
electronics

Article

Robust and Fast Converging Cross-Layer Failure Correction in
Segment-Routed Networks

Zengwei Zheng 1 , Chenwei Zhao 2 and Jianwei Zhang 1,*

����������
�������

Citation: Zheng, Z.; Zhao, C.; Zhang,

J. Robust and Fast Converging

Cross-Layer Failure Correction in

Segment-Routed Networks.

Electronics 2021, 10, 2874. https://

doi.org/10.3390/electronics10222874

Academic Editor: Paul Mitchell

Received: 29 September 2021

Accepted: 19 November 2021

Published: 22 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer and Computing Science, Zhejiang University City College, Hangzhou 310015, China;
zhengzw@zucc.edu.cn

2 College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China;
chenweizhao@zju.edu.cn

* Correspondence: janyway@outlook.com

Abstract: Due to overlay technologies, service providers have a logical view of the underlay network
and can optimize the experience quality without modifying the physical network. However, the
cross-layer interaction inevitably causes network fluctuation due to their inconsistent optimization
objectives. Aside from that, network failures that occur in both layers not only cause network
performance degradation but also significantly increase the frequency of cross-layer interaction.
These problems make the network fluctuate for a long time, reduce the network performance,
and influence the user experience, especially for time-sensitive applications. In this paper, we
design a cross-layer architecture in which the logical layer can satisfy the service function chain
demands and maximize the user experience and physical layer so it can optimize the overall network
performance. Our cross-layer architecture can make proactive corrections in both layers. Furthermore,
we investigate the cross-layer interaction and design two strategies to eliminate fluctuations and
make the network converge quickly.

Keywords: time-sensitive; overlay routing; segment-routing cross-layer interaction; failure correction

1. Introduction

Over the past few years, a wide variety of overlay networks have been deployed upon
the Internet to provide different kinds of service, such as peer-to-peer (P2P) networks,
resilient overlay networks (RONs) [1], and content delivery networks (CDNs) [2]. Although
the advantages of the overlay network can be used to build many applications that improve
the quality of the user experience, in real applications, network failures and cross-layer
interactions can still reduce the user experience of the overlay application, especially for
time-sensitive applications.

Network function virtualization (NFV) technology has been extensively studied and
practiced over the years, in which the network functions are implemented in software
running on a common hard device. In NFV, the virtual network functions (VNFs), such as
the firewall, load balancer, and deep packet inspection, are chained together in an ordered
way for providing services based on different application scenarios, forming a service
function chain (SFC). From the perspective of service providers, such services are usually
implemented by VNF instances in a cloudlet network composed of a set of data centers
and switches. This paper considers VNF instances that provide network services in a cloud
network to implement a service chain. The VNF instances in each data center are divided
into multiple types, and each type carries a service chain. Overlay networks designed for
time-sensitive applications aim to minimize the latency of all applications passing through
specific SFC.

However, network failures at both layers can cause network congestion, route recon-
figuration, and frequent interaction between the overlay and underlay networks, which
will increase the delay of time-sensitive applications. In order to provide better services for

Electronics 2021, 10, 2874. https://doi.org/10.3390/electronics10222874 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0386-6080
https://orcid.org/0000-0003-2728-3357
https://doi.org/10.3390/electronics10222874
https://doi.org/10.3390/electronics10222874
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10222874
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10222874?type=check_update&version=1

Electronics 2021, 10, 2874 2 of 24

time-sensitive applications, we provide three mechanisms in the cross-layer architecture.
First, add a failure correction mechanism to the physical layer so that the physical network
can satisfy the demands of the logical layer uninterrupted. Second, for invisible SFC
failures, add a failure correction mechanism to the logic layer to reduce the impact of SFC
failures on the delay performance, and finally, add two fast convergence strategies so that
the network can reduce fluctuations and quickly converge.

Segment routing (SR) is a relatively novel source routing approach that is easy to
deploy on a large-scale network due to its low overhead, good performance, and compati-
bility with the current network infrastructure [3]. SR uses a path consisting of the shortest
path segment to transmit a packet and encodes the path to the packet’s header. Although
SR’s flow control is more flexible and scalable, SR still needs to perform traffic engineering
(TE) to optimize resource utilization and network performance [4]. SR can leverage existing
IGPs and take advantage of many good features. One of these features is the automatic
rerouting of traffic after a failure. Upon a failure, the IGP recomputes all the shortest paths,
and the node segments are automatically repaired without any additional intervention. In
this paper, we consider using a more robust traffic-allocating algorithm based on segment
routing (SR) in the underlay network.

With a robust underlay, the overlay can provide services with less volatility and stable
performance for time-sensitive applications. However, there are SFC failures at the logical
layer which cannot be observed at the physical layer and can only be resolved at the logical
layer. The forward correction method is also applied to the logic layer to correct SFC
failures. When we allocate SFC resources, we take into account possible SFC failures and
reserve resources in advance so that when failures occur, the network can automatically
correct them. In this way, we can largely guarantee the uninterrupted and non-blocking
operation of the network [5].

Aside from the failures that may occur in the cross-layer architecture, long-term
cross-layer interaction is also one of the key problems affecting the quality of service in
the overlay network. Overlay routing and underlay routing have different viewpoints of
the network [6]. Underlay TE has a physical view of the network, whereas the overlay
has a logical view of the network. The traffic demand of underlay TE is the sum of the
overlay demand and background demand. The interaction of two layers is a sequential
process, and the two layers take turns to optimize their routes. In the process of interaction,
the operation of the overlay changes the traffic pattern of underlay TE, and underlay TE
changes the delays of the overlay links [7]. The routing decision of one layer will impact the
decision of the other layer. If there is no change between the last two rounds, the network
state will be stable.

In this paper, we propose a cross-layer model between low-latency service (LLS) and
segment routing with correction (SRC). The model is illustrated by Figure 1. In SRC, we use
SR for its easy deployment, near-optimal performance, and built-in rerouting mechanism
(IGP-based reroute) to propose an algorithm that automatically corrects control and data
plane failures without congestion. In LLS, we care about its latency performance and
also use SR to minimize the delay of the overlay. The robustness of each layer of the
network has greatly enhanced the stability of the entire system, and the number of network
interactions has been reduced, which is very important for time-sensitive applications. Our
other focus is on the interaction between SRC and LLS. Obviously, there are two conflicting
objectives in the two layers: SRC minimizes the maximum link utilization (MLU) after
failure correction, and LLS minimizes the total delay of the overlay. The inconsistency
of targets and non-sharing of cross-layer information will lead to network fluctuations.
Long-term fluctuations seriously reduce the performance of our LLS and SRC. To achieve
better network performance, we provide two strategies to accelerate convergence. Our
main contributions are summarized as follows:

• In order to achieve better performance for time-sensitive applications, we combine
NFV and cross-layer network models and propose SRC and LLS methods as the basic
framework of this paper.

Electronics 2021, 10, 2874 3 of 24

• To deal with the network failures in the underlay, we propose a failure correction
mechanism for SRC. Our method can handle both data plane failures and control
plane failures.

• In order to handle the unique failure types of the logic layer, we add an SFC failure
handling mechanism to the LLS to ensure uninterrupted network transmission and
ensure the performance of time-sensitive applications.

• We build a cross-layer interaction model regarding LLS and SRC. We treat the interac-
tion as a repeated game [8]. SRC and LLS alternately and selfishly propose conditions
until they reach a consensus. We design two strategies in our cross-layer model to
accelerate network convergence to reduce the performance degradation caused by
fluctuations in networks where errors may occur.

• In the course of our comparative experiment, we gradually add the mechanisms we
introduced to the basic version of the framework, observing the impact of different mech-
anisms on the cross-layer interaction process, proving the effectiveness of our strategy,
and the entire framework can guarantee the performance of time-sensitive applications.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 24

 In order to achieve better performance for time-sensitive applications, we combine
NFV and cross-layer network models and propose SRC and LLS methods as the basic
framework of this paper.

 To deal with the network failures in the underlay, we propose a failure correction
mechanism for SRC. Our method can handle both data plane failures and control
plane failures.

 In order to handle the unique failure types of the logic layer, we add an SFC failure
handling mechanism to the LLS to ensure uninterrupted network transmission and
ensure the performance of time-sensitive applications.

 We build a cross-layer interaction model regarding LLS and SRC. We treat the inter-
action as a repeated game [8]. SRC and LLS alternately and selfishly propose condi-
tions until they reach a consensus. We design two strategies in our cross-layer model
to accelerate network convergence to reduce the performance degradation caused by
fluctuations in networks where errors may occur.

 In the course of our comparative experiment, we gradually add the mechanisms we
introduced to the basic version of the framework, observing the impact of different
mechanisms on the cross-layer interaction process, proving the effectiveness of our
strategy, and the entire framework can guarantee the performance of time-sensitive
applications.

Figure 1. Multilayer architecture with LLS and SRC under failure scenarios.

Different network error recovery mechanisms have different effects on the quality of
service of the cross-layer network. Network failure recovery mechanisms can be divided
into two types: proactive and reactive. Because the reactive fault recovery mechanism has
the problem of a slow recovery speed and may cause the cross-layer network to enter a
fluctuating state, in our paper, a proactive failure recovery mechanism is used. We mini-
mize the MLU in the network after failure recovery to avoid link congestion caused by
failure recovery. The congestion of the physical link will lead to a sharp increase in the
delay of the logical link, which will cause the network to enter the interactive process and
network fluctuations. Compared with the reactive failure recovery mechanism, the pro-
active failure recovery mechanism can make the network recover from failures faster and
reduce the frequency of the network entering a fluctuating state.

Figure 1. Multilayer architecture with LLS and SRC under failure scenarios.

Different network error recovery mechanisms have different effects on the quality of
service of the cross-layer network. Network failure recovery mechanisms can be divided
into two types: proactive and reactive. Because the reactive fault recovery mechanism
has the problem of a slow recovery speed and may cause the cross-layer network to enter
a fluctuating state, in our paper, a proactive failure recovery mechanism is used. We
minimize the MLU in the network after failure recovery to avoid link congestion caused
by failure recovery. The congestion of the physical link will lead to a sharp increase in
the delay of the logical link, which will cause the network to enter the interactive process
and network fluctuations. Compared with the reactive failure recovery mechanism, the
proactive failure recovery mechanism can make the network recover from failures faster
and reduce the frequency of the network entering a fluctuating state.

The rest of the paper is organized as follows. Section 2 presents the related work.
Section 3 introduces the system model and the design objectives of SRC and LLS. In
Section 4, we introduce the failure correction mechanism in a cross-layer architecture. In
Section 5, we design two strategies to accelerate network convergence. Section 6 presents
the experiment results. Section 7 summarizes the paper.

Electronics 2021, 10, 2874 4 of 24

2. Related Work
2.1. SFC

The NFV framework has attracted a lot of attention, especially in the areas of VNF
deployment and service chain resiliency. The issues of efficient resource management of
NFV, including VNF placement, resource allocation, and flow routing, have been exten-
sively studied in the literature [9]. Sang et al. [10] considered the placement of a minimum
number of VNF instances to cover all of the flows in the case of a single type of network
function, and Sallam et al. [11] addressed this problem in the case of multiple types of
network functions. Cziva et al. [12] formulated the Edge VNF placement problem to
allocate VNFs to a distributed edge infrastructure, minimizing end-to-end latency from
all users to their associated VNFs. The dynamic placement scheduler minimizes VNF
migrations compared with other schedulers and offers quality of service guarantees by
not exceeding a maximum number of latency violations that can be tolerated by certain
applications. The proactive provisioning for NFV has also attracted growing attention.
Fan et al. [13] defined an optimal availability-aware SFC mapping problem and presented
a novel online algorithm that can minimize physical resource consumption while guar-
anteeing the required high availability within a polynomial time. In another work, Fei
et al. [14] formulated the VNF provisioning problem so that the cost incurred by inaccurate
prediction and VNF deployment would be minimized. In the proposed online algorithm,
we first employ an efficient online learning method which aims at minimizing the error in
predicting the service chain demands. In this paper, we combine SFC with a cross-layer
model. At the logical layer, users using our architecture pay attention to how to meet their
needs for the SFC and minimize the delay in their use of services. The tasks generated by
the logical layer will have the physical layer to complete the transmission, regardless of the
SFC requirements and delays.

