
electronics

Article

FPGA-Based Convolutional Neural Network Accelerator with
Resource-Optimized Approximate Multiply-Accumulate Unit

Mannhee Cho 1 and Youngmin Kim 2,*

����������
�������

Citation: Cho, M.; Kim, Y.

FPGA-Based Convolutional Neural

Network Accelerator with

Resource-Optimized Approximate

Multiply-Accumulate Unit.

Electronics 2021, 10, 2859. https://

doi.org/10.3390/electronics10222859

Academic Editors: Sotiris Ioannidis,

Konstantinos Georgopoulos, Iakovos

Mavroidis and Jose Santamaria

Received: 15 September 2021

Accepted: 17 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical Engineering, Korea University, Seoul 02841, Korea; mhc9840@gmail.com
2 School of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Korea
* Correspondence: youngmin@hongik.ac.kr; Tel.: +82-2-320-1665

Abstract: Convolutional neural networks (CNNs) are widely used in modern applications for
their versatility and high classification accuracy. Field-programmable gate arrays (FPGAs) are
considered to be suitable platforms for CNNs based on their high performance, rapid development,
and reconfigurability. Although many studies have proposed methods for implementing high-
performance CNN accelerators on FPGAs using optimized data types and algorithm transformations,
accelerators can be optimized further by investigating more efficient uses of FPGA resources. In
this paper, we propose an FPGA-based CNN accelerator using multiple approximate accumulation
units based on a fixed-point data type. We implemented the LeNet-5 CNN architecture, which
performs classification of handwritten digits using the MNIST handwritten digit dataset. The
proposed accelerator was implemented, using a high-level synthesis tool on a Xilinx FPGA. The
proposed accelerator applies an optimized fixed-point data type and loop parallelization to improve
performance. Approximate operation units are implemented using FPGA logic resources instead of
high-precision digital signal processing (DSP) blocks, which are inefficient for low-precision data.
Our accelerator model achieves 66% less memory usage and approximately 50% reduced network
latency, compared to a floating point design and its resource utilization is optimized to use 78% fewer
DSP blocks, compared to general fixed-point designs.

Keywords: convolutional neural network; FPGA; high-level synthesis; accelerator

1. Introduction

In many modern applications, convolutional neural networks (CNNs) are adopted
for image classification based on their high versatility and accuracy. Many recent studies
have proposed novel CNN architectures, application systems, and optimization methods
for both software and hardware platforms [1–8].

Optimizations for CNN accelerators generally involve exploring optimized data types
and network architectures. Traditional CNNs use high-precision floating-point data types
for both training and inference, but many recent studies have explored more efficient
data types by reducing data sizes and applying quantization [9–14]. Many studies have
proven that CNNs can achieve improvements in performance and resource utilization by
using low-precision data without a significant loss of classification accuracy. Network
architectures can be optimized to increase memory access bandwidth, efficient resource
utilization, and parallelization for improved latency. Many network architectures have
been explored and developed with various trade-offs between resources.

Many studies on CNN acceleration have adopted field-programmable gate arrays
(FPGAs) as hardware platforms for evaluating performance because FPGAs have the ad-
vantages of reasonably high performance, rapid development, and reconfigurability, using
software tools [15–29]. They also have built-in complex computational units, such as digital
signal processing (DSP) blocks for implementing large-scale arithmetic operations with
maximum performance [30]. CNNs are limited by their large memory size, computational

Electronics 2021, 10, 2859. https://doi.org/10.3390/electronics10222859 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4524-2858
https://doi.org/10.3390/electronics10222859
https://doi.org/10.3390/electronics10222859
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10222859
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10222859?type=check_update&version=2


Electronics 2021, 10, 2859 2 of 16

resources, and power consumption. To achieve high inference speed, additional resources
and power are required as trade-offs. However, newly developed FPGAs contain a large
number of computational units and optimized power systems that are sufficient for im-
plementing high-speed and high-power CNN accelerator models, which are suitable for
implementing and experimenting with various CNN models.

However, FPGAs are large arrays of pre-constructed hardware-mapped elements. The
logic and functions designed by users are synthesized to fit into these elements and may
fail to utilize them optimally. In particular, DSP blocks perform arithmetic operations with
high precision and are underutilized when fed low-precision data. Increasing the efficiency
of FPGA resources is also a challenge in CNN accelerator design [15,21–23]. We can
implement more efficient arithmetic operators in place of DSP blocks when implementing
CNN accelerators for more optimized resource utilization and management.

