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Abstract: mmWave radars play a vital role in autonomous systems, such as unmanned aerial vehicles
(UAVs), unmanned surface vehicles (USVs), ground station control and monitoring systems. The
challenging task when using mmWave radars is to estimate the accurate angle of arrival (AoA) of the
targets, due to the limited number of receivers. In this paper, we present a novel AoA estimation
technique, using mmWave FMCW radars operating in the frequency range 77–81 GHz by utilizing
the mechanical rotation. Rotating the radar also increases the field of view in both azimuth and
elevation. The proposed method estimates the AoA of the targets, using only a single transmitter and
receiver. The measurements are carried out in a variety of practical scenarios including pedestrians,
a car, and an UAV, also known as a drone. With measured data, range-angle maps are created,
and morphological operators are used to estimate the AoA of the targets. We also process radar
range-angle images for improved visual representation. The proposed method will be extremely
beneficial for practical ground stations, traffic control and monitoring frameworks for both on-ground
and airborne vehicles.

Keywords: mmWave radar; FMCW radar; localization; multi-class targets; angle of arrival (AoA);
azimuth angle; elevation angle; range-angle maps; morphological operators; unmanned aerial vehicle
localization; UAV localization

1. Introduction

Radars are used in several applications both in automotive and industrial sectors.
Radars for automotive applications are summarized in [1]. Applications of biomedical
MIMO radars are summarized in [2]. Recently, radars were explored for air-conditioning
systems [3]. Radars for medical applications are summarized in [4]. Human localization
and vital signs measurements are explored, using hand-held through-wall imaging radar,
in [5]. The detection and ranging of human targets in cluttered environments is proposed
in [6]. The indoor human localization and life activity monitoring is proposed in [7].
mmWave radars are explored in several UAV applications [8–15]. However, radars for
UAV ground station monitoring and control application is still challenging, as it needs to
localize and be able to track the small dynamic UAVs in a wide field of view (theoretically
360 degrees field of view). The mmWave radars offer very high resolution, due to their
large bandwidth. These radars are extremely compact, small in size and have very low
power consumption. The angle of arrival (AoA), range and velocity of the targets can be
estimated using them in their direct field of view (FoV). Targets at distances in the range of
300–400 m [16] can be easily detected by them at an operating frequency of a couple of GHz.
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An object’s range and velocity, in particular, can be accurately determined. Only a single
transmitter and receiver are required to estimate target range and velocity. However, the
performance of the range and velocity estimation is dependent on the chirp configuration
parameters. The number of receiving antennas, on the other hand, has a large impact on the
accuracy and resolution of the targets’ AoA. The combination of compressive sensing and
multiple input and multiple out (MIMO) was shown to improve the angular resolution [12].
The greater the number of receiving antennas, the better the performance. The concept of
MIMO is utilized to form a large number of virtual Tx–Rx pairs with limited number of Tx
and Rx antennas [17]. To achieve 1 degree of angular resolution, at least 115 virtual Tx–Rx
pairs are required—leading to quite a large number of physical transmitters and receivers.
This also increases the hardware complexity and associated signal processing chains. As
a result, mmWave radars use a small number of transmitting and receiving antennas to
reduce cost and complexity.

The FoV can only be enhanced in one of two directions, due to transceiver antenna
limitations: elevation or azimuth. Its main purpose is to increase the field of view in the
azimuth direction, which is important for many applications. However, mmWave modules
used in traffic management systems and installed as ground stations require a wide field
of view in both the azimuth and elevation directions. A two-dimensional antenna array
can help in widening FoV in both the elevation and azimuth directions. However, as the
number of transceiver antennas grows, so does the complexity, computational latency, and
cost.

An angle delay estimation method based on extended one-dimensional pseudospec-
trum searching is proposed in [18] The number of targets used are only two in this study,
and it is computationally rigorous. The complexity of this method necessitates additional
research for more than two targets. Simulating a complex scenario cannot be made pos-
sible, as the measurements in [18] were not taken in an open environment. In [19], it
is proposed to develop a two-dimensional parameter estimator that combines both the
extrapolated fast Fourier transform (FFT) as well as multiple signal classification (MUSIC).
This study, however, does not take into account a complex scene. In [20], the range and
angle estimations are proposed, employing signal parameter estimation through rotational
invariance techniques (ESPRIT). Even when the number of targets exceeds the number of
receivers, the proposed algorithm works. All the proposed methods need to have at least
two receivers for the estimation of AoA of targets. The angle resolution improves as the
number of receiving antennas increases.