2.2. Network Failure Correction

In this paper, we use algorithms based on segment routing (SR) to implement network
failure correction. SR is based on the existing IGP protocol, and both can use the fast reroute
mechanism. When there is a link or node failure, IGP recomputes all the shortest paths,
and the SR is automatically repaired without interruption. There is a lot of research on
network correction in segment routing and other traffic engineering methods. In [15], Hao
et al. proposed a method to optimize the centralized determination of connections’ primary
paths to enable the best sharing of restoration bandwidth over non-simultaneous failures.
Pereira et al. [16] proposed a robust semi-oblivious method to meet the flow demands and
ensure good network performance after link failures. In [17], the authors proposed an SR
method to construct a pairs path to remain disjointed even after an input set of failures
to be used for restoration. In [18], the authors initiated a systematic study of such local
fast failover mechanisms, which not only provided connectivity guarantees even under
multiple link failures but also accounted for the quality of the resulting failover routes
for locality and congestion, and they proposed a method called CASA, which provides
a high degree of robustness as well as a provable quality of fast rerouting. In [19], Bogle
et al. advocated for a novel approach to leverage empirical data to generate a probabilistic
model of network failures and maximize bandwidth allocation to network users, subject
to an operator-specified availability target. This approach enables network operators to
strike the utilization-availability balance that best suits their goals and operational reality,
because in a cross-layer architecture, different layers have different perceptions of network
failures. In this paper, we enumerate the various types of network errors in the cross-layer
system, solve the SFC failures at the logical layer, and solve the control plane and data
plane failures at the physical layer.

2.3. Cross-Layer Model

A lot of previous work proved that for users, network-level routing configuration
cannot meet everyone’s requirements for network performance [20], but when all users

Electronics 2021, 10, 2874 5 of 24

selfishly choose routing paths based on their own needs, the network will suffer serious
performance degradation. In order to better meet the needs of users and ensure the overall
performance of the network, there has been a lot of work on cross-layer optimization in
recent years [7]. Xiao et al. [21] analyzed the interaction of overlays and underlays as a two-
stage congestion game and recommended simple operational guidelines to ensure global
stability. The paper further explored the use of the Shapley value as an enabler of mutual
cooperation in an otherwise competitive environment. In [22], Guck et al. developed
a novel function split framework for achieving hard real-time QoS based on SDN. The
function split framework can be implemented with any SDN controller that has a global
view of the network and can set the queue level flow rules. Wang et al. [23] presented
a game theoretic study of the selfish strategic collaboration of multiple overlays when
they are allowed to use multipath transfer, which is referred to as the multipath selection
game. This research showed analytically the existence and uniqueness of Nash equilibria in
these games. Furthermore, the authors found that the loss of efficiency of Nash equilibria
can be arbitrarily large if the overlays do not have resource limitations. When there are
multiple overlays participating in resource competition, the issue of fairness inevitably
becomes the first consideration. Xu et al. [24] proposed a novel cross-layer, fairness-driven,
SCTP-based concurrent multipath transfer solution to improve video delivery performance
while remaining fair to the competing transmission control protocol (TCP) flows. Wang
et al. [6] proposed methods to eliminate the oscillations generated by the interaction
between service routing and TE so that the network converges quickly. In [25], Chen et al.
proposed a cross-layer resource optimization model and solution to wireless-enabled SFC
networks to minimize end-to-end downlink latency, including both wireless and wired
delay, by optimizing the VNF placement, routing path, and wireless resources in terms of
the resource block for each SFC. In this paper, we consider the influence of various kinds
of network failures on the interaction process. Network failures will lead to instability of
the cross-layer interaction. We observe the influence of various failures on the cross-layer
interaction process through experiments and propose strategies to accelerate convergence.

3. System Model

In this section, we formally define the multilayer SRC architecture with LLS. In order
to explain our complex cross-layer model clearly, we introduce the SRC model, the LLS
model, and the cross-layer bargaining model.

3.1. SRC Model

First, we introduce SRC as our underlay network to provide physical links for de-
mands from the overlay and background users. We can get an overall overview of our
SRC model from Figure 2. In SRC, we studied the MLU minimization problem in a cloud
network consisting of multiple data centers to provide different types of service chains.
Each router in the SRC may lead to a data center that provides various service chains or
may be connected to a group of user nodes. It is worth noting that although SRC, as the
actual implementer of overlay requirements, does not pay attention to whether each router
is connected to a data center or a user node, SRC focuses on the correct transmission of
overlay traffic requirements, minimization of MLU, and various kinds of data and control
plane failure correcting.

Electronics 2021, 10, 2874 6 of 24

Electronics 2021, 10, x FOR PEER REVIEW 6 of 24

of overlay traffic requirements, minimization of MLU, and various kinds of data and con-
trol plane failure correcting.

Figure 2. SRC model.

As is shown in Table 1, we used 𝐺ሺ𝑉, 𝐸ሻ to denote an underlay network, where 𝑉 is
a set of physical nodes and E is a set of physical links. Then, we defined 𝐶௘ as the link
bandwidth capacity of 𝑒 and 𝑟 ∈ 𝑅 as a possible flow of the underlay. The demand size
of 𝑟 was denoted by 𝑑௥.

Table 1. Table of symbols.

Symbols Description
Symbols in SRC 𝐺ሺ𝑉, 𝐸ሻ Underlay network graph with nodes 𝑉 and links 𝐸. 𝐶௘ The bandwidth capacity of link e. 𝜃 The maximum link utilization. 𝑘 ∈ 𝑉 An intermediate node for segment routing. 𝑟 ∈ 𝑅 Flows aggregated by ingress and egress switches. 𝑟௦ The source switch of flow 𝑟. 𝑟௧ The end switch of flow 𝑟. 𝑡௥௞ A tunnel consisting of two shortest segments. 𝑑௥௢௩௘௥௟௔௬ Underlay demand on flow 𝑟 arising from the logical link ൫𝑟௦ᇲᇱ , 𝑟௧ᇲᇱ ൯. 𝑑௥௨௡ௗ௘௥௟௔௬ Underlay demand on flow 𝑟 arising from background traffic applications. 𝑑௥ The sum of 𝑑௥௢௩௘௥௟௔௬ and 𝑑௥௨௡ௗ௘௥௟௔௬. 𝑔௥௞ሺ𝑒ሻ The number of times the tunnel 𝑡௥௞ passes through physical link 𝑒. 𝑛𝑒 Maximum number of link errors that occur simultaneously. 𝑛𝑣 Maximum number of switch errors that occur simultaneously. 𝑛𝑐 Maximum number of control plane errors that occur simultaneously. ሺ𝜷, 𝜸ሻ ∈ 𝑈௡௘,௡௩ A scenario expressing 𝑛𝑣 node failures and 𝑛𝑒 link failures at the same time. 𝜶 ∈ 𝐵௡௖ A vector expressing 𝑛𝑐 control failures at the same time. 𝛷௩,௘ The total traffic aggregating at link 𝑒 from flows starting at 𝑣 if no configuration failure happens. 𝛹௩,௘ The total traffic aggregating at link 𝑒 from flows starting at 𝑣 if there exist configuration failures. 𝑧௥௞ The traffic volume on tunnel 𝑡௥௞. 𝑔௥௞ሺ𝑒, 𝜷, 𝜸ሻ The 𝑔௥௞ሺ𝑒ሻ in the failure case ሺ𝜷, 𝜸ሻ. 𝑦௥௞ The splitting weight of the current period. 𝑦௥௞෢ The splitting weight of the last period. ℎ𝑜𝑝ሺ𝑟ሻ௟௔௦௧ The total hop count of each flow 𝑟 after the operation of SRC in the last round.
Symbols in LLS

Figure 2. SRC model.

As is shown in Table 1, we used G(V, E) to denote an underlay network, where V
is a set of physical nodes and E is a set of physical links. Then, we defined Ce as the link
bandwidth capacity of e and r ∈ R as a possible flow of the underlay. The demand size of r
was denoted by dr.

An important task for SRC is to balance the load and avoid link congestion even when
there exist node failures, link failures, and control plane failures. Link congestion causes
a performance degradation in SRC, which is intolerable for time-sensitive applications.
In order to accomplish our goal, we used segment routing [26] to design our algorithm.
Segment routing is a new type of source-routing paradigm. It splits a path into multiple
shortest paths and uses the header of the transport protocol to save the shortest path
segments that have passed. We used segmented routing for two main reasons. The
first was because it could make full use of the existing network facilities based on the
shortest path and also give full play to the advantages of the SDN environment. It has the
characteristics of easy deployment and strong scalability. The second was that the rerouting
mechanism we adopted was also designed according to the shortest path algorithm. In this
paper, we use two-segment routing, which is enough to explain our problem, and more
segments can be expanded simply by increasing the number of calculations.

Considering that there are many elements involved in our paper, in order to highlight
the key points, we used a relatively simplified SFC deployment and two-segment routing.
In the actual environment, a data center can directly provide multiple composite services
(each composite service represents a complete SFC), such as in the literature [27]. If a
packet needs a certain service, it only needs to pass through the data in the chain that
provides this service. In the data center, the network flow will pass through a service
function chain composed of multiple sub-services (such as firewalls, DPI, and NAT) to
meet the demands of users for the specified service. Therefore, the use of two segments
can also complete all types of user demands. More segmented segment routing was
needed to rewrite our mathematical formulas, such as changing zk

r to zkl
r and gk

r (e) to gkl
r (e).

When the number of segments is small, the expansion of the number of segments will not
be difficult. When the number of segments becomes very large, the problem of solving
segment routing will become very complicated, which is not the focus of this paper. The
authors of [28] proposed CG4SR to provide a fast calculation method for multi-segment
routing. Fortunately, according to the conclusion of [26], two segments could be very
efficient for us to use, and using too many segments was not necessary.

Electronics 2021, 10, 2874 7 of 24

Table 1. Table of symbols.

Symbols Description

Symbols in SRC

G(V, E) Underlay network graph with nodes V and links E.
Ce The bandwidth capacity of link e.
θ The maximum link utilization.

k ∈ V An intermediate node for segment routing.
r ∈ R Flows aggregated by ingress and egress switches.

rs The source switch of flow r.
rt The end switch of flow r.
tk
r A tunnel consisting of two shortest segments.

doverlay
r Underlay demand on flow r arising from the logical link

(
r′s′ , r′t′

)
.

dunderlay
r Underlay demand on flow r arising from background traffic applications.

dr The sum of doverlay
r and dunderlay

r .
gk

r (e) The number of times the tunnel tk
r passes through physical link e.

ne Maximum number of link errors that occur simultaneously.
nv Maximum number of switch errors that occur simultaneously.
nc Maximum number of control plane errors that occur simultaneously.

(β,γ) ∈ Une,nv A scenario expressing nv node failures and ne link failures at the same time.
α ∈ Bnc A vector expressing nc control failures at the same time.

Φv,e The total traffic aggregating at link e from flows starting at v if no configuration failure happens.
Ψv,e The total traffic aggregating at link e from flows starting at v if there exist configuration failures.
zk

r The traffic volume on tunnel tk
r .

gk
r (e,β,γ) The gk

r (e) in the failure case (β,γ).
yk

r The splitting weight of the current period.
ŷk

r The splitting weight of the last period.
hop(r)last The total hop count of each flow r after the operation of SRC in the last round.

Symbols in LLS

G′(V′ ∪ DC′, E′) Overlay network graph with nodes V′, data center DC′, and links E′.
k′ ∈ DC′ A data center in DC′.
r′ ∈ R′ Flows aggregated by ingress and egress switches.

r′m′ ∈ R′m′ Flows that require a type-m′ service chain aggregated by ingress and egress switches.
r′s The source switch of flow r′.
r′t The end switch of flow r′.

delay(r′) The delay of flow r′.
link_delay(e′) The link delay of overlay link e′.

dr′ ∈ D′ The bandwidth demand of flow r′.
dr′ ,m′ ∈ Dm′ The bandwidth demand of flow r′ that requires instances of type-m′ service chains.

f e′
r′ The decision variable to represent the fraction of dr′ on link e′.

m′ ∈ M′ A type of service chain.
SCm′ Type-m′ service chains.
SCk′

m′ The set of instances of type-m′ service chains at data center k′.∣∣∣SCk′
m′

∣∣∣ The computing resource capacity of SCk′
m′ .

xk′
r′ ,m′ The bandwidth splitting weight of flow r′m′ on e′.

gk′
r′ (e
′) The number of times the tunnel tk′

r′ passes through local link e′.
ns Maximum number of SFC failures that occur simultaneously.