The software tools provided by FPGA manufacturers are used when developing
hardware accelerators for CNNs on FPGA platforms. Recently, various high-level synthesis
(HLS) tools were developed. HLS tools can automatically synthesize register-transfer-
level (RTL) designs from source code written in high-level languages (e.g., C/C++). For
Xilinx FPGAs, the Vivado and Vitis HLS tools were developed. HLS tools can support
various data types, including both floating- and fixed-point data types with arbitrary bit
lengths, as well as pragma directives for timing, resource configuration, and the software
verification of designs. Bitwise operations can also be synthesized, facilitating precise
hardware-optimized operations. Many studies were conducted by using HLS tools to
develop and implement CNN accelerator models on FPGAs [15,18,19,26,27,29].

In this paper, we propose a hardware accelerator design for the LeNet-5 CNN architec-
ture [31], which is a CNN architecture for handwritten digit classification that was trained
and tested on the MNIST handwritten digit dataset [32]. We implemented the proposed
accelerator on a Xilinx XCZU9EG-2ffvb1156 FPGA chip, using the Xilinx Vitis HLS tool
(v2020.2). A set of 10,000 MNIST handwritten digit images were used for inference to
evaluate accuracy. As a baseline, we applied loop optimizations and a network dataflow
scheme to improve computation parallelization and reduce inference latency. To further
optimize the network, we adopted a fixed-point data type supported by the HLS tool.
Based on the tanh activation function used for the LeNet-5 architecture, we optimized the
data transferred to the memory by removing unused integer bits after activation, improv-
ing memory efficiency. We also implemented approximate multiply-accumulate (MAC)
units using bit-level data modification to reduce computational cost. This also reduces the
number of DSP blocks used, which are limited in numbers in FPGAs. We experimented
with multiple designs using various data types and sizes to analyze and compare the
results on performance and resource utilization.

The contributions of this study are as follows:

• An approximate MAC operator based on bit modifications and functions provided by
HLS tool is proposed and implemented for CNN accelerator on FPGA.

• Additional data size optimization for CNN is applied by removing unused bits after
output activation function processing.

• Experiments were performed with various bit width for data on HLS implementation
of CNN accelerator, and the performance results are analyzed.

The remainder of this paper is organized as follows: Section 2 presents background
information on CNNs, the LeNet-5 CNN architecture, and fixed/floating-point data types.
Section 3 describes the proposed CNN accelerator design and the applied optimization
methods in detail. Section 4 analyzes the experimental results, followed by conclusions in
Section 5.



Electronics 2021, 10, 2859 3 of 16

2. Background
2.1. CNN

A CNN is a type of deep neural network (DNN) that utilizes a convolution algorithm
based on a 2D array of inputs. Although the output is the sum of multiplied inputs and
weights, similar to a traditional DNN, a CNN uses kernels. Kernels are groups of weights
that perform sliding-window convolution operations on input feature maps. Each output
node is the sum of overlapping input feature maps and kernels. This is also known as a
shared-weight scheme. This allows a CNN to reduce the number of trainable parameters
significantly while accelerating network training and inference.

To reduce network size and computations, pooling layers, which are also called
sub-sampling layers, can be adopted. Pooling layers aim to reduce input dimensions by
extracting meaningful data from each region of an input. A kernel, which represents the
batch of units to be computed or compared together, can use varying sizes and stride values
to generate different output dimensions. Depending on the network, pooling layers can
also have trainable parameters, such as weight and bias values. In general, average pooling
and max (or min) pooling methods are used. Average pooling computes the average of
the surrounding units, whereas max pooling compares values and outputs the maximum
value. Average pooling is more computationally expensive than max pooling, but partially
preserves all input values by calculating the average of a batch. Max pooling drops all
values, except for the maximum value, but is computationally cheaper. The optimal method
depends on the target network and data. One method may yield better results than the
other for a given network [33–35].

Activation functions are used to introduce nonlinearity into networks. Activation
functions process the output values of nodes before they are passed to the next layer.
Without an activation function, a neural network is essentially a linear regression model. As
shown in Figure 1, complex classification cannot be achieved by linear models. Therefore,
nonlinear activation functions are used to construct more complex models. There are
multiple types of activation functions. Some examples are presented in Figure 2. In addition
to differences in arithmetic complexity, activation functions can also affect network training
and accuracy. Therefore, identifying the optimal activation function for a target network is
important [36,37].