A 2D synthetic-aperture radar (SAR) imaging is employed with FMCW radars [21]. The
image is reconstructed using a two-dimensional FFT or range Doppler plot. Because of the
fixed horizontal and vertical movement, this approach can capture the target in a constant
FoV. This limits the user’s ability to capture a variety of scenarios. However, localization of
multiple targets remains challenging.

In [22], a fan-beam antenna is used to implement a three-dimensional (3D) view of
mmWave radar, finding its application in mobile robotics. There is a lack of information
on AoA and additionally, there are limitations regarding the measurements in range and
velocity. In [23], it was proposed to use 3D near-field imaging for robotics and security
scanning. In this work, they combine LiDAR data, which adds to the computational
complexity and delay. In [24], a synthetic aperture mmWave ground station search and
track radar is proposed. It has numerous drawbacks, such being large, complicated, and
lacking target AoA calculation for rotating radars. The rotating FMCW radar is used for
localization and mapping. The task is used to determine the target’s range and velocity.
The majority of these works have not concentrated on multiple target localization, which is
crucial for a wide range of applications. A mechanical scanning FMCW radar is proposed
in [25]. It uses the bandwidth of 400 MHz only. However, detailed experiments and
automatic angle estimation for multi target scenarios are still missing. A 3D millimeter
wave system is proposed in [26] for robotic mapping and localization, as well as security
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scan applications. It mainly focuses on indoor short-range applications. Practical multi-
target outdoor scenarios still need further investigation.

To address the aforementioned issues, we present a rotating mmWave FMCW radar
capable of detecting the target range and AoA. We utilize range-angle maps computed
from a 1D range FFT profile for localization. It is possible to obtain target features, such as
distance and velocity [27,28], accurately with fixed positioning of radars, but it is difficult
to accurately estimate AoA of the targets with a limited number of receiving antennas.
Using our AoA estimation approach, we can locate and estimate the AoA of objects in a
wide field of view. This FoV is also configurable, allowing it to be adjusted to the demands
of the application. The major contributions of this paper are as follows:

• We propose AoA estimation of multi-class targets by mmWave FMCW radar measure-
ments in a practical outdoor setting.

• The proposed method just requires only 1 Tx antenna and 1 Rx antenna for the
localization of multi-class targets.

• The proposed localization method using mmWave FMCW radar achieves a large FoV
in both azimuth and elevation directions.

• The proposed method estimates the AoA of both on-road and aerial targets, using
morphological operators on range-angle maps.

• The proposed method improves the visual representation of multi-class targets, using
range–angle images.

The paper is further organized as follows. Section 2 discusses the details of the radar
system. Section 3 elaborates on the measurements and signal processing. Section 4 presents
the angle of arrival estimation of multiple targets, using morphological operators on range–
angle maps. Results are discussed in Section 5. Finally, in Section 6, the conclusion and
potential future works are discussed.

2. System Description

The measurements were taken with a Texas Instruments (TI) mmWave radar with
three transmitters and four receivers [29]. The radar’s comprehensive details can be found
in Figure 1. The received signal is mixed with the transmitted FMCW signal’s quadrature
phase and in-phase as shown in Figure 1. The output signal is a complex intermediate
frequency (IF) signal, which is subsequently converted into digital form using ADCs
for further processing. The FMCW radar has an RF bandwidth of 4 GHz and works at
frequencies ranging from 77 GHz to 81 GHz. The radar configurations parameters can be
seen in Table 1.
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Figure 1. The mmWave radar front-end architecture.

Table 1. Configuration parameters for mmWave radar [30].