λ′ ∈ Sns A vector expressing ns SFC failures at the same time.
load(e′)last The amount of overlay traffic on each link after the operation of overlay routing in the last round.

In this section, we first give the basic formula of segment routing traffic engineering.
Then, in the next section, we will introduce a forward correction mechanism that can avoid
congestion even if errors occur. We used θ to represent the MLU as the objective function
of our SRC. It is worth noting that our objective function of SRC will change slightly after
the error correction mechanism is introduced in the next section. In the next section, our
objective function will be to minimize the MLU in the failure correction scenarios. Each
SRC demand can be transmitted by a group of tunnels tk

r , ∀k ∈ V. Here, tk
r denotes a path

Electronics 2021, 10, 2874 8 of 24

consisting of the two shortest segments: one from rs to k and the other from k to rt. Let zk
r

denote the traffic volume for tunnel tk
r , and we have ∑

k
zk

r = dr. Let yk
r denote the allocation

ratio of tunnel tk
r , and we have ∑

k
yk

r = 1. Notice that SRC does not differentiate the overlay

demands and background demands. When receiving demands from the LLS and underlay
users, SRC performs the operation formulated as

minimize θ (1)

∑
r

∑
k

zk
r gk

r (e) ≤ Ceθ, ∀e ∈ E (2)

∑
k

zk
r ≥ dr, ∀r ∈ R (3)

0 ≤ zk
r , 0 ≤ θ, ∀r ∈ R, k ∈ V (4)

We used Equation (1) to calculate the MLU. Equation (2) could ensure that all links did
not exceed the link bandwidth capacity limit, and Equation (3) could ensure all demands
could be satisfied. We used gk

r (e) to represent the amount of traffic imposed on edge e when
a unit of traffic passed through tunnel tk

r . We used the Equal Cost Multi-path (ECMP) [29]
strategy in the traffic transmission of each segment. When there were multiple paths
between the two endpoints of the segment, we divided our traffic equally and transmitted
it on different paths:

gk
r (e) =

tk
rs(e)n

rt
k + trt

k (e)n
k
rs

nrt
k nk

rs

(5)

We used Equation (5) to calculate gk
r (e), where tb

a(e) represents the number of times
that all shortest paths between a and b pass through e and nb

a represents the number of
shortest paths between a and b. In the case of one segment, we calculated the number of
shortest paths between rs and rt. The traffic of this segment was divided equally to each
path. Let us take the situation in Figure 3 as an example. Assuming that there is a unit of
traffic that needs to be transmitted between A and G, there are three shortest paths between
A and G, so each path is divided into one third of the unit of traffic. Because the link <A,
B> exists on the two shortest paths, there is two-thirds of the unit of traffic on <A, B>. In
the case of two segments, the number of paths for rs and rt is the number of shortest paths
in the first segment multiplied by the number of shortest paths in the second segment. We
divided the traffic into equal parts on all paths and used Equation (5) to calculate the value
of gk

r (e).

Electronics 2021, 10, x FOR PEER REVIEW 8 of 24

avoid congestion even if errors occur. We used 𝜃 to represent the MLU as the objective
function of our SRC. It is worth noting that our objective function of SRC will change
slightly after the error correction mechanism is introduced in the next section. In the next
section, our objective function will be to minimize the MLU in the failure correction sce-
narios. Each SRC demand can be transmitted by a group of tunnels 𝑡௥௞, ∀𝑘 ∈ 𝑉. Here, 𝑡௥௞
denotes a path consisting of the two shortest segments: one from 𝑟௦ to 𝑘 and the other
from 𝑘 to 𝑟௧. Let 𝑧௥௞ denote the traffic volume for tunnel 𝑡௥௞, and we have ∑ 𝑧௥௞௞ = 𝑑௥. Let 𝑦௥௞ denote the allocation ratio of tunnel 𝑡௥௞, and we have ∑ 𝑦௥௞௞ = 1. Notice that SRC does
not differentiate the overlay demands and background demands. When receiving de-
mands from the LLS and underlay users, SRC performs the operation formulated as 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜃 (1)෍ ෍ 𝑧௥௞𝑔௥௞ሺ𝑒ሻ ≤ 𝐶௘𝜃௞௥ , ∀𝑒 ∈ 𝐸 (2)

෍ 𝑧௥௞௞ ≥ 𝑑௥, ∀𝑟 ∈ 𝑅 (3)0 ≤ 𝑧௥௞, 0 ≤ 𝜃, ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝑉 (4)

We used Equation (1) to calculate the MLU. Equation (2) could ensure that all links
did not exceed the link bandwidth capacity limit, and Equation (3) could ensure all de-
mands could be satisfied. We used 𝑔௥௞ሺ𝑒ሻ to represent the amount of traffic imposed on
edge 𝑒 when a unit of traffic passed through tunnel t୰୩. We used the Equal Cost Multi-
path (ECMP) [29] strategy in the traffic transmission of each segment. When there were
multiple paths between the two endpoints of the segment, we divided our traffic equally
and transmitted it on different paths: 𝑔௥௞ሺ𝑒ሻ = 𝑡௥ೞ௞ ሺ𝑒ሻ𝑛௞௥೟ + 𝑡௞௥೟ሺ𝑒ሻ𝑛௥ೞ௞𝑛௞௥೟𝑛௥ೞ௞ (5)

We used Equation (5) to calculate 𝑔௥௞ሺ𝑒ሻ, where 𝑡௔௕ሺ𝑒ሻ represents the number of
times that all shortest paths between 𝑎 and 𝑏 pass through 𝑒 and 𝑛௔௕ represents the
number of shortest paths between 𝑎 and 𝑏. In the case of one segment, we calculated the
number of shortest paths between 𝑟௦ and 𝑟௧ . The traffic of this segment was divided
equally to each path. Let us take the situation in Figure 3 as an example. Assuming that
there is a unit of traffic that needs to be transmitted between A and G, there are three
shortest paths between A and G, so each path is divided into one third of the unit of traffic.
Because the link <A, B> exists on the two shortest paths, there is two-thirds of the unit of
traffic on <A, B>. In the case of two segments, the number of paths for 𝑟௦ and 𝑟௧ is the
number of shortest paths in the first segment multiplied by the number of shortest paths
in the second segment. We divided the traffic into equal parts on all paths and used Equa-
tion (5) to calculate the value of 𝑔௥௞ሺ𝑒ሻ.

Figure 3. An example of calculating the value of 𝑔௥௞ሺ𝑒ሻ.

SRC splits each flow onto multiple paths without considering packet reordering.
Mainly for the following considerations, packet reordering is a general problem involved

Figure 3. An example of calculating the value of gk
r (e).

SRC splits each flow onto multiple paths without considering packet reordering.
Mainly for the following considerations, packet reordering is a general problem involved in
multipath routing, which is far from limited to this paper. There are more mature solutions
to this problem, such as MBD/ADBR [30], TS-EDPF [31], and THR [32]. In addition, this
paper focuses on models and analysis, focusing on the convergence framework based on
game theory, performance-bound and multipath-routing computing (rather than how to
schedule packets after calculating the multipath routing), and other issues. We use the

Electronics 2021, 10, 2874 9 of 24

flow-level model for modeling, and our problem is not suitable for the packet-level model.
Similar research can be seen in a large number of cross-layer references [6,33,34]. Finally, in
practical applications, the packet rearrangement problem can be solved by per-flow traffic
splitting methods such as DHTC [35] or a flow cache [36]. Aside from that, we can also use
the techniques in THR [32] and FLARE [37] to mitigate packet reordering.

SRC uses a snapshot of the traffic demand matrix to calculate the SR tunnel allocation
scheme. The frequency of recalculation depends on the amplitude of change in the traffic
matrix or the desired periodicity. Note that networks using only the above descriptions
cannot handle network errors, which can result in serious degradation of the load balancing
performance when errors occur. LLS’s performance cannot be guaranteed. In the next
section, we introduce some methods to improve the robustness of SRC.

3.2. LLS Model

In this subsection, we introduce LLS as our overlay network to provide low-latency
service for overlay users.

We can get an overall overview of our LLS model from Figure 4. In LLS, we studied
the latency minimization problem to meet the low latency needs of users. Users’ data
packets in LLS not only require point-to-point traffic transmission, but they also need to
go through a set of specific service function chains to perform specific operations on the
packets. A number of instances of service chains have been instantiated in each service
chain node corresponding to the data center in SRC.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 24

in multipath routing, which is far from limited to this paper. There are more mature solu-
tions to this problem, such as MBD/ADBR [30], TS-EDPF [31], and THR [32]. In addition,
this paper focuses on models and analysis, focusing on the convergence framework based
on game theory, performance-bound and multipath-routing computing (rather than how
to schedule packets after calculating the multipath routing), and other issues. We use the
flow-level model for modeling, and our problem is not suitable for the packet-level model.
Similar research can be seen in a large number of cross-layer references [6,33,34]. Finally,
in practical applications, the packet rearrangement problem can be solved by per-flow
traffic splitting methods such as DHTC [35] or a flow cache [36]. Aside from that, we can
also use the techniques in THR [32] and FLARE [37] to mitigate packet reordering.

SRC uses a snapshot of the traffic demand matrix to calculate the SR tunnel allocation
scheme. The frequency of recalculation depends on the amplitude of change in the traffic
matrix or the desired periodicity. Note that networks using only the above descriptions
cannot handle network errors, which can result in serious degradation of the load balanc-
ing performance when errors occur. LLS’s performance cannot be guaranteed. In the next
section, we introduce some methods to improve the robustness of SRC.

3.2. LLS Model
In this subsection, we introduce LLS as our overlay network to provide low-latency

service for overlay users.
We can get an overall overview of our LLS model from Figure 4. In LLS, we studied

the latency minimization problem to meet the low latency needs of users. Users’ data
packets in LLS not only require point-to-point traffic transmission, but they also need to
go through a set of specific service function chains to perform specific operations on the
packets. A number of instances of service chains have been instantiated in each service
chain node corresponding to the data center in SRC.

Figure 4. LLS model. Figure 4. LLS model.

The symbols in LLS are listed in Table 1. An LLS network in an overlay is represented
by the graph G′(V′ ∪ DC′, E′), where V′ is a set of logical nodes, DC′ is a set of data centers,
and E′ is a set of logical links. Each overlay node maps onto a physical node, and each
overlay link maps onto a group of physical paths. A logical flow r′ ∈ R′ denotes a possible
flow of an overlay which contains a set of logical links, and the demand on it is d′r′ . Each
service chain node k′ ∈ DC′ has a computing resource capacity (CPU, RAM, etc.) to
implement VNFs. We used |SCk′

m′ | to denote the computing resource capacity of type-m′

Electronics 2021, 10, 2874 10 of 24

service chains in service chain node k′. We categorized the demand matrix according to
the type of service chain required, and dr′ ,m denotes the bandwidth demand of flow r′ that
requires instances of type-m′ service chains. In order to maintain consistency before and
after in LLS, we still used segmented routing to design our method, because it can easily
transmit user packets through the service function chains to the end nodes.

