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Abstract: Finding a more efficient use of energy is an important problem that needs attention.
Compared with the traditional power grid, a smart grid can monitor users’ electricity situation
and electricity consumption instantly. However, it involves many problems of deploying network
equipment. Consequently, it is vital to promote smart grids by collecting data from smart meters
efficiently and keeping costs low. In this article, we propose a two-stage method of data collection for
smart grids. The main contribution of this paper is to lower the number of data aggregation points
(DAPs) so that the cost can be reduced. By using the K-means method, an entire smart grid can be
divided into many smaller parts. In addition, the needs of transmitting and receiving data in the
entire smart grid can be met by installing the least number of DAPs. Finally, the simulations show
that the proposed two-stage method of data collection can use fewer DAPs to collect data than other
methods which use one-stage methods, so the proposed scheme is more cost-effective.

Keywords: data aggregation; K-means; smart grid; two-stage method

1. Introduction

Because of the effects of climate change, more people have started focusing on the
issues of energy conservation, carbon reduction, efficient energy use, and so on. In recent
years, with the exuberant development of network, the concept of the smart grid is pro-
moted vigorously. By promoting this, people hope to use and control energy efficiently;
moreover, the traditional power grid can be replaced with smart grids. Compared with the
traditional power grid, a smart grid can monitor users’ electricity situation and electricity
consumption at a faster rate. Moreover, thanks to the availability of bi-directional commu-
nications, a smart grid can raise the efficiency of electricity and the reliability of the power
grid. The infrastructure which supports bi-directional communication, called advanced
metering infrastructure (AMI), was regarded as the fundamental structure of the smart
grid [1]. To construct AMI, it is necessary to install smart meters (SMs) at home and all the
electrical appliances at home need to be installed with sensors so that they can connect with
SMs by a network. For example, in recent years, people often use wireless sensor networks
which use Bluetooth, Wi-Fi and ZigBee to solve communication problems. Furthermore,
users can monitor the electricity situations and transmit data using SMs to the control
center instantly. As a result, the control center can immediately obtain the information on
the electricity situations from each family, and users can also learn about the situations of
every electrical appliance so that they can begin with allocating the utilization of electricity.

According to Greentech Media (GTM) Research, a smart grid can be divided into
a power layer, a communications layer, and a smart grid application layer [2]. Besides,
according to the communication range, AMI can be divided into three categories which are
home area network (HAN), neighborhood area network (NAN), and wide area network
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(WAN). HAN contains SMs and other smart devices and often uses lower-cost commu-
nication techniques, such as Wi-Fi, ZigBee, PLC, Z Wave, and so on. NAN is between
HAN and WAN. In NAN, the data from HAN will be collected and then be transmitted to
WAN. Because of the need to handle bigger data in NAN, it uses wired networks, such as
PLC, optical networks, or wireless networks, which have high data rates such as WiMAX.
As for WAN, it connects several NANs and transmits data to the control center. In WAN,
long-range communication techniques are often used, such as 3G, LTE, and LoRa.

In the smart grid system, when a great number of SMs transmit data at the same time,
network congestion or collision will happen and even delay the entire system. As a result,
communication quality is quite important for the smart grid. Researchers have proposed
schemes to reduce delay in WAN [3–5]. A method was proposed to reduce delay in NAN
by using the concept of data aggregation and defining a role, called data aggregation point
(DAP), to receive all data from SMs [6]. However, choosing proper positions to install
DAPs and be able to reduce delay at the same time is an important issue. We usually use a
high-speed wired network to transmit data from DAPs to the control center, so it needs
extra cost to install DAPs. Therefore, it is important to use a smaller number of DAPs [7,8].
In [9], applications of different optimization techniques are summarized. In [10], the
methods which can reduce the cost of DAP in wired networks and wireless networks
were proposed, while in [11], a cost-effective method to install DAP by using a utility pole
was proposed. In [12], a heuristic algorithm using K-means was proposed to split the
original set covering problem (SCP) into smaller ones that are optimally solved. Authors
in [13] have formulated a constrained optimization problem, called cost minimization DAP
placement (CMDP) to minimize DAP installation cost while satisfying communication QoS
requirements. Because CMDP is proven NP-hard, a heuristic algorithm based on K-means
was proposed to produce sub-optimal solution in reasonable time. In [14], a heuristic three-
phase algorithm was presented for the optimal DAP placement in a multi-hop routing
scenario, where SMs can serve as small relay devices so that communications among
SMs can be leveraged to reduce the overall communication cost. K-means is a popular
clustering algorithm that has advantages of high speed, but it suffers from the problem of
local optimal. In [15], a clustering algorithm based on K-medoids was proposed. Although
the mean square error for K-medoids is lesser than K-means, K-medoids is lacking in
performance [16]. Owing to a bad choice of initial centroid locations and trapping into the
local optimum easily, many articles have proposed to improve K-means by the particle
swarm optimization (PSO) algorithm [17–21].