Figure 1. (a) Linear model and (b) nonlinear model.

Figure 2. Example activation functions: (a) sigmoid, (b) tanh, and (c) ReLU.



Electronics 2021, 10, 2859 4 of 16

2.2. LeNet-5

LeNet-5 is a CNN architecture developed by LeCun et al. [31]. It is a handwritten
digit classifier architecture that was trained and tested on the MNIST handwritten digit
dataset [32]. The network architecture is presented in Figure 3 and the data flow is presented
in Figure 4. It consists of three convolutional layers (C1, C3, and C5), two pooling layers
(S2 and S4), and two fully connected layers (F6, OUTPUT). Each layer uses a tanh activation
function. The input is a 32 × 32 handwritten digit image, and the outputs are digit
classification results (zero to nine). The layer configuration of LeNet-5 is presented in
Table 1.

Figure 3. LeNet-5 CNN architecture [31].

Figure 4. Structural data flow of the LeNet-5 CNN architecture [31].

Table 1. Layer configuration of LeNet-5 [31].

Layer Input Weight Bias Kernel Stride Output

Conv1 1 × 32 × 32 6 × 1 × 5 × 5 6 5 1 6 × 28 × 28
Pool1 6 × 28 × 28 6 6 2 2 6 × 14 × 14
Conv2 6 × 14 × 14 16 × 6 × 5 × 5 16 5 1 16 × 10 × 10
Pool2 16 × 10 × 10 16 16 2 2 16 × 5 × 5
Conv3 16 × 5 × 5 120 × 16 × 5 × 5 120 5 1 1 × 120

FC1 1 × 120 120 × 84 84 - - 1 × 84
FC2 1 × 84 84 × 10 10 - - 1 × 10

The convolutional layers perform convolutions, using a 5 × 5 kernel with a stride
of one. The number of trainable weights is the product of the number of input feature
maps, output feature maps, and kernel size (5 × 5). The number of biases is the same as the
number of output feature maps. Pooling layers perform 2 × 2 average pooling operations
with a stride of two, reducing the input image’s width and height by half. LeNet-5 also
uses trained weights and biases. As shown in Figure 5, after average processing, feature
maps are multiplied by weights and then added to biases. This results in trained weights
and biases of the same number as the input feature maps.



Electronics 2021, 10, 2859 5 of 16

Figure 5. Average pooling with weights and biases.

The fully connected layers have the same structure as traditional artificial neural
network layers. All inputs are connected to all outputs. The number of weights is the
product of the numbers of input and output neurons. The number of biases is the same as
the number of output neurons.

2.3. FPGA

An FPGA is a device composed of configurable logic blocks and other circuitry, such
as memory blocks, which are connected by path-switching circuits called programmable
interconnects. An FPGA can be programmed to perform functions designed by users and
can be reprogrammed at any time. Although FPGAs may provide lower performance than
application-specific integrated circuits, the reconfigurability of FPGAs can significantly
reduce development time, so they are often selected as hardware platforms for various
experiments. Recently developed FPGAs also contain high-performance clocking resources
and a large number of processing units, such as DSP blocks, allowing users to develop high-
speed applications (including CNNs) with ease. FPGAs are programmed using software
tools provided by FPGA manufacturers that generally use a hardware description language.
However, recently developed HLS tools allow users to write system code in high-level
languages, which is then synthesized to the register transfer level. Such tools also provide
various functions, such as pragma directives that can automatically configure resource
utilization limits and timing constraints for synthesis.

Despite the excellent performance of FPGAs, because logic blocks are built-in units
with fixed sizes, it is possible that in practice, resources may not be utilized at their peak
performance. MAC operations used in computationally heavy systems, such as CNN
accelerators, are generally implemented using DSP blocks. An example of an FPGA DSP
block (Xilinx DSP48E block [30]) is presented in Figure 6. This block contains a precise
27 × 18 bit multiplier, which is less efficient when using low-precision data. Additionally,
the number of DSP blocks is limited in an FPGA, so a non-optimized algorithm can result
in limited throughput and require a larger FPGA chip. This not only applies to DSP blocks,
but also to other logic elements. In the worst cases, a small change in the data bit width can
significantly change how an algorithm is implemented, thereby affecting the performance
and resource utilization of the entire system. With the wide use of FPGAs in modern
applications, many studies have focused on the efficient implementation of systems on
FPGAs. Several studies on FPGA CNN accelerators have performed algorithm modification
for resource usage management and optimized data types for logic elements [21–23].