The goal of LLS is to provide users with the most reliable and lowest-latency services.
We set the minimization of the total delay as our objective function. Let xk′

r′ ,m′ denote the
bandwidth splitting weight of flow r′m′ on k′. Given the topology information of LLS and
the demands of the users, the optimal operation of LLS can be formulated as

minimize ∑
r′

delay
(
r′
)

(6)

delay
(
r′
)
= ∑

e′∈E′
link_delay

(
e′
)
× f e′

r′ (7)

link_delay
(
e′
)
= ∑

e∈E

f e
r × doverlay

r

Ce −∑r f e
r ×

(
doverlay

r + dunderlay
r

) (8)

∑
k′∈DC′

xk′
r′ ,m′ ≥ 1, ∀r′ ∈ R′, m′ ∈ M′ (9)

∑
r′∈R′

xk′
r′ ,m′dr′ ,m′ ≤

∣∣∣SCk′
m′

∣∣∣, ∀k′ ∈ DC′, m′ ∈ M′ (10)

f e′
r′ dr′ = ∑

k∈DC′
∑

m′∈M′
xk′

r′ ,m′g
k′
r′ (e)dr′ ,m′ , ∀r′ ∈ R′, e′ ∈ E′ (11)

d′r = ∑
m′∈M′

dr′ ,m′ , ∀r′ ∈ R′ (12)

xk′
r′ ,m′ ≥ 0, ∀r′ ∈ R′, m′ ∈ M′, k′ ∈ DC′ (13)

Equation (9) is the demand constraint, and Equation (10) is the computing resource
constraint, while f e′

r′ represents the fraction of dr′ on link e′ and is an intermediate variable
for calculating the link delay. Let link_delay(e′) represent the delay overlay LLS link e′.
Note that we adopted the M/M/1 formula in [38] to calculate the link delay, which is
a nonlinear function. We adopted the approach used in [38] to transform the nonlinear
programming function into a piece-wise linear increasing and convex function, which can
be solved in polynomial time. LLS’s link delay is related to the delay of the SRC links,
through which the LLS demands on this LLS link are transmitted. As mentioned above,
an overlay link flow is treated as a demand by the underlay. Thus, we denoted doverlay

r as
a physical demand from rs to rt, and the size of doverlay

r is equal to the amount of traffic
transmitted by the corresponding link in the overlay. There were also some background
traffic demands, defined as dunderlay

r in the physical network. The total demands of the
physical layer are the sum of the two kinds of demands. Equation (8) calculates the link
delay of each logical link.

In our architecture, LLS determines the routing policies for all demands in its logical
network. A source node may divide its demand and transmit traffic by different paths.
For each flow r′m′ , LLS needs to determine how to allocate dr′ ,m′ to different paths. LLS
translates the flow scheme into the demands of SRC, and SRC receives the demands of LLS
and the underlay users and decides how to allocate the traffic on physical links.

3.3. Cross-Layer Model

SRC and LLS have different perspectives on the same network. As shown in Figure 5,
LLS regards the network as a logical network of a set of user application nodes and nodes
that provide services, and SRC is the physical network that carries these applications and

Electronics 2021, 10, 2874 11 of 24

services. A physical network can carry many logical networks. For the overlay, not all
underlay nodes are visible. For the link, a link in the overlay corresponds to a set of paths
determined by the underlay controller in the underlay. The service function chain node of
the overlay corresponds to a node of the underlay connected to a data center that provides
the service function chains. In the cross-layer structure, the main task of LLS is to collect
the link usage status in SRC and to deal with the demands of users and allocate them on
different service function chain nodes and different logical paths. The main task of SRC
is to convert the transmission scheme of LLS to the doverlay

r of the physical layer and then
proceed to traffic engineering.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 24

In our architecture, LLS determines the routing policies for all demands in its logical
network. A source node may divide its demand and transmit traffic by different paths.
For each flow 𝑟௠ᇲᇱ , LLS needs to determine how to allocate 𝑑௥ᇲ,௠ᇲ to different paths. LLS
translates the flow scheme into the demands of SRC, and SRC receives the demands of
LLS and the underlay users and decides how to allocate the traffic on physical links.

3.3. Cross-Layer Model
SRC and LLS have different perspectives on the same network. As shown in Figure

5, LLS regards the network as a logical network of a set of user application nodes and
nodes that provide services, and SRC is the physical network that carries these applica-
tions and services. A physical network can carry many logical networks. For the overlay,
not all underlay nodes are visible. For the link, a link in the overlay corresponds to a set
of paths determined by the underlay controller in the underlay. The service function chain
node of the overlay corresponds to a node of the underlay connected to a data center that
provides the service function chains. In the cross-layer structure, the main task of LLS is
to collect the link usage status in SRC and to deal with the demands of users and allocate
them on different service function chain nodes and different logical paths. The main task
of SRC is to convert the transmission scheme of LLS to the 𝑑௥௢௩௘௥௟௔௬ of the physical layer
and then proceed to traffic engineering.

Figure 5. Cross-layer model.

SRC and LLS have different objectives in the multilayer network architecture. The
objective of SRC is to balance the load even when there are failures in the underlay net-
work, so SRC tends to allocate traffic to the links that are underutilized and not easily
congested by a failure scenario. However, SRC inevitably causes the latency of LLS to
become large. In the same way, in order to achieve a smaller delay, LLS tends to configure
paths with shorter latency for each demand. In general, a path with a shorter latency may
have fewer hops. However, the selfish operation may lead the corresponding SRC link to
have a high link load or SRC to become congested due to failures. The objective incon-
sistency between SRC and LLS makes both layers constantly change their routing config-
uration, causes network fluctuation, and greatly harms the time-sensitive performance of
LLS. It is worth noting that the objective functions of SRC and LLS are indeed not com-
pletely opposite. It is not that the increase of the MLU of the SRC will make the delay of
the LLS decrease, or vice versa. In [38], Fortz and Thorup used the method of minimizing
the M/M/1 queue delay to avoid congestion. To some extent, the increase of the MLU of

Figure 5. Cross-layer model.

SRC and LLS have different objectives in the multilayer network architecture. The
objective of SRC is to balance the load even when there are failures in the underlay network,
so SRC tends to allocate traffic to the links that are underutilized and not easily congested
by a failure scenario. However, SRC inevitably causes the latency of LLS to become large.
In the same way, in order to achieve a smaller delay, LLS tends to configure paths with
shorter latency for each demand. In general, a path with a shorter latency may have fewer
hops. However, the selfish operation may lead the corresponding SRC link to have a high
link load or SRC to become congested due to failures. The objective inconsistency between
SRC and LLS makes both layers constantly change their routing configuration, causes
network fluctuation, and greatly harms the time-sensitive performance of LLS. It is worth
noting that the objective functions of SRC and LLS are indeed not completely opposite. It
is not that the increase of the MLU of the SRC will make the delay of the LLS decrease, or
vice versa. In [38], Fortz and Thorup used the method of minimizing the M/M/1 queue
delay to avoid congestion. To some extent, the increase of the MLU of SRC will also cause
the delay of LLS to increase. A more accurate description of the reasons for the fluctuations
should be the misalignment between the objectives of SRC and LLS. We understand that
the conflict of this relationship is that when one layer reaches the optimum, the other layer
is often unable to reach the optimum. The word “conflict” is used in many papers [6,33,34]
on cross-layer networks, so we also used the same word to facilitate understanding.

The interaction process can be revealed in Algorithm 1. SRC and LLS take turns to
calculate their optimal schemes with inconsistent objectives. In the interaction process, the
result of SRC will change the allocation ratio of the tunnels between the demand pairs,
which leads to new link latency in LLS. The optimal operation of LLS will change the
routes in LLS according to the logical link delay, which is determined by the corresponding
physical path and the demand pattern, which will change the allocated scheme of SRC

Electronics 2021, 10, 2874 12 of 24

in the next round. We made SRC perform its optimal operation at odd rounds and LLS
perform its optimal operation at even rounds. The core calculation of the algorithm is the
following two formulas:[

doverlay
r , delayLLS, MLULLS

]
= LLS

(
yk

r

)
(14)[

yk
r , delaySRC, MLUSRC

]
= SRC

(
doverlay

r

)
(15)

At the odd rounds, we used Equation (15) to compute the tunnel splitting weights
yk

r , delayLLS with updated yk
r , and MLU. Note that SRC is calculated in the underlay,

which will change the allocation scheme of the underlay tunnels. At this time, LLS has not
calculated the new demand pattern, so the delayLLS can be calculated by using the updated
yk

r and the non-updated doverlay
r . SRC’s selfishness leads to a high value for delayLLS, so LLS

will perform Equation (14) to lower the latency. The input of LLS from SRC is yr
k, and the

output of LLS is a new demand matrix doverlay
r . At the same time, we can get the delayLLS

and MLULLS, which can be obtained by allocating the updated dr with the non-updated
yk

r . SRC and LLS take turns to compute the optimal operation for themselves until they
reach an agreement, which is the so-called Nash equilibrium [6]. In the Nash equilibrium
state, both schemes can produce the same MLU and delays, and the network also enters a
stable state without frequently updating the routing configuration.

Algorithm 1 Cross-Layer Model Iterative Algorithm

Input: G(V, E), G(V′ ∪ DC′, E′), Dunderlay,
{

D′m′
}

, εmlu, εdelay

Output:
{

xk′
r′ ,m′

}
,
{

zk
r

}
1: ∆mlu = ∞
2: ∆ latency = ∞

3: doverlay
r = 0, ∀r

4: while (∆mlu ≥ εmlu

∣∣∣∣∣∣∆delay ≥ εdelay) do

5:
[
yk

r , delaySRC, MLUSRC
]
= SRC

(
doverlay

r

)
6:

[
doverlay

r , delayLLS, MLULLS
]
= LLS

(
yk

r

)
7: ∆mlu =

∣∣MLULLS −MLUSRC
∣∣

8: ∆ latency =
∣∣delayLLS − delaySRC

∣∣
9: end
10: return

{
xk′

r′ ,m′

}
,
{

zk
r

}
SRC and LLS have different objectives in the multilayer network architecture. The

objective of SRC is to balance the load even when there are failures in the underlay network,
so SRC tends to allocate traffic to the links that are underutilized and not easily congested
by a failure scenario. However, SRC inevitably causes the latency of LLS to become large. In
the same way, in order to achieve a smaller delay, LLS tends to configure paths with shorter
latency for each demand. In general, a path with a shorter latency may have fewer hops.
However, selfish operation may lead to the corresponding SRC link to have a high link
load or SRC to become congested due to failures. The objective inconsistency between SRC
and LLS makes both layers constantly change their routing configuration, causes network
fluctuation, and greatly harms the time-sensitive performance of LLS. Inspired by [6,8], we
propose two strategies for SRC and LLS to accelerate the convergence of network states in
Section 5.

4. Failure Correction in a Cross-Layer Architecture

In a cross-layer network architecture, what affects the performance of time-sensitive
applications most are endless interaction and network failures [39]. Network errors may
cause the cross-layer network to frequently enter the interactive process. The overlay
network uses user demands and the delay of each logical link as input to calculate the

Electronics 2021, 10, 2874 13 of 24

traffic distribution on each logical link. The traffic on each logical link will be transformed
into a demand pair and a user demand matrix formed by all demand pairs. The underlay
processes the user demand matrix and the background demand matrix together to generate
a new routing configuration. Therefore, when the demand matrix is input into our cross-
layer framework, the calculation results of the overlay will change the input of the underlay,
leading to reconfiguration of the underlay which, in turn, affects the input of the overlay
and so on, causing continuous fluctuations in the cross-layer network [6]. In the stable
state of the cross-layer network, when the user demand matrix or the logical link delay
changes beyond the preset range, the overlay will be reconfigured, which will also cause the
underlay to enter reconfiguration, which will cause fluctuations in the cross-layer network.
The same is true when the input of the underlay (background flow matrix and overlay
demand matrix) changes more than the preset amplitude.

Network failure recovery mechanisms can be divided into two types: proactive and
reactive [40]. We will first introduce the reactive failure recovery mechanism. When an error
occurs in the network, the network detects the failure through some detection mechanisms
and repairs it by reconfiguring the route. The reactive failure recovery mechanism has two
problems: one is the slow recovery speed, and the other is that it will frequently cause the
cross-layer network to enter a fluctuating state. In our paper, a proactive failure recovery
mechanism is used. We minimize the MLU in the network after failure recovery to avoid
link congestion caused by failure recovery. The congestion of the physical link will lead to
a sharp increase in the delay of the logical link, which will cause the network to enter the
interactive process, which will cause network fluctuations. Compared with the reactive
error recovery mechanism, the proactive failure recovery mechanism can make the network
recover from failures faster and reduce the frequency of the network entering a fluctuating
state, but the proactive failure mechanism needs to reserve more resources in exchange for
availability.

