machines and tools in the middle of the industrial
production process in the real-world manufacturing environment is difficult.

The growing need for IT innovation in manufacturing enterprises, according to In-
dustry 4.0, has brought forward a great challenge to adopt advanced computer vision
methods and Convolutional Neural Networks (CNNs) to recognize work activity and
automatically generate work instructions in the workplace [11]. The use of deep CNNs
to solve the problem of recognizing working practices, is promising [12-14] due to the
integration of three elements: (1) object detection, (2) human pose, and (3) the recognition
of work activity [15,16]. The applications developed in this manner—and based on such
manufacturing technologies—are capable of learning-by-doing and, more importantly, are
capable of self-improvement [17].

Nowadays, managers are looking for innovative solutions that will be helpful when
deciding on the employment of new employees, by training them individually without
involving other employees, to increase innovative working behaviour at the work place [18],
and to keep the employees interested in boring day-to-day activities [19]. Current studies
of manual manufacturing work often use monitoring of security cameras, checklists, and
(often imprecise) work logs. The automated assessment and analysis of employee activity
is essential for a quick and precise diagnosis of work quality, especially in the process of
training a new employee. Overall productivity assessment, progress review, labor training
programs, and safety and health management all require effective and timely analysis
and tracking of personnel operations. Currently, the employee training process is costly,
time-consuming, and requires the involvement of experienced employees who are required
to supervise and control this process. The implementation of a dedicated information
system, based on deep learning (DL) techniques, can smoothen the course of the training
in checking the employee progress and correcting any mistakes.

Human action recognition has been used as a method of automatically analyzing
and comprehending worker activities to provide real-time help and facilitate worker—
machine collaboration [20]. The integration of ambient sensing technologies such as
wearable sensors or surveillance cameras, and artificial intelligence-based analysis using
deep learning models leads to the rise of the Worker 4.0 [21] that implements the main
principles and behavior of workers in an Industry 4.0 scenario.

The digitization of the industrial workplace through the ubiquity of sensors, combined
with digital information systems and intelligent monitoring, generates huge amounts of
data every day, which capture the factual manual workflows [22]. The creation of workflow
models to control, analyze, and optimize such industrial workflows, if done manually,
is time consuming and costly [23]. To make the most of available monitoring data, we
need to create a workflow recognition framework that can automatically extract features
from uncut videos to recognize human and machine behavior. In this work, we have
developed an information system supporting the automatic training of new employees
and checking their work. We have built a training set for workers’ service procedure when
checking a solid fuel boiler in a manufacturing company, by collecting data from videoed
work activity sequences, using the DL approach. The camera is the most popular type of
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technology when it comes to recognizing activity and can be used for video or image-based
recognition, using trained models to capture various activities [24]. According to Ijjina and
Chalavadi [25] and Chen et al. [26], using a camera with deep learning techniques would
be a good solution for detecting activity.

In our approach, the stages of the procedure and their duration time were extracted
and determined. Next, the features obtained from the video are given as input to CNN to
learn the discriminating features. We use the objects of the workplace to assist the detection
of each stage of the procedure. To identify objects in an image, CNN is used with a support
vector machine (SVM) plus CNN with Softmax and R-CNN respectively, in a series of
experiments. The main contributions of this paper are as follows.

(1) For the workflow recognition problem, we propose the integrated CNN, SVM,
CNN, Softmax, and R-CNN approach, thus improving the accuracy of recognition.

(2) We design a framework for the automatic generation of work instructions, based
on key objects in each stage of the procedure, which is the first attempt to combine real-time
action recognition tasks, with specific practical application scenarios.

(3) We demonstrate the practical usefulness of our proposed approach by applying
the method to practical systems, supporting the automatic training of new employees, and
checking their work on a solid fuel boiler, in a manufacturing company.