S. No. Parameter Value

1 RF Frequency Range 77–81 GHz
2 Chirp Slope 29.982 MHz/µs
3 Number of Transmitters 3
4 Number of Receivers 4
5 Number of ADC samples 256
6 Number of frames 800
7 Number of Chirps 128
8 RF Bandwidth 1798.92 MHz
9 Frame periodicity 40 ms
10 Sampling Rate 10 MSPS
11 Drone Size 322 × 242 × 84 mm
12 Human Height 172 cm
13 Car Size 4315 × 1780 × 1605 mm
14 Measurement Range up to 26 m
15 Transmission Power 12 dBm
16 Rx Noise Figure 14 dB (76 GHz to 77 GHz)

15 dB (77 GHz to 81 GHz)

The complete radar system is mounted on a programmable rotor as shown in Figure 2.
In each measurement case, every frame is used to capture the raw intermediate frequency
(IF) data. The single frame time is set at 40 milliseconds. A frame is made up of a
specific number of chirps. We chose 128 chirps per frame. The raw radar data from the
measurements are then post-processed in MATLAB [31]. The measurements are carried
out by positioning the multiple targets, such as an aerial vehicle/drone, humans, and an
automobile car, at various distances and angles. Each measurement scene is referred to as a
separate instance in which the positions of the individuals, automobile car, and drone are
all jumbled together. The complete details of various measurement scenes are summarized
in Table 2.



Electronics 2021, 10, 2905 5 of 17

Figure 2. The mmWave radar measurement setup.

Table 2. Measurement cases (range in meters and angle in degrees).

Targets
Cases

a b c d e f g h i j k l m n

Human-1 Range 9 13 11 13 7 17 5 19 5 9 21 7 15 7

Angle 30 60 0 0 60 30 60 90 90 120 180 120 180 30
Human-2 Range 11 15 13 15 9 19 7 11 7 21 23 5 7 17

Angle 60 90 30 30 90 60 90 120 120 60 0 180 0 0
Human-3 Range 13 17 17 17 13 21 11 9 13 7 5 11 11 9

Angle 90 120 90 60 150 90 150 150 180 180 150 60 30 60
Human-4 Range 15 19 19 21 15 23 21 7 15 23 13 15 13 11

Angle 120 150 120 120 0 120 0 0 60 90 90 90 120 120
Human-5 Range 17 11 21 23 19 9 23 25 17 17 19 17 13

Angle 150 180 150 150 30 0 30 60 0 30 150 150 150
Drone Range 5 7 9 11 5 7 9 5 11 5 7 9 9 5

Angle 0 30 60 90 120 150 180 30 30 150 60 30 90 90

Targets
Cases

aa bb cc dd ee ff gg hh ii jj kk ll mm nn oo

Drone Range 7 9 11 5 9 11 7 7 9 11 9 11 5 7 11

Angle 0 0 0 60 60 60 90 120 120 120 150 150 180 180 180
Car Range 25 19 17 15 17 17 21 23 15 21 17 23 15 21 25

Angle 60 60 90 120 150 180 180 90 0 0 0 90 60 120 30

The radar transmitted signal is given by Equation (1):

T(t) = sin[jφi + j2π(
β

2
t2 + fst)], 0 ≤ t ≤ Tc (1)

In Equation (1), fs is the chirp’s starting frequency, φi is the initial phase of the chirp,
β is the slope of the chirp, and β is given by the following:

β =
f f − fs

Tc
(2)



Electronics 2021, 10, 2905 6 of 17

f f is the chirp’s final frequency, and Tc is the chirp time over which the chirp’s frequency
changes from fs to f f . The transmitted chirp’s frequency is given by Equation (3):

ωT(t) = 2π(
β

2
t + fs) (3)

The received signal, R(t) reflected off the distant targets, is a delayed version of the
transmitted signal, T(t). R(t) is denoted by the following:

R(t) = T(t − τ) (4)

The round trip time delay, τ is defined by the following:

τ = 2R/c (5)

where R denotes the distance of the detected target from radar, and c denotes the speed
of light. The reflected signals from distant targets are mixed with the transmitted signal’s
in-phase and quadrature phase, and the complex IF signal is generated as shown in Figure 1.
This IF signal is processed further and digitized, using ADCs at a sampling frequency of
10 MSPS [32]. This IF signal’s frequency is proportional to the range of the target in direct
line of sight (D-LOS) that reflects the transmitted chirp by Equation (6).

f IF =
( f f − fs) · 2R

Tc · c
(6)

R =
f IF.c
2β

(7)

where R, f IF, and c are the range, intermediate frequency, and velocity of light in vacuum,
respectively.