First of all, we try to solve the data plane errors and control plane errors that may
occur in the network in SRC. For LLS unique service function chain errors, we solve them
at the LLS layer. We use proactive error correction methods to reserve bandwidth in
advance for the occurrence of errors and automatically repair them when errors occur
instead of recalculating the entire network traffic, which is not only slow but also introduces
fluctuations in the process of interaction.

4.1. Failure Correction in SRC

The base version of SRC is slow to respond to congestion caused by control plane
and data plane failures. In the base version of SRC, when a failure happens, the network
operator detects the failure, recalculates the traffic allocation scheme, and configures it on
data plane. LLS is sensitive to congestion, packet drops, or long queuing delays of the
underlay, and the bad performance of the underlay may cause an increase in the delay of
LLS or a recalculation of the LLS routing scheme, which will reduce the performance of
time-sensitive applications. In this subsection, we are inspired by the FFC method [40] to
introduce a forward correction mechanism for our SRC method.

4.1.1. Correction of Data Plane Failures

In order to support the better working of LLS, we introduce the IGP-based rerouting
mechanism [15] to SRC to correct the node and link failures in the network. In an IGP-based
network, when a failure occurs, the switch will update the topology data and recompute
the shortest path for every node pair. In SR, because an SR tunnel contains several shortest
path segments, the IGP-based rerouting mechanism can be used by our SRC. In Figure 6,
we show the paths of tunnel tk

r . When there is no failure in the network, the tunnel tk
r uses

the path rs → k→ rt to transmit the traffic, and when there is a failure in the link of the
path, a new shortest path for the node pair (rs, k) will be configured in all switches. When
a node failure occurs, the network will adopt a similar method.

Electronics 2021, 10, 2874 14 of 24

Electronics 2021, 10, x FOR PEER REVIEW 14 of 24

time-sensitive applications. In this subsection, we are inspired by the FFC method [40] to
introduce a forward correction mechanism for our SRC method.

4.1.1. Correction of Data Plane Failures
In order to support the better working of LLS, we introduce the IGP-based rerouting

mechanism [15] to SRC to correct the node and link failures in the network. In an IGP-
based network, when a failure occurs, the switch will update the topology data and
recompute the shortest path for every node pair. In SR, because an SR tunnel contains
several shortest path segments, the IGP-based rerouting mechanism can be used by our
SRC. In Figure 6, we show the paths of tunnel 𝑡௥௞. When there is no failure in the network,
the tunnel 𝑡௥௞ uses the path 𝑟௦ → 𝑘 → 𝑟௧ to transmit the traffic, and when there is a failure
in the link of the path, a new shortest path for the node pair ሺ𝑟௦, 𝑘ሻ will be configured in
all switches. When a node failure occurs, the network will adopt a similar method.

Figure 6. IGP-based rerouting mechanism in SRC.

When a node or link fails, it impacts all tunnels passing through it. When the switches
detect the fault, they reconfigure their routing table. The paths of the impacted tunnels
also change, which may lead to network congestion. To solve this problem, SRC takes into
account the impact of failures when designing the traffic allocation plan. For data plane
faults (including node and link failures), we set two parameters, 𝑛𝑣 and 𝑛𝑒, to represent
the maximum node and link failures that SRC can tolerate; that is to say, if there are 𝑛𝑒
link failures and 𝑛𝑣 node failures in the network, congestion will not occur. We intro-
duced the following formulas to handle data plane failures: ෍ ෍ 𝑧௥௞௞௥ 𝑔௥௞ሺ𝑒, 𝜷, 𝜸ሻ ≤ 𝐶௘𝜃, ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝑉 (16)

෍ 𝑧௥௞௞ ≥ 𝑑௥, ∀𝑟 ∈ 𝑅, ሺ𝜷, 𝜸ሻ ∈ 𝑈௡௘,௡௩ (17)

Let β௘ = 1 denote that link 𝑒 has failed and γ௩ = 1 represent that switch 𝑣 has
failed. On the contrary, if the value is 0, no failure happens on the link or node. A case of
a data plane fault can be represented by ሺ𝜷, 𝜸ሻ, where vector 𝜷 = {𝛽௘|𝑒 ∈ 𝐸}, and vector 𝜸 = {𝛾௩|𝑣 ∈ 𝑉}. SRC can achieve robustness to 𝑛𝑒 link failures and 𝑛𝑣 node failures
and require that there is no overloaded link under the set of 𝑈௡௘,௡௩ = {ሺ𝜷, 𝜸ሻ| ∑ 𝛽௘௘ ≤𝑛𝑒, ∑ 𝛾௩௩ ≤ 𝑛𝑣}. Given a failure case ሺ𝜷, 𝜸ሻ, we can easily get the value of 𝑔௥௞ሺ𝑒, 𝜷, 𝜸ሻ,
which denotes the 𝑔௥௞ሺ𝑒ሻ in the failure case ሺ𝜷, 𝜸ሻ with an IGP-based rerouting mecha-
nism. Equation (16) calculates the MLU for all given failure cases, and Equation (17) meets
all demands for all given failure cases. Note that now the 𝜃 is the maximum link utiliza-
tion after the reroute of data plane failures. Only the allocation scheme with θ less than
one is the balanced load scheme that can correct the failures accurately.

Figure 6. IGP-based rerouting mechanism in SRC.

When a node or link fails, it impacts all tunnels passing through it. When the switches
detect the fault, they reconfigure their routing table. The paths of the impacted tunnels
also change, which may lead to network congestion. To solve this problem, SRC takes into
account the impact of failures when designing the traffic allocation plan. For data plane
faults (including node and link failures), we set two parameters, nv and ne, to represent
the maximum node and link failures that SRC can tolerate; that is to say, if there are ne link
failures and nv node failures in the network, congestion will not occur. We introduced the
following formulas to handle data plane failures:

∑
r

∑
k

zk
r gk

r (e, β, γ) ≤ Ceθ, ∀r ∈ R, k ∈ V (16)

∑
k

zk
r ≥ dr, ∀r ∈ R, (β, γ) ∈ Une,nv (17)

Let βe = 1 denote that link e has failed and γv = 1 represent that switch v has failed. On
the contrary, if the value is 0, no failure happens on the link or node. A case of a data plane fault
can be represented by (β, γ), where vector β = {βe|e ∈ E}, and vector γ = {γv|v ∈ V}. SRC
can achieve robustness to ne link failures and nv node failures and require that there is no

overloaded link under the set of Une,nv =

{
(β, γ)

∣∣∣∣∑e βe ≤ ne, ∑
v

γv ≤ nv
}

. Given a failure

case (β, γ), we can easily get the value of gk
r (e, β, γ), which denotes the gk

r (e) in the failure
case (β, γ) with an IGP-based rerouting mechanism. Equation (16) calculates the MLU for
all given failure cases, and Equation (17) meets all demands for all given failure cases. Note
that now the θ is the maximum link utilization after the reroute of data plane failures. Only
the allocation scheme with θ less than one is the balanced load scheme that can correct the
failures accurately.

4.1.2. Correction of Control Plane Failures

Control plane failures are unique to centralized traffic engineering (TE) and may hap-
pen when a centralized controller calculates a new traffic allocation scheme and configures
each switch. The switch where the control plane error occurs does not update the routing
table of the SR tunnels and still uses the routing table of the previous period, which is likely
to cause excessive network latency or congestion.

For control plane faults, the goal of SRC is to calculate a new configuration
{

zk
r , yk

r

}
such that no congestion will occur as long as nc or fewer switches fail to update their old
configuration

{
ẑk

r , ˆyk
r
}

. Let αv = 1 denote that there exists 1 flow configuration failure at
least in the switch v. Because SR is a kind of source-routing technology, the control plane
failure impacts the flow with v as the source node. If αv = 0, there is no control plane failure
in the switch v. Therefore, a case of control plane failures in the network can be represented
as a vector α = {αv|v ∈ V}. We set a parameter nc to denote the protection capability of

Electronics 2021, 10, 2874 15 of 24

SRC. SRC can work without congestion under the set of cases Bnc =

{
α

∣∣∣∣ ∑
v∈V

αv ≤ nc }. To

enable the protection, we added the following formula:

∑
v∈V

(1− αv)Φv,e + αvΨv,e ≤ Ceθ, ∀e ∈ E,α ∈ Bnc (18)

Φv,e = ∑
{r|rs=v}

∑
k

zk
r gk

r (e), ∀e ∈ E, v ∈ V (19)

Ψv,e = ∑
{r|rs=v}

∑
k

bk
r gk

r (e), ∀e ∈ E, v ∈ V (20)

bk
r = max

{
ŷk

r dr, zk
r

}
, ∀r ∈ R, k ∈ V (21)

where Φv,e denotes the total traffic aggregating at link e from flows starting at v if no
configuration failure happens. We could get this from Equation (19). Ψv,e denotes the
total traffic aggregating at link e from flows starting at v if there exists a configuration
failure. When a control plane error occurs in node v, its forwarding table cannot be
updated correctly. Therefore, all flows starting at node v will be forwarded according to
the unupdated forwarding table. ŷk

r is the splitting weight of last period. We could get Ψv,e
from Equations (20) and (21).

SRC can protect the network from congestion even when network failures are encoun-
tered. Therefore, SRC can not only guarantee the low latency performance of LLS but
also reduce the number of interactions between LLS and SRC by reducing the number of
recalculations of routes in SRC.

4.2. Failure Correction in LLS

We have introduced failure recovery mechanisms for SRC, but in our cross-layer archi-
tecture, SRC failure correction cannot solve all failures that may appear in the architecture,
such as SFC failures. Because there is no concept of SFC in SRC, LLS passes the calculated
routing requirement matrix to SRC for traffic routing configuration. In order to ensure the
robustness of our cross-layer network architecture, minimize the number of cross-layer
interactions, and ensure the performance of time-sensitive applications, we also introduced
an SFC failure correction mechanism in LLS to ensure that when failures occur in certain
SFCs, the network can automatically recover and operate normally.

First, we introduced an SFC failure recovery mechanism for the LLS. When a certain
SFC node fails, all traffic demands using this type of SFC on this node will be affected.
When an SFC failure is detected, the source node of the affected traffic will redistribute
the traffic on the currently used tunnel. As is shown in Figure 7, suppose a flow that
needs a type-2 service function chain is distributed to three tunnels in the proportion of
(0.3, 0.3, 0.4). When a failure occurs in the type-2 SFC at the third tunnel, the source node
will redistribute the proportional coefficient to (0.5, 0.5, 0). This reactive error correction
mechanism can ensure that the network recovers from errors quickly and reduces the
impact on time-sensitive applications. However, the number of requests that each SFC
node can handle is limited. When a failure occurs, the additional allocation request may
cause congestion of the service function chain nodes. In order to solve this problem, LLS
considers the possibility of error correction of the SFC when calculating the routing plan.
We set the parameter ns as the maximum SFC failures that LLS can tolerate. When there
are ns SFC failures, the LLS can work well without congestion. For achieving this target,
we added following formula to our LLS:

∑
k′∈DCλ

xk′
r′ ,m′ ≥ 1, ∀r′ ∈ R′, m′ ∈ M′,λ′ ∈ Sns (22)

Electronics 2021, 10, 2874 16 of 24

Electronics 2021, 10, x FOR PEER REVIEW 16 of 24

mechanism can ensure that the network recovers from errors quickly and reduces the im-
pact on time-sensitive applications. However, the number of requests that each SFC node
can handle is limited. When a failure occurs, the additional allocation request may cause
congestion of the service function chain nodes. In order to solve this problem, LLS con-
siders the possibility of error correction of the SFC when calculating the routing plan. We
set the parameter 𝑛𝑠 as the maximum SFC failures that LLS can tolerate. When there are 𝑛𝑠 SFC failures, the LLS can work well without congestion. For achieving this target, we
added following formula to our LLS: ෍ 𝑥௥ᇲ,௠ᇲ௞ᇲ

௞ᇲ∈஽஼ഊ ≥ 1, ∀𝑟ᇱ ∈ 𝑅ᇱ, 𝑚ᇱ ∈ 𝑀ᇱ, 𝝀ᇱ ∈ 𝑆௡௦ (22)

Figure 7. SFC failure correction.