2. Research Literature

The domain of worker activity recognition and work process discovery in industrial
environments has multiple dimensions such as the type of recognition (supervised, unsu-
pervised recognition, and semi-supervised), the type of sensor used for recognition (motion,
vision, sound and radio signal -based) of worker movement, and sensor location (wearable,
ambient and attached to objects) [27]. In the computer vision literature, the task of recog-
nizing an image is defined as recognizing that an object belongs to certain classes [28]. The
object detection algorithms ‘recognize’ based on the training sequence data containing the
objects, together with information about their classification [29,30]. In the deep learning
(DL) approach, algorithms are designed to model complex levels of data abstraction using
multiple layers of non-linear transformations [31] with artificial, neural networks assuming
the role both of generator and classifier of diagnostic features. Computer image recognition
systems have found an application in industry with the solutions implemented using both
machine learning methods and DL techniques [32]. Image recognition systems use the
classification and reduction techniques of features based on Kernel Principal Component
Analysis (KPCA), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM),
Hidden Markov Model (HMM) [33], Decision Trees (DT), K-Nearest Neighbours (KNN),
Random Forest (RF) and Discriminant Analysis (DA) [34].

The limitations related to the machine learning approach, consisting of processing
natural data in its raw form, resulted in the introduction of solutions based on the DL tech-
niques. Thanks to this approach, the data analyzed was transformed into an appropriate,
internal representation (feature vector) from which the learning subsystem can detect or
classify patterns [35]. The DL techniques based on Artificial Neural Networks (ANNSs) are
used in human activity recognition systems [36], systems with Myo bands [33,37], or with
sensors such as Microsoft Kinect [38,39] and Intel RealSense [40], accelerometer, gyroscope,
or sensors of mobile devices (such as smartphone) [41] or wearable devices [42] as well as in
systems based on video analysis [11]. To recognize a worker in action, smart manufacturing
systems may use the ultrasonic sensors, Inertial Measurement Unit (IMU) [43], and the
surface electromyography (sEMG) signals obtained from a Myo armband with Discrete
Fourier Transformation (DFT) and Convolutional Neural Network (CNN) [37].

Activity recognition in the manufacturing area with ultrasonic and IMU sensors has
been used to recognize worker activity in bicycle maintenance scenarios, in car manufac-
turing and to capture arm movements for classification into five activities using signals
from a smartwatch for industrial assembly lines, so that factory working time can be
estimated [37]. One interesting approach, when analyzing human activity, is based on
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the Wi-Fi signal analysis method [44]. The principle of wireless detection is that human
activities affect the propagation of the RF signal; different activities can cause different
patterns of signal change. These techniques are used to process signals collected from am-
bient and wearable sensors (motion, proximity, microphone, video sensors, accelerometers,
Body Sensor Networks, gyroscopes). The technique has been proposed to detect human
activities [45], detect falls [46], recognize person’s gait [47], predict body pose [48,49],
classify gestures [50] and extract information on movement during interactive games and
exercises [38]. Such systems may find applications in intelligent home healthcare systems
and assisted living environments [51] and can monitor patients by diagnosing their health
and controlling their drug intake. They can be used for the automatic surveillance of public
places and to detect criminal activity [52], as well as to observe the worker’s behaviour at
workplace for the signs of fatigue or stress [53]. The activity signature patterns observed
in the signals received from wearable motion sensors of ubiquitous smartphones are ana-
lyzed to recognize activities performed by different construction workers [54]. Previous
studies have either employed remote-monitoring sensors such as RGB+D cameras [23]
and RFIDs; or worker-attached wearable sensors such as accelerometers, gyroscopes and
magnetometers [55].