Range profiles are computed from the measured raw data and further processed to
obtain the range–angle maps [30].

3. Outdoor Measurements and Pre-Processing

The measurements are taken in a realistic outdoor setting with a multiple targets in the
scene. The raw radar data are used for the creation of range–angle maps of all measurement
scenes. These range–angle maps are further processed using morphological operators.
Several measurement scenes were captured; the summary of all the measurement instances
can be found in Table 2. For instance, in case-a, human-1 is positioned at 30◦ and 9 m
distance, human-2 is positioned at 60◦ and 11 m distance, human-3 is positioned at 90◦ and
13 m distance, human-4 is positioned at 120◦ and 15 m distance, and human-5 is positioned
at 150◦ and 17 m distance from the radar. Additionally, a drone is positioned at 0◦ and 5 m
distance, and a car is positioned at 0◦ and 19 m distance. During all measurements, the
raw IF data are captured from the mmWave radar. The raw radar data are then processed
using MATLAB, and the details can be accessed at [33]. Range–angle heatmaps are created
for all measurement scenes [30]. The generation of the angle axis for the range–angle maps
is briefly described here.

A programmable rotor is attached to a radar to cover certain FoV, θFoV , in T seconds.
The radar transmits N f frames to cover the same FoV, θFoV in T seconds. Thus, this entire
θFoV is divided into angle bins, denoted by θbin.

The angle bins (θbin), total FoV (θFoV), and total number of frames (N f ) are related
by Equation (8):

θbin =
θFoV
N f

(8)
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In the outdoor measurements, we set θFoV to 180◦ and N f is set to 800, then each frame
corresponds to 0.225◦, i.e., 4.44 frames per degree. A range–angle heat map is then plotted
using the range profiles. Such range–angle heat maps for the measurement of case-e and
measurement of case-f can be seen in Figures 3 and 4, respectively.

mmWave Radar: Range-Angle Heatmap

Figure 3. Range-angle map for multi-target measurement case-“e”.

mmWave Radar: Range-Angle Heatmap

Figure 4. Range-angle map for multi-target measurement case-“f”.

4. Range and Angle Estimation Using Morphological Operators on
Range–Angle Maps

Image processing techniques were used to process the range–angle map images after
obtaining them. The flowchart in Figure 5 depicts the various processing steps.

• Because four receivers were used here, the data set was divided into four sets, one for
each case, and four different receivers capturing it. The images were then processed
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one by one. However, only 1 Tx and 1 Rx are required for angle estimation using the
proposed method.

• The image was cropped off the scale using Otsu thresholding, and objects were
displayed based on the most definite contour, which is the largest in area.

• An image was then divided into three channels, namely BGR, stored in a list, and
converted into gray scale images. Individual channels were then processed.

• To smooth out the image, Gaussian blurring was used, followed by Otsu thresholding,
to remove noise and binarize it.

• After obtaining the binary image, inversion based on the number of white and black
pixels was performed, followed by the morphological operation, closing with a
10 × 10 elliptical structuring element to obtain proper contours. Any areas with
a size smaller than 150 px*px were removed.

• The best two of the three channels were then chosen, and their intersection was used
to generate the final processed image. Later, only contours with a common area in at
least three of the four images were kept, and the best contours based on the number
of objects were chosen.

• Finally, using the concept of moments, the centroids were plotted.

white
pixels>black

pixels

START

Input images in sets of 4

Apply Gaussian Blur on the
grayscale image. Then apply

OTSU and binary thresholding
Separate the image
into three channels

Apply Closing
operation using a
10x10 Elliptical

structuring element.

Discard the channel
with least white pixels
and take interesection

of remaining two

Keep contours which
are common

no of 
objects 7?