Let 𝜆௦ᇱ = 1 denote that SFC 𝑠 has failed. If 𝜆௦ᇱ = 0, the service chain 𝑠 works well.
A case of service chiain failure can be represented by 𝝀ᇱ, in which vector 𝝀ᇱ = {𝜆௦ᇱ |𝑠 ∈ 𝑆𝐶}.
We used Equation (22) to meet all service chain demands in any scenario where 𝑛𝑠 fail-
ures may occur.

5. Fast Convergence in the Interaction
In the previous part of the article, we completed the construction of the cross-layer

architecture and considered the problem of network error correction that affects the cross-
layer network. Although we minimized the frequency of network interactions, the diffi-
culty of convergence for each interaction is still a problem that our architecture needs to
solve. SRC and LLS serve different objects, so they have different objectives in the multi-
layer network architecture.

A selfish operation may lead the corresponding SRC link to have a high link load or
SRC to become congested due to failures. The objective inconsistency between SRC and
LLS makes both layers constantly change their routing configurations, causes network
fluctuation, and greatly harms the time-sensitive performance of LLS. In this section, we
provide two strategies to eliminate network fluctuation and realize fast convergence.

5.1. SRC Strategy for Fast Convergence
In this subsection, we propose a strategy for SRC to achieve fast convergence in the

process of interaction and support time-sensitive applications to perform better in LLS. In
SRC, we use a method to make the routing computed achieve less delay for every demand
pair at the last round. Then, the links in LLS will not change largely, and the routing of
LLS will not change drastically. This strategy makes the latency of LLS a stable value,

Figure 7. SFC failure correction.

Let λ′s = 1 denote that SFC s has failed. If λ′s = 0, the service chain s works well. A
case of service chiain failure can be represented by λ′, in which vector λ′ = {λ′s|s ∈ SC}.
We used Equation (22) to meet all service chain demands in any scenario where ns failures
may occur.

5. Fast Convergence in the Interaction

In the previous part of the article, we completed the construction of the cross-layer
architecture and considered the problem of network error correction that affects the cross-
layer network. Although we minimized the frequency of network interactions, the difficulty
of convergence for each interaction is still a problem that our architecture needs to solve.
SRC and LLS serve different objects, so they have different objectives in the multilayer
network architecture.

A selfish operation may lead the corresponding SRC link to have a high link load or
SRC to become congested due to failures. The objective inconsistency between SRC and
LLS makes both layers constantly change their routing configurations, causes network
fluctuation, and greatly harms the time-sensitive performance of LLS. In this section, we
provide two strategies to eliminate network fluctuation and realize fast convergence.

5.1. SRC Strategy for Fast Convergence

In this subsection, we propose a strategy for SRC to achieve fast convergence in the
process of interaction and support time-sensitive applications to perform better in LLS. In
SRC, we use a method to make the routing computed achieve less delay for every demand
pair at the last round. Then, the links in LLS will not change largely, and the routing of LLS
will not change drastically. This strategy makes the latency of LLS a stable value, reduces
the fluctuation of LLS, and makes the interaction achieve an agreement fast. In order to
adopt our strategy to our architecture, we added Equation (23) to SRC:

∑
k∈V

∑
e∈E

yk
r gk

r (e) ≤ hop(r)last, ∀r ∈ R (23)

In Equation (23), we adopted the hop count to approximate the delay of an SRC path.
hop(r)last denotes the total hop count of each flow r after the operation of SRC in the last
round and can be obtained by ∑

k∈V
∑

e∈E
yk

r gk
r (e) in the last round. Notice that in the first

round, we did not add the strategy to SRC.

5.2. LLS Strategy for Fast Convergence

In this subsection, we propose a strategy for LLS to achieve fast convergence in the
process of interaction and reduce the link load in SRC. In LLS, we adopted an idea that in
the current round, the routing operation of LLS ensures the amount of overlay traffic in

Electronics 2021, 10, 2874 17 of 24

each overlay link is less than the amount in the last round. Then, the SRC will not notice
the change in the value of MLU and will not change the overlay drastically. In this way,
our architecture can obtain fast convergence in the process of interaction. To apply our
strategy to our architecture, we added Equation (24) to our SRC:

∑
r′∈R′

f e′
r′ dr′ ≤ load

(
e′
)

last, ∀e′ ∈ E′ (24)

In Equation (24), load(e′)last denotes the amount of overlay traffic on each link after
the operation of overlay routing in the last round and can be calculated as ∑

r′∈R′
f e′
r′ dr′ . In

the first round, we did not add the strategy to LLS.

6. Performance Evaluation

In this section, we show the interaction process of SRC and LLS and verify that
our strategies can help the network converge quickly. We first verified that there were
fluctuations in the interaction between the basic LLS and SRC, verified the effectiveness
of our strategies in the basic framework, and continued to add components, observe the
impact of different components on the interaction experiment, and verify the effectiveness
of our strategies in a more complex framework. We conducted experiments on available
real-world topology of Ans in repetita [41]. Ans topology has 18 nodes and 50 edges.
We set the link bandwidth capacity to a random value between 300 Mbps and 500 Mbps.
Before conducting the experiment, we conducted a systematic investigation on the related
work of the cross-layer network. The most commonly used link bandwidth capacity in the
experiment was simply set to 10–20 Mbps [6]. The link bandwidth range was large, and
there is no detailed description of how to select the bandwidth value for each link. This
was mainly because different bandwidth settings had almost no effect on the convergence
and the speed of convergence in the cross-layer experiment. Because we proposed a
novel system model, we redesigned the cross-layer network experiment. We used the
real topology from [5] and a set of random numbers between 300 and 500 Mbps as the
bandwidth capacity of the links and then adjusted the SFC computing resource capacity
according to the link bandwidth capacity. In the actual network, various resources are
also flexibly configured according to demand to prevent a certain resource from becoming
a bottleneck in the network system. On this basis, we randomly selected the demand
matrix that the system could accommodate so that MLU could range from 30% to 100% and
adjusted the ratio of user demand to background demand for multiple experiments. The
overlay topology was composed of 7 nodes and 28 edges. There were 4 DC nodes in the
overlay. Each of these DC nodes contained type-3 complete SFC [27], and the computing
resource capacity of the SFC in each node was random from 0 to 100. In the underlay
network, there are widespread background traffic demands. The value of the background
traffic was set between 1 and 10 randomly. The demand matrix of the overlay follows the
uniform distribution of [0, 50]. We mainly observed the process of cross-layer interaction
under four failure types: SFC failures (ns), link failures (ne), node failures (nv), and control
plane failures (nc). We ran these experiments in 100 steps and examined the MLU and
latency. Note that we conducted experiments on multiple topologies in repetita, demand
sizes, and link capacities, and the results were similar. Thus, we present the results on the
Ans topology here to avoid repetition. In the experiment, we did not pursue to set each
parameter to a large value, because the occurrence of multiple errors in the network was
an event with a small probability [19]. Overprotection would lead to a sharp decline in
network performance. Our experimental results prove the effectiveness of our method.

6.1. Interaction between Basic SRC and LLS

In Figure 8, we set ns = 0, ne = 0, nv = 0, nc = 0 in order to observe the interaction
process between basic SRC and LLS. We present the results of the default interaction
and new interaction using our strategies between basic SRC and LLS. During the default

Electronics 2021, 10, 2874 18 of 24

interaction process, the operations of SRC caused an increase in the total latency of LLS, and
the operations of LLS minimized the total delay. The operations of LLS caused an increase
in the MLU, and SRC minimized the MLU. Figure 8 clearly shows the existence of conflict
between SRC and LLS. We found that the default interaction process did not reach a stable
state even after 100 rounds. When applying our strategies, the new interaction converged
within six rounds. In the balanced state, we could achieve a latency below the average
and reach load balancing. This experiment verifies that the inconsistency of optimization
goals between cross-layer networks will indeed cause continuous network oscillations and
difficulty in convergence. Our strategies can significantly speed up convergence without
affecting performance.

Electronics 2021, 10, x FOR PEER REVIEW 18 of 24

form distribution of [0, 50]. We mainly observed the process of cross-layer interaction un-
der four failure types: SFC failures (𝑛𝑠), link failures (𝑛𝑒), node failures (𝑛𝑣), and control
plane failures (𝑛𝑐). We ran these experiments in 100 steps and examined the MLU and
latency. Note that we conducted experiments on multiple topologies in repetita, demand
sizes, and link capacities, and the results were similar. Thus, we present the results on the
Ans topology here to avoid repetition. In the experiment, we did not pursue to set each
parameter to a large value, because the occurrence of multiple errors in the network was
an event with a small probability [19]. Overprotection would lead to a sharp decline in
network performance. Our experimental results prove the effectiveness of our method.

6.1. Interaction between Basic SRC and LLS
In Figure 8, we set 𝑛𝑠 = 0, 𝑛𝑒 = 0, 𝑛𝑣 = 0, 𝑛𝑐 = 0 in order to observe the interac-

tion process between basic SRC and LLS. We present the results of the default interaction
and new interaction using our strategies between basic SRC and LLS. During the default
interaction process, the operations of SRC caused an increase in the total latency of LLS,
and the operations of LLS minimized the total delay. The operations of LLS caused an
increase in the MLU, and SRC minimized the MLU. Figure 8 clearly shows the existence
of conflict between SRC and LLS. We found that the default interaction process did not
reach a stable state even after 100 rounds. When applying our strategies, the new interac-
tion converged within six rounds. In the balanced state, we could achieve a latency below
the average and reach load balancing. This experiment verifies that the inconsistency of
optimization goals between cross-layer networks will indeed cause continuous network
oscillations and difficulty in convergence. Our strategies can significantly speed up con-
vergence without affecting performance.

Figure 8. Interaction between basic SRC and LLS.

6.2. Interaction between SRC with Restoration and Basic LLS
In Figure 9, we set 𝑛𝑠 = 0, 𝑛𝑒 = 1, 𝑛𝑣 = 0, 𝑛𝑐 = 0 in order to observe the interac-

tion process between basic LLS and SRC with single link failure restoration. In general,
after the data plane error recovery function was added, the experiment still obtained sim-
ilar results to the interaction of the basic version, but we can see that in order to reserve
bandwidth for the error recovery function, both the MLU and latency would be slightly
larger. The main reason for the increase in MLU is that the MLU of the basic version of
SRC and the MLU of the error-corrected version of SRC have different meanings. As men-

Figure 8. Interaction between basic SRC and LLS.

6.2. Interaction between SRC with Restoration and Basic LLS

In Figure 9, we set ns = 0, ne = 1, nv = 0, nc = 0 in order to observe the interaction
process between basic LLS and SRC with single link failure restoration. In general, after the
data plane error recovery function was added, the experiment still obtained similar results
to the interaction of the basic version, but we can see that in order to reserve bandwidth
for the error recovery function, both the MLU and latency would be slightly larger. The
main reason for the increase in MLU is that the MLU of the basic version of SRC and
the MLU of the error-corrected version of SRC have different meanings. As mentioned
above, the MLU of the error-corrected version is the worst-case MLU after a network error
occurs. Obviously, it is bigger than when there is no error (the basic version of SRC). In this
experiment, we can still verify that our strategies can effectively accelerate convergence.

Electronics 2021, 10, 2874 19 of 24

Electronics 2021, 10, x FOR PEER REVIEW 19 of 24

tioned above, the MLU of the error-corrected version is the worst-case MLU after a net-
work error occurs. Obviously, it is bigger than when there is no error (the basic version of
SRC). In this experiment, we can still verify that our strategies can effectively accelerate
convergence.

Figure 9. Interaction between SRC with data plane fault correction and LLS.

In Figure 10, we set 𝑛𝑠 = 0, 𝑛𝑒 = 1, 𝑛𝑣 = 0, 𝑛𝑐 = 1 to observe the interaction pro-
cess between basic LLS and SRC with control plane failure correction. In this experiment,
SRC may have suffered from a control plane failure and may not have been able to update
the routing table configuration at each node, so the routing allocation scheme for the pre-
vious two rounds had to be considered in the MLU calculation. We can see that the oscil-
lation amplitude of MLU in control plane failure scenarios was smaller than the oscillation
amplitude of MLU in the data plane failure scenarios. This was because in the control
plane failure scenario, we required that when a control plane error occurred, the network
would not be congested, so the previous round of distribution plan was considered when
calculating the traffic distribution scheme. When the SRC calculation was not only con-
sidering its own objective function but also considering the previous round of calculation
results, it would accelerate the convergence speed of the cross-layer interaction. As shown
in Figure 10, even if the accelerated convergence strategy was not used, the MLU and
latency also converged within a limited round in this experiment. However, our strategies
can still effectively accelerate convergence without a loss of performance.