Thanks to advancements in computer vision algorithms, practitioners and researchers
may now use camera sensors to give semi-real-time information on worker actions at a
cheap cost [56]. Object detection, object tracking, and hence activity recognition were all
part of the development of camera-based systems [57]. In the case of industrial solutions,
the DL approach is used in autonomous mobile robots, vision systems for cars, speech
recognition, smartphones, cameras, and digital cameras, and robot control. CNN networks
currently dominate almost all tasks related to recognition and detection. Despite the wide
use of the CNN network, it is difficult to find solutions supporting the automated control
and evaluation of activities performed by an employee in enterprises. A frequent element
of activity control systems, in the context of the performance and evaluation of work, are
CNN models based on data from various types of sensors. Al-Amin et al. [20] presented
a method in which workers wear two devices on their hands to acquire IMU data while
constructing things. Two CNN action recognition models, a left-hand model and a right-
hand model, were developed independently and fused together to produce a better activity
recognition result. AR models are refined through transfer learning, which allows them
to adapt to new personnel. The approach was validated in the assembly of Bukito 3D
printers. Angah and Chen [58] used Mask R-CNN for multiple worker tracking on the
construction job site. Multi-Object Tracking Accuracy (MOTA) that considers the mismatch
problem, was used to evaluate the tracking performance. Hu et al. [59] used structured
two-stream convolutional neural networks (CNNs) to recognize the behavior of workers
and machines. CNNs extracted the spatial-temporal activity features and included the
attention mechanism to detect important behavior.

The literature also includes models for recognizing employees’ dangerous activities,
using the convolutional neural network and the LSTM network [60]. Zhao and Obonyo [61]
proposed using Deep Neural network models through integrating CNN with Long Short-
Term Memory (LSTM) for recognizing construction workers” postures from motion data,
captured by wearable Inertial Measurement Units (IMUs) sensors. Similarly, Yang et al. [62]
used on-body inertial sensors and deep learning to analyze workloads of worker lower
body during a physical load carrying task. The LSTM-based technique is also used to
analyze emotions based on signal changes from EEG [63]. Gong et al. [64] proposed a deep
learning model for recognizing the activities of workers on the offshore drilling platform,
using the characteristics of the human body’s key points which remain unaffected by
complex background noise, to assist the detection of the human target. HMM and Naive
Bayes classifier were used to recognizing employee activity in production processes using
the Kinect sensor. Zeng et al. [65] proposed isolating discriminant features to recognize
the activity, based on CNN and sensors of mobile devices. Jaouedi et al. [66] presented
an approach, based on an analysis of video content in which functions are based on all
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visual characteristics of each frame of a video sequence, using the Gated Recursive Neural
Network (RNN) unit (GRU) model. Pohlt et al. [67] suggested the Inflated 3D Convolutional
Network (I3D ConvNet) as image encoder and then the Graph Convolutional Networks
(GCN) as keypoint extractor for worker activity recognition. Tao et al. [68] performed
assembly operation recognition in HCIM environment using image frames obtained from
a visual camera. The recognition is performed in real time using a deep learning model
trained by adopting a transfer learning approach. Son et al. [69] adopted very deep
residual networks (ResNet-152) for feature map extraction and Faster regions with CNN
features (R-CNN) for labeling to detect construction workers with different poses and
against varying backgrounds in industrial image sequences. Sun et al. [70] employed
the generative adversarial networks (GANSs) for estimation of human body joints and
performed worker efficiency analysis as a temporal action localization problem. First the
teacher performed exemplar work activities recorded in a reference video. Then the video
of activities performed by the worker is matched (using dynamic time warping) against a
reference video using invariant spatio-temporal features extracted from the worker body
posture sequences and perform cross-video matching. A detailed analysis of the in the form
of a comparison study was made in our previous works: [11,71]. In this work, the main
contribution is to build Algorithm 1; Algorithm 2 and to apply the proposed framework in
the form of an integrated system to support the automatic training of new employees.

Summarizing, the DL approach is used in many fields, as the authors have presented
in [11]. However, in the case of work quality and performance control systems on the
market, there is a research niche of appropriate solutions using the DL approach in the
process of training and verifying employee skills in a manufacturing company that would
employ the benefits of smart learning and artificial intelligence [72]. There are attempts
to implement solutions checking the activity of people in the workplace (such the correct
sitting posture of office workers [40] and postures of construction workers [73]), but no
studies were done regarding effective solutions for the automatic evaluation of the work of
a newly hired employee.