Keep 7 largest
contours

Plot centroids for all
the contours

Output  the
Resultant Image

STOP

Inversion except
initial black part

Keep largest 2
contours

No

No

Yes

Yes No

Yes

All three
channels

 processed

No

All 4 images
processed?

Yes

Figure 5. Flowchart showing all the image processing steps.

4.1. Otsu Thresholding

Image segmentation employs the use of thresholding. It is used to turn a grayscale
image into a binary image. Its algorithm operates in such a way that it replaces each pixel
if its intensity is less than a fixed constant T threshold value. This value is determined in
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Otsu thresholding so that the weighted within-class variance can be obtained [34]. The
relation is as follows:

σ2
w(t) = q1(t)σ2

1 (t) + q2(t)σ2
2 (t) (9)

where

q1(t) =
t

∑
i=1

P(i) & q2(t) =
I

∑
i=t+1

P(i) (10)

µ1(t) =
t

∑
i=1

iP(i)
q1(t)

& µ2(t) =
I

∑
i=t+1

iP(i)
q2(t)

(11)

σ2
1 (t) =

t

∑
i=1

[i − µ1(t)]
2 P(i)

q1(t)
& (12)

σ2
2 (t) =

I

∑
i=t+1

[i − µ2(t)]
2 P(i)

q2(t)
(13)

Unlike global thresholding, which selects any arbitrary value as a threshold value,
Otsu thresholding involves looping through all possible threshold values and fixing the
value whose value is the minimum by calculating the spread through the above formulae
on both the foreground and background sides of pixels [34].

In this case, Otsu thresholding is used to remove the scaling from the original image
so that processing can take place. Later, Otsu is used to convert the grayscale image to a
binary image because the morphological operation can be performed on a binary image
with only two pixel intensities to deal with. The resulting image can be seen in Figure 6.

Figure 6. After obtaining the greyscale image of each channel, Otsu thresholding is applied, giving a
binary image (case-“n”).
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4.2. Gaussian Blurring

The pixels closest to the center are given the most weightage in Gaussian blurring. A
group of pixels, referred to as a kernel, is slid along the pixel that needs to be filtered. The
weighted average of pixel intensities is calculated to apply this filter [35]. The Gaussian
blur filter is simply convolving the image with a Gaussian function, as shown below:

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (14)

Here, x is the horizontal distance from the origin, y is the vertical distance from
the origin, and σ is the Gaussian distribution’s standard deviation. The values of these
Gaussian functions combine to form a convolution matrix, which is then used to convolve
the original image [36]. The weighted mean of each pixel’s neighbor is then used to replace
it. After obtaining three channel images as shown in Figure 7, Gaussian blurring is used to
remove noise. Then, the filtered image is thresholded and converted into a binary image.

Figure 7. The left image is the one obtained after converting into each channel and the right one is
the Gaussian blurred image (case-“n”).

4.3. Morphological Operation-Closing

Closing is a morphological operator derived from erosion and dilation [37]. It is
typically used on binary images. It enlarges the boundaries of images’ bright parts and
fills gaps in such areas. It is dilation followed by erosion, and it keeps the areas that have a
similar shape to the structuring element, while removing the other pixels [37].

Dilation fills holes in images, which can lead to pixel distortion; erosion reduces this.
Finally, a structuring element is taken and moved across the image (outside the foreground
region). If the SE touches the point and is not part of the foreground region, then that
region becomes the background; otherwise, it becomes the foreground [37]. Closing can be
mathematically represented as follows:

A • B = (A ⊕ B)	 B (15)

Following the application of the closing operation, other bounds are applied to the
image, such as classification and selection based on the contour area (the minimum bound
is selected as 150 px*px based on observation), and then the best channel and contour
intersection as explained in the algorithm. Finally, long horizontal lines with a width bound
of 46 are removed, and the resultant processed image is shown in Figure 8.
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Figure 8. Final image obtained after applying all processing steps (case-“a”).