Figure 9. Interaction between SRC with data plane fault correction and LLS.

In Figure 10, we set ns = 0, ne = 1, nv = 0, nc = 1 to observe the interaction process
between basic LLS and SRC with control plane failure correction. In this experiment, SRC
may have suffered from a control plane failure and may not have been able to update
the routing table configuration at each node, so the routing allocation scheme for the
previous two rounds had to be considered in the MLU calculation. We can see that the
oscillation amplitude of MLU in control plane failure scenarios was smaller than the
oscillation amplitude of MLU in the data plane failure scenarios. This was because in
the control plane failure scenario, we required that when a control plane error occurred,
the network would not be congested, so the previous round of distribution plan was
considered when calculating the traffic distribution scheme. When the SRC calculation was
not only considering its own objective function but also considering the previous round of
calculation results, it would accelerate the convergence speed of the cross-layer interaction.
As shown in Figure 10, even if the accelerated convergence strategy was not used, the
MLU and latency also converged within a limited round in this experiment. However, our
strategies can still effectively accelerate convergence without a loss of performance.

Electronics 2021, 10, x FOR PEER REVIEW 20 of 24

Figure 10. Interaction between SRC with control plane fault correction and LLS.

6.3. Interaction between Basic SRC and LLS with Service Correction
In Figure 11, we set 𝑛𝑠 = 1, 𝑛𝑒 = 0, 𝑛𝑣 = 0, 𝑛𝑐 = 0 in order to observe the inter-

action process between basic SRC and LLS with SFC failure correction. Because the situa-
tion of a service error is more complicated than the situation of a network error in SRC,
and the network scale of LLS is smaller than that of SRC, LLS has a smaller solution space,
and we can see that the amplitude was smaller in this experiment. However, it is worth
noting that without the help of fast convergence strategies, convergence is still difficult to
achieve. The curve of the latency without any strategies still oscillated with a small am-
plitude. Our fast convergence strategy in this experiment is still effective.

Figure 11. Interaction between SRC and LLS with service fault correction.

6.4. Interaction between SRC and LLS
In Figure 12, we set 𝑛𝑠 = 1, 𝑛𝑒 = 0, 𝑛𝑣 = 0, 𝑛𝑐 = 1 in order to observe the inter-

action process between fully functional SRC and LLS. We can see that after adding all the
modules we proposed to the network, the fluctuation of the network presented a disor-
derly state. The reason for this is that each type of module had a different function, and it

Figure 10. Interaction between SRC with control plane fault correction and LLS.

Electronics 2021, 10, 2874 20 of 24

6.3. Interaction between Basic SRC and LLS with Service Correction

In Figure 11, we set ns = 1, ne = 0, nv = 0, nc = 0 in order to observe the interaction
process between basic SRC and LLS with SFC failure correction. Because the situation of
a service error is more complicated than the situation of a network error in SRC, and the
network scale of LLS is smaller than that of SRC, LLS has a smaller solution space, and we
can see that the amplitude was smaller in this experiment. However, it is worth noting that
without the help of fast convergence strategies, convergence is still difficult to achieve. The
curve of the latency without any strategies still oscillated with a small amplitude. Our fast
convergence strategy in this experiment is still effective.

Electronics 2021, 10, x FOR PEER REVIEW 20 of 24

Figure 10. Interaction between SRC with control plane fault correction and LLS.

6.3. Interaction between Basic SRC and LLS with Service Correction
In Figure 11, we set 𝑛𝑠 = 1, 𝑛𝑒 = 0, 𝑛𝑣 = 0, 𝑛𝑐 = 0 in order to observe the inter-

action process between basic SRC and LLS with SFC failure correction. Because the situa-
tion of a service error is more complicated than the situation of a network error in SRC,
and the network scale of LLS is smaller than that of SRC, LLS has a smaller solution space,
and we can see that the amplitude was smaller in this experiment. However, it is worth
noting that without the help of fast convergence strategies, convergence is still difficult to
achieve. The curve of the latency without any strategies still oscillated with a small am-
plitude. Our fast convergence strategy in this experiment is still effective.

Figure 11. Interaction between SRC and LLS with service fault correction.

6.4. Interaction between SRC and LLS
In Figure 12, we set 𝑛𝑠 = 1, 𝑛𝑒 = 0, 𝑛𝑣 = 0, 𝑛𝑐 = 1 in order to observe the inter-

action process between fully functional SRC and LLS. We can see that after adding all the
modules we proposed to the network, the fluctuation of the network presented a disor-
derly state. The reason for this is that each type of module had a different function, and it

Figure 11. Interaction between SRC and LLS with service fault correction.

6.4. Interaction between SRC and LLS

In Figure 12, we set ns = 1, ne = 0, nv = 0, nc = 1 in order to observe the interaction
process between fully functional SRC and LLS. We can see that after adding all the modules
we proposed to the network, the fluctuation of the network presented a disorderly state.
The reason for this is that each type of module had a different function, and it has been
verified in previous experiments that they have different effects on network fluctuations.
Network fluctuations showing this complexity can also be expected. In our complex
architecture, the strategies of accelerating convergence can still achieve rapid convergence
under the premise of guaranteed performance. Therefore, our cross-layer architecture can
calculate and converge quickly when the demand arrives, avoid entering the interactive
state, and conduct reactive error correction when errors occur, all of which can effectively
guarantee the performance of upper-layer time-sensitive applications.

Electronics 2021, 10, 2874 21 of 24

Electronics 2021, 10, x FOR PEER REVIEW 21 of 24

has been verified in previous experiments that they have different effects on network fluc-
tuations. Network fluctuations showing this complexity can also be expected. In our com-
plex architecture, the strategies of accelerating convergence can still achieve rapid conver-
gence under the premise of guaranteed performance. Therefore, our cross-layer architec-
ture can calculate and converge quickly when the demand arrives, avoid entering the in-
teractive state, and conduct reactive error correction when errors occur, all of which can
effectively guarantee the performance of upper-layer time-sensitive applications.

Figure 12. Interaction between fully functional SRC and LLS.

6.5. Convergence Time Varies with Network Size
In the above experiments, we used the fixed topology Ans to conduct all experiments.

In this subsection, we explore whether our accelerated convergence strategy will change
with the change of the network scale. We choose seven topologies with different numbers
of nodes and links in repetita. The specific information of each topology can be obtained
from Table 2. According to the above experiment, we knew that different components in
our paper had an impact on convergence. In order to investigate the relationship between
the convergence time and network size under our accelerated convergence strategy, we
set 𝑛𝑠 = 0, 𝑛𝑒 = 0, 𝑛𝑣 = 0, 𝑛𝑐 = 0. We used different topologies to replace the models
in the underlay, and the number of nodes in these topologies increased by three each time.
We decomposed the convergence time into the time to solve the SRC, the time to solve the
LLS, and the number of interactive rounds required for convergence, because in different
hardware environments, the absolute running time does not have much meaning.

Table 2. Convergence time varies with network size.

Topology Nodes Links SRC LLS Convergence
Eunetworks 14 42 0.2633 s 1.0651 s 5 rounds

Agis 17 44 0.6656 s 2.4879 s 5 rounds
EliBackone 20 60 1.8755 s 5.1245 s 5 rounds

Integra 23 64 3.6163 s 9.3239 s 5 rounds
Darkstrand 26 56 5.7526 s 17.1196 s 4 rounds

Cesnet 29 66 10.8048 s 28.2829 s 4 rounds
Canerie 32 82 19.1414 s 126.8002 s 5 rounds

The results of the experiment are shown in Table 2. In the SRC model, as the number
of nodes increased, the time to solve the linear programming model was doubled, mainly

Figure 12. Interaction between fully functional SRC and LLS.

6.5. Convergence Time Varies with Network Size

In the above experiments, we used the fixed topology Ans to conduct all experiments.
In this subsection, we explore whether our accelerated convergence strategy will change
with the change of the network scale. We choose seven topologies with different numbers
of nodes and links in repetita. The specific information of each topology can be obtained
from Table 2. According to the above experiment, we knew that different components in
our paper had an impact on convergence. In order to investigate the relationship between
the convergence time and network size under our accelerated convergence strategy, we
set ns = 0, ne = 0, nv = 0, nc = 0. We used different topologies to replace the models in
the underlay, and the number of nodes in these topologies increased by three each time.
We decomposed the convergence time into the time to solve the SRC, the time to solve the
LLS, and the number of interactive rounds required for convergence, because in different
hardware environments, the absolute running time does not have much meaning.

Table 2. Convergence time varies with network size.

Topology Nodes Links SRC LLS Convergence

Eunetworks 14 42 0.2633 s 1.0651 s 5 rounds
Agis 17 44 0.6656 s 2.4879 s 5 rounds

EliBackone 20 60 1.8755 s 5.1245 s 5 rounds
Integra 23 64 3.6163 s 9.3239 s 5 rounds

Darkstrand 26 56 5.7526 s 17.1196 s 4 rounds
Cesnet 29 66 10.8048 s 28.2829 s 4 rounds
Canerie 32 82 19.1414 s 126.8002 s 5 rounds

The results of the experiment are shown in Table 2. In the SRC model, as the number
of nodes increased, the time to solve the linear programming model was doubled, mainly
because the number of variables of the basic SRC model was O(|V|3), and the number of
constraints was O(|v|2 + |E|). Therefore, the number of links in the topology had a small
effect on the calculation time of the model. For example, although the number of links in
Darkstrand was smaller than that of Integra, the calculation time of SRC was doubled. The
number of variables and the number of constraints of the LLS model were O(|V|3) and
O(|V|2|E|), respectively, so the calculation time of LLS was more sensitive to the number
of links. For the convergence time, we can see that the number of convergence rounds
would not become larger as the network topology and calculation time became larger,
which also shows the efficiency of our convergence strategy. However, as the network
became larger, because the calculation time became longer and longer, the total time for the

Electronics 2021, 10, 2874 22 of 24

network to enter convergence would become longer and longer, and a strategy to accelerate
convergence was necessary.

According to our observations in the experiment, when no acceleration convergence
strategy was used, there would be two situations: one was to reach a consensus after a
period of interaction, and the other was to be in an interactive state and fluctuate consis-
tently. Whether the network will continue to fluctuate depends on, among other factors,
the topology and the input demands. When using our strategy to accelerate convergence,
the network can quickly reach a consensus. In [42,43], the authors explained the reasons
for the fluctuations and the process of convergence through theoretical derivation, simple
examples, and experimental proofs.

7. Conclusions

In this paper, a cross-layer network architecture based on an overlay that meets user’s
SFC requirements and time performance requirements and an underlay that optimizes
the performance of a physical network was proposed. We proposed an SR-based method
SRC to correct the network failures in the underlay. At the same time, we solved the SFC
failures in the overlay through a proactive algorithm. We modeled the interaction of SRC
and LLS as a repeated game and designed novel strategies to eliminate the fluctuations of
interaction. The experiment results demonstrate the effectiveness of our methods under
different failure scenarios and definitely show that our strategies are equally effective in
multiple combinations of failure scenarios. Our method can not only reduce congestion
caused by network failures but also speed up the convergence of cross-layer interactions
due to route reconfiguration. Thus, our approach can greatly improve the performance of
applications in the overlay.

Author Contributions: Conceptualization, J.Z.; methodology, J.Z. and C.Z.; software, C.Z.; validation,
C.Z.; formal analysis, J.Z. and C.Z.; investigation, C.Z.; resources, Z.Z.; data curation, J.Z. and C.Z.;
writing—original draft preparation, C.Z. and Z.Z.; writing—review and editing, C.Z., J.Z., and Z.Z.;
visualization, C.Z. and J.Z.; supervision, J.Z. and Z.Z.; project administration, J.Z. and Z.Z.; funding
acquisition, J.Z. and Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 61902346 and 62072402, and the Zhejiang Provincial Natural Science Foundation of China,
grant number LGN21F020002.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aceto, G.; Botta, A.; Marchetta, P.; Persico, V.; Pescapé, A. A comprehensive survey on internet outages. J. Netw. Comput. Appl.