3. Materials and Methods
3.1. The Service Used as a Case Study

The solid fuel boiler service procedure analyzed, consisting of five service activities as
follows:

1.  stopping the furnace operating,

2. checking the solid fuel tank,

3.  checking the gear motor and auger,

4.  assembling the auger and the gear motor, and

5.  tightening the mounting screws of the gear motor and mounting the cleanout.

Each service step consists of stages, based on the relevant reference frames of the video
material referenced. The total number of steps in the service procedure was 38. The image
with the general framework was presented in Figure 1.

The set of graphic files were created, which contained class objects related to the
process of servicing the solid fuel boiler. The training set contained 3440 graphic files
to include a total selection of objects from 11 classes, namely, namely, a person—925, a
hand—1065, a solid fuel boiler—355, a controller—407, a shovel—32, a bucket—758, a
plastic storage box—370 an auger—317, a solid fuel tank—716, a gear motor—1253, and
a spanner—421. In total, the training set contained 6619 marked objects for 11 classes.
Eight video sequences were tested showing the correctly performed service procedure
for checking a solid fuel boiler. This set was created automatically from entries in a
configuration file, created with Data Transformation Language. The configuration settings
assumed that 80% of the dataset would be allocated to training data and 20% to validation
data. Ultimately, 2787 (81.02%) images were included in the training set and 653 (18.98%)
in the validation set.
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Figure 1. Four steps of sample activity (assembly of the auger and gear motor).

3.2. New Approach to the Automatic Generation of Work Instructions

The new approach to the automatic generation of work instructions has been designed
according to a flowchart (Figure 2).

START
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i . Acquiring reference video material
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Figure 2. Flowchart of the approach to the automatic generation of work instructions.
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The system’s preparatory stages for supporting the automatic training of new employ-
ees and checking their work for clearance are marked in red, with a dashed line. Correct
working practices, in the system, are marked in blue with a dashed line. In the so-called
preparatory stages (Figure 2), the video material referenced, showing a service procedure
being correctly performed, should be recorded. After determining the reference frames
corresponding to the individual stages of the service procedure, the next step was to pre-
pare the CNN to detect objects on the video sequence. For this purpose, artificial neural
network training was carried out with the use of a dataset containing classes of objects
appropriate for the service process.

The proposed CNN architecture uses SVM and Softmax to extract video frame features
and information regarding the object, from the images, that is, the establishment of the
referenced features and objects and the video frames tested. To train the CNN, an original
dataset was used created by the authors. The dataset contains images of training materials
used in the process of training employees to operate a solid fuel boiler, with selected
object classes. The implementation of tasks in the system, relating to the analysis and
interpretation of the image, requires the correct identification of the elements in the image.
This is connected, not only with choosing the right network architecture but also with
proper training thereof. Publicly available datasets made it possible to train the network to
detect a person-class object, but they did not allow other objects to be detected, such as the
gear motor, the controller, or the auger. Therefore, the training set had to be created from
scratch, and the elements that the system was to identify had to be determined manually.
This process turned out to be very time-consuming, as the effective operation of the CNN
network as a detector of objects requires training on a large dataset.

In the new method proposed, 6 algorithms have been created and implemented, the use
of which allows video sequences to be processed, to check the service activities performed.

The Algorithms 3-6 were strictly described in the form of pseudo-code in the previous
publication of the authors [11]. The task of the Algorithm No. 3 is to analyze the set of
reference frames and divide this set into component activities of the service procedure
along with the determination of the stages of each activity. The START /STOP rule has been
defined, according to which the set of reference frames is divided into subsets (each subset
is a separate activity). The rule is a video frame where the technician and the tool board
will be identified. The effect of the algorithm is a set of service activities containing the
steps corresponding to this activity. The task performed by Algorithm 3 is described in [11].
The task of the algorithm No. 4 is to extract the features of the previously determined
reference frames and test frames using CNN and SVM. The acquired features make it
possible to identify the activity currently performed by the technical employee, and the
feature extraction algorithm is an element of the two-stage process of determining the
stage of service activities [11]. The task of the Algorithm No. 5 is to determine the data set
containing the labels of the classes of objects located in the previously determined reference
frames and test frames [11]. Technologies used in Algorithm 5 are based on CNN, R-CNN
and YOLOv3 networks. The set of labels generated for each frame, corresponding to the
names of classes of identified objects, will be used in the two-stage process of identifying
the currently performed activity. The task of Algorithm 6, described in [11], is to identify
the step of the activity by comparing the labels of the object classes and the characteristics
of the frames of the test material, and the characteristics and labels of the object classes
for the reference frames. The features of the test video material were extracted using the
CNN network.