The aim of this paper is to reduce the number of DAPs. A role called cluster head (CH)
is added to collect data from SMs and then transmit it to DAPs. We propose a new cluster
algorithm to solve the problems of installing DAPs and choosing CHs. First, we divided
SMs into several groups by using clustering and subsequently selected proper SMs from
every cluster to be CH. In every cluster, all SMs could transmit data to DAPs through CHs.

The remainder of this paper is organized as follows. Section 2 presents the signal
model. Section 3 describes the proposed algorithm. Section 4 illustrates the evaluation
results. Finally, Section 5 draws the main conclusions.

2. Signal Model

Here, a smart grid is divided into four categories, including SM, CH, DAP, and control
center. Their main functions, as shown in Figure 1, are:

• SM: SM is installed in every home and the main function is to monitor the electricity
situations in every family.

• CH: CH is a SM that is chosen from every cluster. Its main function is to collect data
from all SMs in every cluster and transmit it to DAP.

• DAP: the main function of DAP is to collect data from CHs and then transmit it to the
control center.

• Control center: the control center is used to receive data from DAPs and monitor the
entire smart grid.
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As shown in Figure 1, every house represents a family and has an SM in every house.
First, we chose proper positions to install DAPs and then divided SMs into several clusters.
In any area, SMs were divided into three clusters. Then, a proper SM was chosen to be a
CH in every cluster. In this paper, we focus on the problems such as the transmission of
data from SMs to CHs and CHs to DAPs. Our goal is to use the least number of DAPs and
an optimal number of CHs.
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The required signal-to-noise ratio (SNR) when CHs receive data from SMs, and DAPs
receive data from CHs can be expressed as:

γSM,CH,DAP =
Pt × FSPL

σ
(1)

where Pt is the transmission power, FSPL is free-space path loss. The FSPL in dB can be
expressed as:

FSPL = 10 × log10 ((
4π × dsnr × f

c
)

2
) (2)

where f is frequency, c is the speed of light, and dsnr is the threshold for distance. However,
the supposed environment is not in free space, so the received signal power and the
distance are nth power fading. Different values of n are presented in Table 1. In this paper,
the value of n is considered as 3, so the function can be rewritten as:

FSPL = 20 log10( f ) + 20 log10

(
4π

c

)
+ 30 log10(dsnr) (3)

Besides, σ is the thermal noise power in Watts which can be calculated by the formula as:

σ = K·T·B (4)

where K is Boltzmann constant (at about 1.38 ×10−23); and T is the temperature in degree
K (◦K). Because γ is the least SNR, γSM,CH,DAP should be larger than or equal to γ. As a
result, the SNR threshold is determined as follows:

γSM,CH,DAP ≥ γ (5)

At last, the corresponding dsnr in different SNR can be determined by Equations (1),
(3), and (5). According to [13] and (4), assuming that packet error probability (E) is 0.01,
packet length (L) is 1800 bits, bit per second (R) is 2 Mbps and bandwidth (B) is 1 MHz. In
this case, the γ was estimated to be about 46 dB. Because γ is the least SNR, the γSM,CH,DAP
must be large or equal to γ. For example, giving n = 3, Pt = 30 dBm, T = 298.15 ◦K (about
25 ◦C), f = 1 GHz, and c is 3 ×105 km, the dsnr was measured to be about 1.53 km while γ

is 46 dB.
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Table 1. Path loss exponent in various environment.