2018, 113, 36–63. [CrossRef]
2. Budhkar, S.; Tamarapalli, V. An overlay management strategy to improve QoS in CDN-P2P live streaming systems. Peer-Peer

Netw. Appl. 2019, 13, 190–206. [CrossRef]
3. Wang, Y.; Zhang, X.; Fan, L.; Yu, S.; Lin, R. Segment Routing Optimization for VNF Chaining. In Proceedings of the ICC 2019-2019

IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 1–7.

4. Li, X.; Yeung, K.L. Traffic Engineering in Segment Routing Networks Using MILP. IEEE Trans. Netw. Serv. Manag. 2020, 17,
1941–1953. [CrossRef]

5. Zheng, Z.; Zhao, C.; Zhang, J. Time-Sensitive Overlay Routing via Segment Routing with Failure Correction. In Proceedings of
the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6.

6. Wang, J.; Qi, Q.; Gong, J.; Liao, J. Mitigating the Oscillations between Service Routing and SDN Traffic Engineering. IEEE Syst. J.
2018, 12, 3426–3437. [CrossRef]

7. Ijaz, H.; Welzl, M.; Jamil, B. A survey and comparison on overlay-underlay mapping techniques in peer-to-peer overlay networks.
Int. J. Commun. Syst. 2019, 32, e3872. [CrossRef]

8. Seetharaman, S.; Hilt, V.; Hofmann, M.; Ammar, M. Resolving Cross-Layer Conflict between Overlay Routing and Traffic
Engineering. IEEE/ACM Trans. Netw. 2009, 17, 1964–1977. [CrossRef]

9. Abdelquoddouss, L.; Tarik, T. A survey on the placement of virtual resources and virtual network functions. IEEE Commun. Surv.
Tutor. 2019, 21, 1409–1434.

http://doi.org/10.1016/j.jnca.2018.03.026
http://doi.org/10.1007/s12083-019-00755-x
http://doi.org/10.1109/TNSM.2020.3001615
http://doi.org/10.1109/JSYST.2018.2805898
http://doi.org/10.1002/dac.3872
http://doi.org/10.1109/TNET.2009.2018280

Electronics 2021, 10, 2874 23 of 24

10. Sang, Y.; Ji, B.; Gupta, G.R.; Du, X.; Ye, L. Provably efficient algorithms for joint placement and allocation of virtual network
functions. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4
May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–9.

11. Sallam, G.; Gupta, G.R.; Li, B.; Ji, B. Shortest Path and Maximum Flow Problems under Service Function Chaining Constraints. In
Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 2132–2140.

12. Cziva, R.; Anagnostopoulos, C.; Pezaros, D.P. Dynamic, Latency-Optimal vNF Placement at the Network Edge. In Proceedings
of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 693–701.

13. Fan, J.; Guan, C.; Zhao, Y.; Qiao, C. Availability-aware mapping of service function chains. In Proceedings of the IEEE INFOCOM
2017-IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 1–9.

14. Fei, X.; Liu, F.; Xu, H.; Jin, H. Adaptive VNF Scaling and Flow Routing with Proactive Demand Prediction. In Proceedings of the
IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 486–494.

15. Hao, F.; Kodialam, M.; Lakshman, T.V. Optimizing restoration with segment routing. In Proceedings of the IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 1–9.

16. Pereira, V.; Rocha, M.; Sousa, P. Traffic Engineering with Three-Segments Routing. IEEE Trans. Netw. Serv. Manag. 2020, 17,
1896–1909. [CrossRef]

17. Aubry, F.; Vissicchio, S.; Bonaventure, O.; Deville, Y. Robustly disjoint paths with segment routing. In Proceedings of the 14th
International Conference on emerging Networking EXperiments and Technologies; ACM Press: New York, NY, USA, 2018; pp.
204–216.

18. Foerster, K.-T.; Pignolet, Y.-A.; Schmid, S.; Tredan, G. CASA: Congestion and Stretch Aware Static Fast Rerouting. In Proceedings of
the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 469–477.

19. Bogle, J.; Bhatia, N.; Ghobadi, M. TEAVAR: Striking the right utilization-availability balance in WAN traffic engineering. In
Proceedings of the ACM SIGCOMM, Beijing, China, 19–23 August 2019; pp. 29–43.

20. Savage, S.; Collins, A.; Hoffman, E.; Snell, J.; Anderson, T. The end-to-end effects of Internet path selection. ACM SIGCOMM
Comput. Commun. Rev. 1999, 29, 289–299. [CrossRef]

21. Xiao, J.; Boutaba, R. Reconciling the Overlay and Underlay Tussle. IEEE/ACM Trans. Netw. 2013, 22, 1489–1502. [CrossRef]
22. Guck, J.W.; Reisslein, M.; Kellerer, W. Function Split between Delay-Constrained Routing and Resource Allocation for Centrally

Managed QoS in Industrial Networks. IEEE Trans. Ind. Inform. 2016, 12, 2050–2061. [CrossRef]
23. Wang, J.; Liao, J.; Li, T. On the collaborations of multiple selfish overlays using multi-path resources. Peer-Peer Netw. Appl. 2015, 8,

203–215. [CrossRef]
24. Xu, C.; Li, Z.; Li, J.; Zhang, H.; Muntean, G.-M. Cross-Layer Fairness-Driven Concurrent Multipath Video Delivery over

Heterogeneous Wireless Networks. IEEE Trans. Circuits Syst. Video Technol. 2014, 25, 1175–1189. [CrossRef]
25. Chen, J.; Liu, H.; Jia, H. Cross-Layer Resource Allocation in Wireless-Enabled NFV. IEEE Wirel. Commun. Lett. 2020, 9, 879–883.

[CrossRef]
26. Bhatia, R.; Hao, F.; Kodialam, M.; Lakshman, T. Optimized network traffic engineering using segment routing. In Proceedings

of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 657–665.

27. Xu, Z.; Liang, W.; Galis, A.; Ma, Y.; Xia, Q.; Xu, W. Throughput optimization for admitting NFV-enabled requests in cloud
networks. Comput. Netw. 2018, 143, 15–29. [CrossRef]

28. Jadin, M.; Aubry, F.; Schaus, P.; Bonaventure, O. CG4SR: Near Optimal Traffic Engineering for Segment Routing with Column
Generation. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29
April–2 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1333–1341.

29. Ye, J.-L.; Chen, C.; Chu, Y.H. A Weighted ECMP Load Balancing Scheme for Data Centers Using P4 Switches. In Proceedings of the
2018 IEEE 7th International Conference on Cloud Networking (CloudNet), Tokyo, Japan, 22–24 October 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 1–4.

30. Fernandez, J.C.; Taleb, T.; Guizani, M.; Kato, N. Bandwidth Aggregation-Aware Dynamic QoS Negotiation for Real-Time Video
Streaming in Next-Generation Wireless Networks. IEEE Trans. Multimed. 2009, 11, 1082–1093. [CrossRef]

31. Martin, R.; Menth, M.; Hemmkeppler, M. Accuracy and Dynamics of Hash-Based Load Balancing Algorithms for Multipath
Internet Routing. In Proceedings of the 2006 3rd International Conference on Broadband Communications, Networks and
Systems, San Jose, CA, USA, 1–5 October 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 1–10.

32. Chim, T.W.; Yeung, K.L.; Lui, K.S. Traffic distribution over equal-cost-multi-paths. Comput. Netw. 2005, 49, 465–475. [CrossRef]
33. Liu, Y.; Zhang, H.; Gong, W.; Towsley, D. On the interaction between overlay routing and underlay routing. In Proceedings of the

IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, FL, USA, 13–17 March 2005;
IEEE: Piscataway, NJ, USA, 2005; Volume 4, pp. 2543–2553.

http://doi.org/10.1109/TNSM.2020.2993207
http://doi.org/10.1145/316194.316233
http://doi.org/10.1109/TNET.2013.2281276
http://doi.org/10.1109/TII.2016.2592481
http://doi.org/10.1007/s12083-013-0245-z
http://doi.org/10.1109/tcsvt.2014.2376138
http://doi.org/10.1109/LWC.2020.2974198
http://doi.org/10.1016/j.comnet.2018.06.015
http://doi.org/10.1109/TMM.2009.2026086
http://doi.org/10.1016/j.comnet.2005.01.011

Electronics 2021, 10, 2874 24 of 24

34. Gong, J.; Liao, J.; Wang, J.; Qi, Q.; Zhang, L. Reducing the oscillations between overlay routing and traffic engineering by repeated
game theory. In Proceedings of the 2013 19th Asia-Pacific Conference on Communications (APCC), Denpasar, Indonesia, 29–31
August 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 591–596.

35. Bu, Y.; Guo, H.; Hu, H.; Wang, B. A Traffic Splitting Algorithm Based on Dual Hash Table for Multi-path Internet Routing. In
Proceedings of the 2010 International Conference on Machine Vision and Human-machine Interface, Kaifeng, China, 24–25 April
2010; IEEE: Piscataway, NJ, USA, 2010; pp. 397–400.

36. Lee, B.-S.; Kanagavelu, R.; Aung, K.M.M. An efficient flow cache algorithm with improved fairness in Software-Defined Data
Center Networks. In Proceedings of the 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet), San Francisco,
CA, USA, 11–13 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 18–24.

37. Kandula, S.; Katabi, D.; Sinha, S.; Berger, A. Dynamic load balancing without packet reordering. ACM SIGCOMM Comput.
Commun. Rev. 2007, 37, 51–62. [CrossRef]

38. Fortz, B.; Thorup, M. Internet traffic engineering by optimizing OSPF weights. In Proceedings of the IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies (Cat. No.00CH37064), Tel Aviv, Israel, 26–30 March 2000; IEEE: Piscataway, NJ, USA, 2002; Volume 2, pp. 519–528.

39. Gouareb, R.; Friderikos, V.; Aghvami, A.H. Delay Sensitive Virtual Network Function Placement and Routing. In Proceedings of
the 2018 25th International Conference on Telecommunications (ICT), Saint-Malo, France, 26–28 June 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 394–398.

40. Liu, H.H.; Kandula, S.; Mahajan, R.; Zhang, M.; Gelernter, D. Traffic engineering with forward fault correction. In Proceedings of
the 2014 ACM Conference on SIGCOMM, Chicago, IL, USA, 17–22 August 2014; Association for Computing Machinery: New
York, NY, USA, 2014; Volume 44, pp. 527–538. [CrossRef]

41. Gay, S.; Schaus, P.; Vissicchio, S. REPETITA: Repeatable experiments for performance evaluation of traffic-engineering algorithms.
arXiv 2017, arXiv:1710.08665.

42. Yang, Q.; Li, W.; De Souza, J.; Zomaya, A.Y. Resilient virtual communication networks using multi-commodity flow based local
optimal mapping. J. Netw. Comput. Appl. 2018, 110, 43–51. [CrossRef]

43. Zhang, H.; Liu, Y.; Gong, W.; Towsley, D. Understanding the Interaction between Overlay Routing and Traffic Engineering; Technical
Report; University of Massachusetts CMPSCI: Amherst, MA, USA, 2004.

http://doi.org/10.1145/1232919.1232925
http://doi.org/10.1145/2740070.2626314
http://doi.org/10.1016/j.jnca.2018.02.022

	Introduction
	Related Work
	SFC
	Network Failure Correction
	Cross-Layer Model

	System Model
	SRC Model
	LLS Model
	Cross-Layer Model

	Failure Correction in a Cross-Layer Architecture
	Failure Correction in SRC
	Correction of Data Plane Failures
	Correction of Control Plane Failures

	Failure Correction in LLS

	Fast Convergence in the Interaction
	SRC Strategy for Fast Convergence
	LLS Strategy for Fast Convergence

	Performance Evaluation
	Interaction between Basic SRC and LLS
	Interaction between SRC with Restoration and Basic LLS
	Interaction between Basic SRC and LLS with Service Correction
	Interaction between SRC and LLS
	Convergence Time Varies with Network Size

	Conclusions
	References