The pseudo-code of Algorithm 1, designed to generate a set of graphic instructions
under the stage of the service operation, is presented as follows:
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Algorithm 1:

initialization;

Input < (k, I);/ /data from algorithm 6
z+0;

fori=1to3do

begin

inc(z);

if (I + z — 1 == size(I[k][])) then
begin

inc(k);

z=0;

1=1;

end;

send — (I[k, | + z]);

end;

end

where: k, [—table indices, corresponding to the identified stage of service activities, i—loop
counter, z—auxiliary variable, I [] [[—agged array storing graphic instructions for each
step of the activity, k, [, i,z € N.

The pseudo-code for Algorithm No. 2, which analyses the times of the stage of
activities, based on which it will be possible to identify irregularities in the service works
performed, is as follows:

Algorithm 2:

initialization;

activity = get(activity)

stage = get(stage)

time = find(act_ time, next(activity, stage))
if time == 0 then time = find(act_ time, next(activity, stage))
a = time_now

while (a < time)

begin

send — activity, stage

end;

send — next(activity, stage)

end

where: activity—a variable that stores information about the current activity, stage—a
variable that stores information about the current stage of the activity, time—a variable
that stores information about the time allocated to a given stage of activity, act_time—a
one-dimensional array that stores times specified for each stage, next—a function that
determines the next stage of the service procedure, a—a variable that stores current time.

The process of training the artificial neural network, testing the activity detection
system, and generating the scenario of conduct was carried out on a unit with the following
configuration: processor AMD Ryzen 5 3600, motherboard MSI B450 TOMAHAWK MAX,
RAM: PC CRUCIAL SPORT DDR4, 16GB, 3200MH, graphics card: Gigabyte GeForce RTX
2060 SUPER Gaming OC 8GB GDDR6, SSD: 2xPatriot Burst 240GB—Raid 0.

Network training was performed on the Ubuntu 19.04 operating system with CUDA
10.2 and cuDNN v7.6.4 software and the Docker Engine installed. The operation of the
employee activity detection system was tested on the Windows 10 operating system, with
the CUDA 10.2 and cuDNN v7.6.4 software as well as the PyTorch and Opencv frameworks
installed. The implementation of tasks related to the information system, used for image
analysis, assumed the use of the Yolov3 network architecture for the purpose. The Yolov3
network has been used before for monitoring workers activity in construction site video
sequences [74].
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The research used a convolutional neural network based on the Yolov3 and Yolov3
Tiny architecture. The choice of architectures based on Yolov3 was due to the fact that they
ensured high efficiency in recognizing objects contained in the tested video material using
a PC class machine. The YOLOV3 architecture is based on the Darknet53 model and has
53 convolutional layers. A more efficient version of YOLOV3 is the YOLOv3-Tiny version
which is based on the Yolov3 architecture, but has a less complex architecture and consists
of 24 layers. The ANN, based on this model made it possible to detect objects of all classes
contained in the dataset, but the speed of operation of the IT system was limited by the
technical capabilities of the machine on which the application was launched. The speed of
operation of the detection system for the Yolov3 model, after implementing the proprietary
algorithms was about 5 frames per second. In connection with the above, the network
architecture based on the Yolov3 Tiny model was adopted, which allowed the processing
speed of about 26-27 frames per second to be obtained. The process of training the network
to use the created dataset for the Yolov3 Tiny model took about 5 h, while for the Yolov3
model, it took about 12 h.