Electronics 2021, 10, 2859 6 of 16

Figure 6. Xilinx FPGA DSP48E2 block [30].

3. Proposed Accelerator Design

The proposed accelerator is based on the LeNet-5 architecture. We used the Xilinx Vitis
HLS (v2020.2) tools to synthesize the accelerator design targeting the Xilinx XCZU9EG-
2ffvb1156 FPGA chip. The accelerator models are implemented on programmable logic
cells of the FPGA chip without using MPSoC processor cores, and thus can be implemented
on any other FPGA chips. The accelerator receives input data in a 32-bit floating-point
data type and converts them into fixed points. The fixed-point outputs of the network are
converted into 32 bit floating-point values and exported as the final outputs. The network
performs the initial setup once, and then the stored weights and biases in the internal
memory can be reused for new sequences of input image sets.

The proposed CNN accelerator utilizes three major optimizations: loop parallelization,
fixed-point data optimization, and approximate MAC operations. The details of these
optimizations are explained in the following subsections.

3.1. Loop Parallelization

Loop parallelization is achieved by using HLS pragma directives provided by the Vitis
HLS tools. “#pragma HLS Unroll” is used to flatten loops. When synthesized, operations
in the loop body are implemented as multiple instances that operate in parallel, as shown
in Figure 7, which significantly reduces latency at the cost of additional computational
resources. Additional optimization is performed by using “#pragma HLS Pipeline” to
divide operations in small stages for concurrent execution, as shown in Figure 8. The
pseudocode for a convolutional layer with pragma directives is presented in Figure 9.

Figure 7. Unrolled arithmetic units.



Electronics 2021, 10, 2859 7 of 16

Figure 8. Pipelined operations.

Figure 9. Pseudocode for a convolutional layer with pragma directives.

The entire network is pipelined using “#pragma HLS Dataflow”. This directive allows
functions to operate in a pipelined manner, increasing the throughput of the accelerator.
As shown in Figure 10, because the input of each layer is dependent on the output of the
previous layers, all layers must be executed in order. Executing multiple layers in parallel
for the same network input is not possible. Additionally, each layer must finish processing
its current input (generate an output) before accepting another set of inputs to prevent the
internal registers from being overwritten during its operations. Therefore, the minimum
number of clock cycles required for the accelerator to accept the next input image is the
same as the number of clock cycles (plus one) of the layer requiring the greatest number
of cycles.



Electronics 2021, 10, 2859 8 of 16

Figure 10. Pipelined network using dataflow directives.

3.2. Fixed-Point Data Optimization

Floating-point and fixed-point formats are two major representations of real numbers
in computing. The structures of these two formats for the same 32 bit length are presented
in Figure 11. The IEEE-754 single-precision binary floating-point format is composed of
1 sign bit, 8 exponent bits, and 23 significant bits for a total of 32 bits. Data are represented
by their significance and scaled by the exponent as a power of two. The term “float” refers
to the fact that the decimal point in the number can move relative to the significant digits.
Therefore, the floating-point format can represent a wide range of numbers.

Figure 11. The 32 bit (a) floating-point format and (b) fixed-point format.

The fixed-point format consists of integer bits (including sign bits) and fractional
bits. Fixed-point data are essentially binary data shifted by a given static factor. The
positions of the bits are fixed without additional digit shifting, unlike floating-point data.
Although the precision of data is limited by the number of bits, fixed-point arithmetic is
more computationally efficient. For hardware implementations, using a fixed-point data
type can reduce the area, power, and latency of arithmetic processing units.

CNNs are typically implemented and trained on GPUs and CPUs, using a floating-
point data type for high precision. However, many recent studies have proposed a method
of using a fixed-point data type for both training and inference acceleration [9,16,18,19,21].
Although fixed-point data have limited precision and result in the gradual loss of data,
recent research has shown that using fixed-point data for CNNs can yield approximately
the same results as using floating-point data when given a sufficient number of bits. The
trade-off between network accuracy and performance (i.e., area, power, and latency) is
important, so a smaller length of fixed-point data can be adopted in some scenarios. For
FPGA designs, using fixed-point data can reduce resource usage, power, and latency [38].