Environments Path Attenuation Index (n)

Free space 2
Metropolitan area 3~5

Building 4~6
Factory 2~3

3. Two-Stage Clustering Algorithm

In this section, the proposed scheme is described in detail. We aimed to aggregate data
efficiently and reduce network delay by using the least number of DAPs and the optimal
number of CHs. Using K-means to cluster SMs, it just groups SMs into several clusters
and searches for the centroid in each cluster. However, it does not consider whether some
SMs is too far from the DAP or not. When wireless communication techniques are used
to transmit data, there are different distance restrictions due to transmission power and
channel environments. Thus, a distance threshold (dsnr) is added to constrict the farthest
distance of SMs to CHs and CHs to DAPs. In this paper, we assumed that the dsnr of SMs
to CHs and CHs to DAPs were the same.

In smart grids, how to choose the number of DAPs and the locations to install DAPs is
a non-deterministic polynomial (NP) problem [13]. To reduce the complexity, in this work
it is used the K-means algorithm to partition SMs into several smaller parts.

For the K-means algorithm, Euclidean sum of squares is defined as fitness function:

Fit f unction =
N

∑
i=1

[(Xi − Cen(j))]2 (6)

where Xi is the coordinate of ith SM and Cen(j) is the initial centroids when dividing into j
clusters. We expected to find the centroid, which means that the sum of squared shortest
distances of all SMs to the centroid was minimized.

A two-stage clustering algorithm to determine the least number of DAPs and an
optimal number of CHs is proposed. At the first stage, the required amount of DAPs,
denoted by K, is determined and a single DAP (i.e., K = 1) is tested at the beginning. At this
stage, all SMs were divided into K clusters, and let K DAPs be placed at the K centroids.
At the second stage, in each of the K clusters, SMs were divided into smaller sub-clusters,
while a SM was chosen as the CH in each sub-cluster, until the distance from all SMs to the
CH in each sub-cluster and all CHs to the DAP in each of the K clusters were shorter than
the distance threshold (dsnr). The proposed clustering algorithm is described as below:

(1) Set K = 1, regard all SMs as one cluster.
(2) Use the K-means algorithm to find out the least fitness as well as the optimal corre-

sponding K centroids and install a DAP in each centroid, as shown in Figure 2.
(3) Clustering all SMs covered in each DAP.

a. When the clustering result met the distance threshold (dsnr), the optimal number
of clusters is determined. Therefore, the algorithm is stopped.

b. If no candidate CH for any SM can meet the distance threshold, SMs are
continually grouped into smaller clusters until all SMs become CHs. As a
result, one DAP (K = K + 1) is added and return to Step (2).
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Finally, the number of DAPs needed to be installed in this area and the number of
CHs needed in every DAP are determined. As shown in Figure 3, the optimal number of
clusters was 6, so 6 CHs (blue dots in the figure) could be obtained. However, on adding
the other one DAP, as in Figure 2 (i.e., K = 2), the obtained clustering result is shown in
Figure 4.
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The K-means algorithm can also determine the centroid in every cluster, and therefore,
we choose the SM closest to centroid as CH in every cluster because a centroid is a point
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where the sum of squares of the shortest distance to every SM is minimum. Although SMs
are not mobile devices, new SMs might be added to a cluster, and other SMs might be
removed from a cluster. As a result, if that happens, the cluster should be reconfigured.

When data are transmitted from transmitter to receiver, they must be affected by the
environment or by passing too many hops so that there may be a delay. Delay may be of
two types, propagation delay, and media access delay, as described below:

(1) Propagation delay: this delay time is the duration when a packet transmits from
transmitter to receiver. This time is affected by the distance, and the farther the
distance is, the higher the delay is. Assuming that the distance between transmitter
and receiver is d and transmission rate is v, so, the time it costs is d/v. However,
because the speed of transmission equals to speed of light, the delay caused by
propagation delay is very low.