The efficiency of establishing the appropriate frames using CNN + SVM was about
94% (Resnet18 94%, Alexnet 87.51%) and with YOLOvV3 73.15% (Cifar10Net: 61.66%,
Alexnet: 48.33%).

Table 1 presents a comparison with state-of-the-art alternatives in order to highlight
the new contribution of our work.

Table 1. Comparing the research results with state-of-the-art alternatives.

Paper Method Dataset Type Accuracy
[60] CNN + LSTM original dataset created by safe actions/unsafe action 97/92
the authors
bearing vibration dataset,
[34] CNN + SVM Case Western Reserve ISAX based features 88
University
[33] CNN, RNN original dataset created by 97
the authors
[75] CNN + LSTM DEAP dataset 2 (Hv/Lv))/SEED-dataset 3 ~ 84.16/90.81
[66] RNN + Gated Recurrent Unit  UCF Sports, UCF101, KTH KTH (GMM + KF) 71.1
[39] Markov models, Naive original dataset created by ggiﬂ:ﬁ]};ﬁ oint/point-by- 70/65.8
Bayes, K-means the authors FSHMM
. CNN, CNN + original dataset created by Steps and objects of the
This paper SVM/YOLOvV3 the authors service procedure 94.01/73.15

4. Research Results—An Integrated System to Support the Automatic Training of
New Employees

Based on the proposed methodology (Figure 2), an information system to support the
automatic training of new employees and verify their work was built. In the first stage, the
system is prepared to work with test material while in the second stage, the test material is
analyzed. The test material is a video recording of service activity correctly done.

4.1. Preparing the System to Work

The implementation of the IT system will facilitate the following: the extraction of
reference frames (including START /STOP frames); the division of reference frames into
sets of frames, corresponding to individual activities and their stages; the extraction of
reference frame features and their transformation, where the three-dimensional tensor is
transformed into a two-dimensional form, the extraction of objects in reference frames,
the preparation of sets of graphic instructions, the storing of information about objects,
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reference frame characteristics and file names for graphic instructions, the designation of
activities and steps to be controlled by the system.

From the reference material obtained, reference frames corresponding to the individual
stages of the activity were separated manually. For each reference frame, features were
determined, via the extraction of features from an artificial neural network, in the form of a
three-dimensional tensor, which was processed into a two-dimensional form. Objects in
reference frames were also identified. Information about the characteristics and objects of
the reference frames was saved in the system. Obtaining information about objects for each
frame can be done automatically or manually with the decision being made by the system’s
user, based on the value of the program variable. The automatic detection of objects is
performed, using the built-in code and the Python functions implemented additionally.
Designated features and object class labels were used to identify the activity trained to
work in a given employee’s position, by comparing the characteristics and labels of the
reference cage with the test cages. An example of an array of objects for activity 1 solely,
appears thus:

ref_objects = ([““],

[“Gear motor”],

[“Gear motor”,”Hand”],

[“Gear motor”,”Hand”,”Spanner”],

[“Gear motor”],

],

[“Spanner”],

[“Hand”,”Spanner”],

[“Gear motor”,”Spanner”],

[“Gear motor”,”Bucket”],

],

[“Gear motor”],
[“Controller”,”Hand”,”Bucket”],
[“Gear motor”,”Bucket”],

[“Gear motor”,”Hand”,”Bucket”],

1)

A START/STOP frame was designated based on which activities and stages of the
service procedure were distinguished. The appearance of this type of frame in the film
means the end of service. The video frame features were extracted using an ANN, processed
from a three-dimensional tensor to a two-dimensional form, and saved to a file. Next,
graphic instructions were prepared corresponding to each stage of the service procedure.
For testing purposes, the instructions contained only information about the activity and
the stage of the activity performed.