Electronics 2021, 10, 2859 9 of 16

To determine the optimal number of fractional bits, we can test experimental models
with different data sizes. The number of integer bits is dependent on the network archi-
tecture, particularly the size of the convolution kernels. When the accumulated results
from MAC operations on inputs and weights exceed the number of integer bits available
for memory, overflow may occur, leading to critical errors in a network. We found that in
our CNN architecture, the minimum number of integer bits required to prevent overflow
during accumulation is six bits (including one sign bit). This allows us to store values
ranging from −32 to 31, which is sufficient for a 5 × 5 kernel with multiplied values ranging
from −1 to 1.

Because the LeNet-5 network uses the tanh activation function to process the output
of each layer, the size of each layer output ranges from −1 to 1. Therefore, we can further
reduce the memory size for storing data and port width between layers by truncating
unused integer bits. As shown in Figure 12, the 12 bit data resulting from MAC operations
can be truncated by four integer bits, yielding 8 bit data. This can also improve the memory
access throughput.

Figure 12. Removing unused integer bits from signed fixed-point data.

The proposed accelerator uses low-precision signed fixed-point data with two integer
bits and six fractional bits to store parameter values. This has the benefits of significantly
reducing memory size and resource usage with little loss in accuracy when using our ap-
proximate MAC operation units for convolutional layers, which are described in Section 3.3.
For pooling and fully connected layers, the accelerator uses 12 bit fixed-point operations.
Operation units are synthesized as lookup tables (LUTs) and flip-flops instead of DSP
blocks. Data are truncated when the result of multiplication exceeds 12 bits in length (i.e.,
one sign bit, five integer bits, and six fractional bits). Our experiments revealed that the
precision of the pooling and fully connected layers has less impact on the classification
accuracy, compared to that of the convolutional layers.

3.3. Approximate MAC Operations

Our accelerator design contains two models using two different MAC operator mod-
ules for the convolutional layers. Figure 13a presents the rounded MAC module, and
Figure 13b presents the carry MAC module. Multiplication is performed with 18 bit preci-
sion, but when passing the data to the accumulator, rounding or a carry bit is applied to
remove the lower six fractional bits. These methods reduce the complexity of the accumu-
lation stage without having a heavy impact on the arithmetic results. The proposed MAC
operators are implemented on FPGAs in the form of LUTs and logic blocks instead of using
high-precision DSP blocks, which would be inefficient based on the small data size.



Electronics 2021, 10, 2859 10 of 16

Figure 13. Proposed approximate MAC units: (a) rounded MAC and (b) carry MAC.

The rounded MAC module uses a round-to-zero quantization method for the fixed-
point data type. As shown in Figure 14, the truncation of fixed-point data results in data
rounded to the floor (minus infinity). Our experiments revealed that simply truncating the
lower six fractional bits results in critically reduced classification accuracy. Therefore, a
round-to-zero operation is applied to make the rounded value symmetrical for positive
and negative values. This process is automatically synthesized as a hardware function, as
defined by the HLS tools.

Figure 14. Comparison of truncation and round-to-zero operations for fixed-point data.

The carry MAC module passes an extra carry bit to the adder instead of performing
the rounding function. The lower six bits are completely truncated. The carry bit is the
sign bit of the resulting signed fixed-point data. Because negative values are represented as
two’s complement, truncating the lower bits rounds the value to minus infinity, in contrast
to positive values, which are rounded to zero. The added carry bit pulls a negative value
toward positive infinity.



Electronics 2021, 10, 2859 11 of 16

4. Experimental Results

The proposed and experimental accelerator models were designed using the Vitis HLS
tool (v2020.2). The number of clock cycles needed for output generation is acquired from
synthesis reports on the HLS tool. The accelerator models are then exported to the Xilinx
Vivado Design Suite tool (v2020.2) for more accurate analysis. The results on the maximum
operating frequency, resource utilization, and power consumption are derived from post-
implementation (placement and routing) reports and the power estimation report taken
from the Vivado tool.

The network was trained with MNIST handwritten digit dataset training set images on
CPU, using the floating-point data type. Inference accuracy results were acquired from the
testbench simulation on the HLS tool. A total of 10,000 MNIST test set images were used to
obtain the classification accuracy for each model. The trained floating-point parameters
are sent to the accelerator models, where they are internally converted into fixed-point
data type using hardware functions. No additional training was performed after data
optimizations.