(2) Media access delay: this delay time is the duration when a packet transmits success-
fully. If a packet transmits unsuccessfully, it is retransmitted until it is successful.
Suppose that the media access delay Dm is a packet that transmits once successfully
and if a packet transmits unsuccessfully for the first time, then the delay time when it
transmits for the second time is 2Dm. Hence, if this packet transmits successfully at
the nth time, the delay time is n × Dm. As a result, the greater number of times the
packet is retransmitted, the higher the delay is. The media access delay is the primary
delay when a packet transmits.

The proposed two-stage clustering algorithm utilizes CH to receive data from SMs and
transmit it to DAP, so it can reduce the number of DAPs with the same distance threshold.
Compared with the method presented in [13], the proposed method causes a greater delay
because data are transmitted through more hops. Suppose D is the total delay when a
packet transmits from transmitter to receiver, Dp is propagation delay, Dm is media access
delay, assuming Dp + Dm ∼= Dm, where Dp is significantly short and can be ignored. Here,
D can be calculated by the packet error rate (PER). Thus, D can be expressed as:

D = (1 − P)× Dm + P × (1 − P)× 2Dm + P2 × (1 − P)× 3Dm + . . . (7)

where P is the PER. Then, Equation (7) can be rewritten by multiplying P, it can be
expressed as:

P × D = P × (1 − P)× Dm + P2 × (1 − P)× 2Dm + P3 × (1 − P)× 3Dm + . . . (8)

Subtracting Equation (7) from (8) and we can obtain:

(1 − P)× D = (1 − P)× Dm + P × (1 − P)× Dm + P2 × (1 − P)× Dm + . . . (9)

Finally, Equation (9) can be simplified as below:

D = Dm
∞
∑

i=0
(P)i

= Dm
1−P

(10)

In the proposed method, SMs will transmit data to CHs, and then CHs will transmit
these data to DAPs. Assuming that Pch and Pdap are the PER which are when SMs transmit
data to CH and the PER when CHs transmit data to DAP, respectively. Finally, we can
calculate the delay by PER. Suppose Dm

1−Pch
and Dm

1−Pdap
are expressed as the delay when SMs

transmit data through two hops. So, the total delay can be expressed as:

D =
Dm

1 − Pdap
+

Dm

1 − Pch
(11)
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4. Evaluation Results

To evaluate the performance in the delay time (D) and required amount of DAPs,
we compared our two-stage data aggregation method with the method presented in [13].
In this paper, MATLAB is used for simulation. To verify that our proposed scheme
can be applied to various distributions of SMs, the command ‘randn’ in MATLAB is
used to generate locations for SMs, which are shown as a normal distribution. As a
result, most SMs concentrated in the middle area. Figure 5 shows the simulation result of
SMs’ distribution. A total of 100 SMs are produced, which were randomly distributed in
40 × 40 km2 area. Most SMs were concentrated in the middle and were only seldom SMs
scattered in faraway areas.
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Assuming PER to be 0.01, packet size L of 1800 bits, transmission rate R of 2 Mbps,
bandwidth B of 1 MHz, the SNR threshold γ was 46 dB, and distance threshold dsnr was
7.1 km. Figure 6 shows the result of clustering. The triangle icon is expressed as DAP, the
bigger circle icon is expressed as CH in every cluster, and the SMs which have different
colors are expressed the SMs belong to different clusters.

Because K-means suffers from the problem of local optimal, the combination of PSO
and K-means is used to improve the K-means clustering problem [18]. Figure 7 shows
the comparison of the sum of the squares of the distance between K-means and K-means
improved by PSO, denoted as “PSO + K-means”. It has a lower sum of the distance while
K-means is improved by PSO. A lower sum of the distance means that the PSO + K-means
scheme yields a better clustering result.