The production version of the system should contain graphic instructions, suggesting
the actions to be performed. The user of the system, while configuring its operation, has the
option to select the activities to be controlled. The work activities and steps are determined
through the appropriate configuration of the elements of the activities_to_proc array. An
additional element of the system was the time control functionality for the completion of
the service phase. In the module wherein the time of the service procedure is not controlled,
the system will require each step to be implemented. In the time control module of the
service activity, in the event of exceeding the time allotted for the implementation of a
stage, the system will display information that the stage has not been completed and the
system will go on to control the next stage. The stage is verified based on information
about the time allocated to each stage, stored in a previously defined table.

4.2. The Correct Operation of the System

Implementation of the IT system will facilitate the following: START/STOP frame
detection; analysis of the frames of the test video, based on the extracted features of the
frame and information about the objects on the frame of the test material; detection of user-
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defined activities and steps of the service procedure carried out on the test video material;
generation of a set of graphical instructions corresponding to the conduct scenario, created
based on the activities designated and the stages of activities; the displaying of graphic
instructions; the displaying of information about the activity and step of the activity, the
results of comparing features -for the reference frame and test frames features; the results
of the comparison of objects, the common part of the set of labels for the object classes of
the reference frame and the set of labels for the object classes of the test frames.

In the first stage of the operation of the system, in detection mode, the START /STOP
frame features are loaded, based on which, the beginning and end of the service action will
be determined, and the test frames will be compared to the feature values for this frame.
The actual stage of the detection of activity begins with the analysis of the video sequence.
Test material in the form of a video, or material recorded by a camera, is captured and
processed in a loop; analysis, thereof, concerns the characteristics of each frame of the data
processed. It was assumed that the start of the service procedure -and each activity that is
part thereof- begins and ends with the appearance of the START /STOP frame; therefore,
the system first compares the features of the test material frame with the features of the
START /STOP frame. As a result, the system will search for this type of cage until it finds it.
The feature analysis process for test frames begins with changing the tensor size (3D to 2D).
The system then compares the features of the test frame, currently being analyzed, with the
features of the START /STOP frame. If the features are similar, the system will identify the
analyzed frame as a START /STOP frame, and the variable that counts the activities and
stages of activities is incremented. Setting activity to 1 and stage to 1 means that the system
has started searching for stage 1 of activity 1. In time control mode (mode = 1), it will
measure the time from the commencement of the START/STOP frame and if the time for a
stage is exceeded, it will go on to the next stage, taking with it information that the stage
has not been completed. In the case of the control mode of each stage, from the moment
the system identifies the next START /STOP frame, the value of the activity variable will
be incremented, and the stage variable will be set to 1. This will enable the search for
the next service steps. The system will analyze the image frames until it finds a frame
corresponding to the last index of the table, storing information about the reference frames.

When the process of detecting activities and steps has been initiated, that is, when the
system has identified the test frame as the first frame, START /STOP, the system acquires
the features of the next reference frame. This will be the frame responsible for stage 1 of
activity 1. For this purpose, the features of the reference frame that were previously stored
there, are read from the file responsible for the stage of activity being searched for. After
loading the features of the cage searched, they are compared with the features of the cage
of the test material. If the features are similar, labels for the classes of objects in the test
frame are set. The identified objects (labels) are compared with the objects assigned to the
reference frame. For matching, we use mean absolute error (MAE) as an error metric. If the
characteristics and labels of objects on both compared cages match, the stage of the service
procedure operation is identified. A window is displayed with information about the stage
of service activity found.

4.3. The Results of the Experiments

Analysis of the system efficiency consisted in assessing the detection of activities, the
stages of service activities, and the scenario of conduct, along with graphic instructions,
generated at a given workstation (see Figure 3).
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Figure 3. Sample of the system interfaces demonstrating various functionalities.

Once the system was operating properly, the recorded test video sequences, showing
the service procedure being performed by the trained employee, were analyzed. Based
on the stage of service activities identified, the system generates a scenario of conduct at
a given workstation and displays a set of workstation instructions for four consecutive
stages of the service procedure (Figure 1). If the features and classes of objects of the
reference frame and test frame currently being analyzed match (see an example of video
frame matching results presented in Figure 4), the system will start to detect the next
reference frame.