4.4. Concept of Moments

Moments of a function are quantitative characteristics of a function’s shape in mathe-
matics [38]. In this case, we used the zeroth moment to represent mass, which when divided
by the total mass yields the center of mass. Contours are laminas, and their geometric
center is a centroid; because we assumed that the density of a lamina is constant [39], their
center of mass and centroid coincide. Following that, in order to obtain proper contours
(laminae), we drew a parallel between the intensity of pixels and the mass of an object, and
then divided by the total mass to obtain the center of mass, which is the centroid of the
lamina or contour. We employed the bounding rectangle concept [39] because we assumed
the lamina to be a rectangle such that the contour is completely enclosed and touches the
boundaries of the rectangle. Its centroid is calculated using the formulae given below.
Moments are calculated as follows:

mji = ∑
x,y

(
array(x, y) · xj · yi

)
(16)

The COM or the centroid in this case is computed as follows:

x̄ =
m10

m00
, ȳ =

m01

m00
(17)

Here, x̄ and ȳ represent the center of mass of the x coordinate and y coordinate of the
contour, respectively. The centroid of each object in the image is shown in Figure 9.
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Figure 9. Image showing centroid of each object (case-“a”).

5. Results and Discussion

Using all image processing techniques, including Gaussian blurring, Otsu threshold-
ing, inversion, closing, and center of moments, we calculated the centroid of each contour,
which represents the location of an object. The centroid’s (x,y) coordinates represent (range,
angle). Graphs were formulated to show the spread of values across a specific range/angle.
How close the actual and estimated values were are shown in the Bland–Atman plot.

The spread of values in range is almost negligible, as demonstrated by Figures 10 and 11
which depict the spread of angle values; it is observed that the spread is high at the edges, i.e.,
at 0 and 180 degrees, because the radar angle should have started from a negative angle to
obtain accurate values, but it was started from 0 degrees, resulting in higher variance at the
extreme values of the angles. The x-axis in Figures 10 and 11 represents the actual measured
ranges/angles, and the y-axis represents the obtained values of ranges using the image
processing techniques of radar images.

Statistical Analysis of Measurements

In the literature, two kinds of measurement accuracy evaluation techniques were used
to find the closeness between the actual values and the measured values (or estimated
values): (i) the Pearson correlation (PC) coefficient with linear regression parameters
computed for the actual and measured values, and (ii) the Bland–Altman plot with a set of
benchmark metrics, such as bias, standard deviation (SD), limit of agreement (LOA), and
Bland–Altman ratio (BAR). If the PC value is close to 1, then the measured values nearly
equal the actual values. If the BAR value is <10%, then the agreement between the actual
and measured time series is good. The agreement is moderate if 10% < BAR ≤ 20%, and is
insufficient if the BAR > 20%.
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Figure 10. Graph showing estimated value vs. actual value of ranges.

Figure 11. Graph showing estimated value vs. actual value of angles.

The Pearson correlation (PC) coefficient is computed as follows:

PC =
∑N

i=1(xi − x̄)(yi − ȳ)√
∑N

i=1(xi − x̄)2 ∑N
i=1(yi − ȳ)2

. (18)

where x̄, ȳ denote the mean of actual and measured values, respectively. The bias, standard
deviation (SD), limit of agreement (LOA), acceptance limit (AL), and Bland–Altman ratio
(BAR) metrics are computed from the Bland–Altman plot by using following formulae [40]:

Bias =
1
N

n

∑
i=1

(yi − xi) (19)
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Bias indicates a mean shift in the measured values relating to the actual values.

SD =

√
1

N − 1

n

∑
i=1

(yi − xi − Bias)2 (20)

The SD denotes the differences between the actual (x) and measured (y) values.

LOA = Bias ± 1.96 SD (21)

LOA indicates the agreement limits.