The comparison of the required amount of DAP for different numbers of SMs is shown
in Figure 8. The dotted line is the compared, one-stage method presented earlier [13]. In the
one-stage method, SMs transmit data to DAPs directly. When the distance between SM and
DAP is longer than the distance threshold (dsnr), it will add one DAP and restart clustering
until the distance between each SM and a DAP is shorter than the distance threshold.
As shown in Figure 8, the horizontal axis is expressed as the number of SMs, from 50 to
350, and the vertical axis is expressed as the amount of DAP. The distance threshold is
7.1 km. With the increase in the number of SMs, the amount of DAP necessary to install
also increase. Obviously, the amount of DAP necessary in this study was less than that in
the earlier proposed method [13].
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Figure 9 shows the relationship of distance threshold (dsnr) according to different SNR
thresholds (γ). Here, γ is about 30 dB where the corresponding dsnr is about 24 km; γ is
about 40 dB where the corresponding dsnr is about 11 km; and when γ is about 50 dB, the
corresponding dsnr is about 5 km. This is because the received power is lost when the
distance increases. As a result, to maintain higher SNR, the distance is not too far.
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Figure 10 shows the required number of DAPs in different γ. In this simulation,
100 SMs are used, and the value of γ was from 45 dB to 60 dB. According to this figure,
when the value of γ raises, the required number of DAPs also increases. According to
Figure 9, the higher the γ is, the smaller is the dsnr. As a result, when dsnr is smaller, the
distance between every DAP and CHs as well as the distance between every CH and
SMs becomes shorter. While dsnr becomes smaller, the range every DAP can cover is
also reduced and the required number of DAPs increases. The dotted line is the method
proposed by the earlier study [13] and the solid line represents our method. The required
number of DAPs with the proposed method was fewer than that in the earlier proposed
method [13].
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The average delay is calculated by Equation (11). The packet error rate can be calcu-
lated by bit error rate (BER), as below:

P = 1 − (1 − b)L (12)

where b is BER; and L is the number of bits per packet. By using Formula (13) mentioned
in [22], the BER can be calculated by a given SNR. In this paper, the SNR was calculated by
Equations (1) and (3) with a known distance. Therefore, Pch was derived by the distance
between an SM and its CH, and Pdap was derived by the distance between a CH and
its DAP.

Figure 11 shows the comparison of delay with different numbers of SMs. The hori-
zontal axis is the number of SMs, and the vertical axis represents the average delay. The
average delay for the compared method and our proposed method was calculated using
Equations (10) and (11), respectively. According to this figure, it is shown that the delay in
the proposed method was higher than the compared method [13]. However, in 50 SMs,
the average number of DAPs in the proposed method was 6, while that of the compared
method is 6.5. Furthermore, when the number of SMs increased to 150, the average amount
of DAPs in the proposed method was 7, and that of the compared method was 11. There-
fore, it is concluded that although the delay in our proposed method is higher, the average
number of DAPs is fewer than that of the compared scheme. Moreover, while the number
of DAPs increased, the average delay with the compared method was lowered because the
distance between every DAP and SMs was shortened.

Figure 12 shows the relationship of average delay with our proposed method and
the compared method [13] with the same number of DAPs, while 50 SMs are used. With
a single DAP, the average delay with the compared method was much higher than that
in our proposed method, because the compared method divides all SMs into one cluster.
As a result, the average distance between the DAP and all SMs is longer than that in
our proposed method. Significantly, the longer distance brings about a higher PER. As
shown in Equation (10), the time delay depends on the PER. However, with the number
of DAPs larger than three, the average delay was worse with our proposed method than
the compared method. This may be because if the SMs in one area has good results of
clustering, too many hops cause higher delay.
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5. Conclusions

Owing to the high cost of installing a DAP, our aim was to use as few DAPs as
possible. In this study, we used K-means clustering to divide SMs into several clusters
and used a two-stage method to aggregate data. The proposed two-stage clustering
algorithm utilizes CH to receive data from SMs and transmit it to DAP, so it can reduce the
number of DAPs. However, because our method is with a two-stage mechanism, an SM
needed two hops to transmit its data through a CH to a DAP. It may cause a greater delay
because data are transmitted through two hops, but the per-hop delay is reduced because
the transmission distance is shorter. To fairly compare average delay of our proposed
scheme to the compared scheme, the delay time was formulated as Equations (10) and (11).
As a result, the required number of DAPs with our proposed method was significantly
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fewer although the average delay with our proposed method was a little higher than that
with the compared method. Thus, our proposed method is more cost-effective than the
compared method.
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