I ?-F
400 = | 4| 770
= |
600
8
E 800 | 20
= -
2 1000 40
30
1200
20
1400 -
10
1600
; 1 1 1 0

5 10 15 20 25 30
Reference frames

Figure 4. Matching matrix between the reference frames and the test frames using mean absolute
error (MAE) as a measure of errors between paired observations. The matrix is used to detect the
most similar test frames to the reference frames.
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As a result of the analysis of the test video sequences by the system, the following
results were obtained (for each of the tested sequences), which confirm its effectiveness:
five service activities have been detected, a total of 38 steps have been detected, 11 classes
of objects appearing in image frames were detected. So, the proposed system allowed for
full control of the service procedure implementation.

Moreover, the proposed system is a solution to the problem of high turnover among
employees with specialist knowledge. A frequent element of activity control systems in the
context of work performance and evaluation are CNN network implementations based on
data from various types of sensors [39,75,76]. So, despite the wide use of CNN, it is difficult
to find solutions that allow automation of the training process for new employees without
the involvement of an experienced employee in the process of training new employees.

The proposed approach can be extended to cover a knowledge management area
in the context of the automation of the process of specialist knowledge transfer to a new
employee. The implementation of an integrated system supports the automatic training of
new employees in a company where training courses are conducted for employees taking
up employment at a given position. During the activities, the new employee is recorded
and the captured video frames are analyzed by CNN for the similarity of features and the
presence of objects. The information system based on the proposed model includes two
modes of monitoring the implementation of the service phase. In the first mode, the system
will require the implementation of each stage of activities and will await the performance
of the appropriate stage of service activities. In the second mode, in the event of exceeding
the time allotted for the implementation of a stage, the system will display information
that the stage has not been completed and the system proceeds to control the next stage.

5. Conclusions

Despite the increasing automation levels in emerging Industry 4.0 manufacturing,
acquiring and transferring the explicit knowledge of highly skilled manufacturing workers
remains a strategic challenge. In this paper we addressed this problem by employing the
deep learning techniques for capturing human worker activities in industrial setting.

The research results enabled to build of the integrated system to supporting the
automatic training of new employees and verifying their work using based on the deep
learning approach based on the data collected on a properly conducted service procedure.
The originality of the proposed new framework for the automatic generation of workplace
instructions and real-time recognition of worker activities is demonstrated by integrating
CNN, R-CNN, YOLOv3 (Yolo Tiny) in the new approach and therefore it is possible to
generate the right scenario during the service procedure of solid fuel boiler. The original
results of the developed solution are based on a two-stage model of identification of
the currently performed activities in the service procedure. The two-stage process of
identifying the service activity stage is carried out by comparing the designated reference
and test characteristics of video frames and information about the classes of objects located
on the analyzed frames. The limitations of our work are lack of simultaneous analysis of
data obtained from a larger number of cameras, and lack of the analysis of activities carried
out for a different service procedure. In our further works, it is planned to build algorithms,
the use of which will increase the effectiveness of verifying the correctness of the activities
performed by a new employee thanks to the development of the mechanism for controlling
the location of objects and optimization the applied techniques and algorithms of image
analysis in order to accelerate the extraction and comparison of image features in real time.

Verification of the performed service activities by an employee is a responsible task,
therefore in our further work, it is planned to expand the proposed system with the
possibility of simultaneous analysis of data obtained from a larger number of cameras in
the workplace. This will allow for more precise control of the service work performed.

Currently, technology maturity, data and knowledge acquiring and sharing, new
methods in information systems design, perception, and human-robot interaction are
the important challenges in the traditional manufacturing companies. Moreover, in the
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context of introducing changes in the manufacturing company operating in accordance
with the assumptions of Industry 4.0 mobile platforms can accomplish tasks in workspaces.
Therefore, the proposed information system should be integrated with other Industry 4.0
technologies introduced within an enterprise, but this requires further work in this area.
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