AL = ± 1
N

N

∑
i=1

yi + xi
2

(22)

BAR =
1.96 SD

1
N ∑N

i=1
yi+xi

2

(23)

The BAR parameter relates SD to the acceptance limit (AL).
From the error analysis shown in Table 3 and Figure 12, it is observed that proposed

measurement method has a range bias of −0.4142 with 95% agreement limits of [−0.7945,
−0.0339] m and the angle bias of 3.617 with 95% agreement limits of [−9.087, 16.32] degrees.
For the same error analysis, the Pearson correlation coefficient is 99.96 for the range
measurements, indicating better correlation between the measured and actual values. The
proposed method has a BAR value of 2.76%, which indicates very good agreement between
the measured and actual range values. It is further noticed that the method has a BAR value
of 14.23% for the measurement of angles, although the Pearson correlation coefficient is
99.54; therefore, we further investigated the angle measurements for different error ranges.
From the angle measurement error analysis, we noticed that the method has an angle error
of <3◦ for 29 targets, 3–6 for 29 targets, 6–10 for 45 targets, >10 for 17 targets. For the 18
targets with zero angle, the method has an angle error of >8◦ for 17 targets. The statistical
analysis results in Table 3 and Figure 12 show that the bias, LOA and BAR values of the
proposed measurement method have a high degree of agreement between the actual and
estimated range and angle values.
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Figure 12. Bland-Altman Plot and their statistical parameters showing the agreement between actual
and measured values of range and angle.

Considering the results and deviation, it is possible to conclude that the proposed
image processing method, which employs morphological operator closing to obtain definite
contours, is accurate on almost all ranges and angles, except the extremes. This image
processing technique is lightweight and does not necessitate a large amount of computation.
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The proposed model’s complexity and performance merits are compared to [20,41–44].
Table 4 shows that the proposed model computational complexity is similar to [44] and has a
large FoV in both azimuth and elevation when compared to the rest of the designs and/or
algorithms that were reported. However, the work in [44] considered only human targets,
whereas the proposed work considered both on-road and aerial targets simultaneously. To
estimate the angle, only one Tx and one Rx antenna were required in the proposed concept.
Furthermore, there is no limit to the number of targets that can be detected.

Table 3. Results of measurement error analysis using the Pearson correlation coefficient, and the bias,
SD, and BAR metrics obtained from Bland–Altman analysis a.

Measurement PC Bias SD LOA (Biasą1.96*SD) AL BAR
Bias+1.96*SD Bias-1.96*SD

Range 0.9996 −0.4143 0.1941 −0.0339 −0.7946 13.7595 0.0276
Angle 0.9954 3.6176 6.4824 16.3232 −9.0879 89.3088 0.1423

a PC: Pearson Correlation Coefficient; SD: Standard Deviation; LOA: Limits of Agreement; AL: Acceptance Limit;
BAR: Bland–Altman ratio.

Table 4. Performance comparison table a.

S. Algorithm Complexity Targets at Same Detection Required Number of Reference
No. Range/Angle Limitation of Antennas for AoA

Targets Estimation

1. DFT-ESPRIT Nlog(N) No Multiple targets 1 TX and 2 RX [41]

2. 2D-ESPRIT 2Rn2 N3

27
No Multiple targets 1 TX and 2 RX [42]

3. Dual-Smoothing 10Rn2 N3

27
No Multiple targets 1 TX and 2 RX [43]

4. Clustered N3

28
Yes RX antennas RX antennas [20]

ESPRIT could be smaller than could be smaller than
number of targets number of targets

5. Range-Angle Nlog(N) Yes No limitation 1 TX and 1 RX [44]
map based

6. Proposed work Nlog(N) Yes No limitation 1 TX and 1 RX This work
a N: Numbero f samples, Rn: Numbero f RXantennas.

6. Conclusions

We present a novel AoA estimation technique based on mechanical rotation using
mmWave FMCW radars in this paper. The proposed method estimates the AoA of multiple
targets using only a single transmitter and receiver. The measurements were taken in
real-world scenarios involving pedestrians, a car, and an UAV. Based on the measurements
and collected radar data, range-angle maps are created, and morphological operators were
used to estimate the AoA of the multiple targets. Furthermore, we demonstrated radar
range–angle images for improved visual representation. The proposed method will be
extremely beneficial for ground stations, traffic control and monitoring applications for
both on-ground and airborne vehicles. The cross range resolution is an interesting study.
However, this requires a large number of outdoor experiments. We plan to continue our
work in the future by taking more outdoor measurements.
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