We first compared the classification accuracies between various data types. Table 2
presents comparisons of classification accuracy between the 32 bit floating-point model,
fixed-point models with various bit lengths, and the proposed accelerators using rounded
MAC and carry MAC operations. Only loop parallelization was applied to the floating-
point and fixed-point models. Our proposed model applies all three of the optimizations
described in Section 3. The fixed-point models use fixed-point data with six integer bits
(including sign bits) and different numbers of fractional bits ranging from 6 to 12. The
models using fixed-point data with 9 to 12 fractional bits exhibit less than a 1% loss in
accuracy. However, using seven bits yielded a notable 10% loss, and using six bits resulted
in a very poor accuracy of 34%, both of which are unacceptable. The proposed model with
rounding MAC had less than 1% loss, and the carry MAC model had an accuracy loss of
approximately 2%, which is acceptable.

Table 2. Comparison of classification accuracies between accelerator models.

Data Type
<Integer, Fraction>

Accuracy
(10,000 Sets)

Floating (32-bit) 9863
Fixed <6, 12> 9859
Fixed <6, 11> 9858
Fixed <6, 10> 9847
Fixed <6, 9> 9834
Fixed <6, 8> 9758
Fixed <6, 7> 8977
Fixed <6, 6> 3408

Rounded MAC 9821
Carry MAC 9614

Additionally, we experimented with varying fixed-point data precision levels for
each layer type. A model with 18 bit data (six integer bits and 12 fractional bits) for
the convolutional layers and 12 bit data (six integer bits and six fractional bits) for the
pooling and fully connected layers yielded 9840 correct classifications out of 10,000 images,
as shown in Table 3. This is very similar to the 9859 correct results for the full 18 bit
fixed-point model. Therefore, we concluded that the pooling layers and fully connected
layers have very little negative impact on network classification accuracy when using
low-precision data.



Electronics 2021, 10, 2859 12 of 16

Table 3. Classification accuracies with varying data precision.

Data
Type

Accuracy
(10,000 Sets)

18-bit 9859
18/12-bit 9840

12-bit 3408

Next, we compared the timing and resource utilization of each model. The results were
obtained from the resource usage and final timing reports outputted by the Xilinx Vivado
Design Suite (v2020.2) platform using “export RTL” option on the Vitis HLS tools. The
results are based on post-implementation (placement and routing). The timing comparisons
are presented in Table 4 and resource utilization is presented in Table 5. Graphs showing
both types of results are presented in Figure 15. In Table 4, the clock period is the minimum
length of the clock period required for the model to operate correctly. Based on this period,
we can obtain the maximum operating frequency. The clock cycles column contains the
number of clock cycles between the start of the input data stream and the end of the
final output stream. Latency is the product of the minimum clock period and number of
clock cycles.

Table 4. Timing comparisons between accelerator models.

Data Type
<Integer, Fraction>

Clock Period
(ns)

Maximum Frequency
(MHz)

Clock
Cycles

Latency
(ms)

Normalized
Latency

Floating (32-bit) 9.428 106.07 1,076,296 10.147 100%
Fixed <6, 12> 7.342 136.20 701,300 5.149 51%
Fixed <6, 11> 7.160 139.66 701,300 5.021 49%
Fixed <6, 10> 7.534 132.73 701,300 5.284 52%
Fixed <6, 9> 7.455 134.14 701,300 5.228 52%
Fixed <6, 8> 7.466 133.94 701,290 5.236 52%
Fixed <6, 7> 8.436 118.54 701,300 5.916 58%
Fixed <6, 6> 7.549 132.47 701,300 5.127 51%

Rounded MAC 8.734 114.50 587,004 5.127 51%
Carry MAC 7.890 126.74 587,004 4.631 46%

Table 5. Comparisons of resource usage between accelerator models.

Data Type
<Integer, Fraction> CLB LUT FF DSP BRAM SRL Latch

Floating (32-bit) 12,405 52,406 46,114 199 303 589 0
Fixed <6, 12> 9653 43,929 31,100 549 159 581 32
Fixed <6, 11> 9256 42,807 29,618 569 165 581 32
Fixed <6, 10> 9236 41,841 28,720 569 163 581 32
Fixed <6, 9> 9245 40,717 28,016 559 150 581 32
Fixed <6, 8> 8932 39,360 27,531 539 144 581 32
Fixed <6, 7> 8661 38,448 26,372 549 128 581 32
Fixed <6, 6> 8030 37,598 25,196 559 124 581 32

Rounded MAC 11,273 61,713 27,863 123 102 545 32
Carry MAC 10,991 57,657 28,311 123 102 581 32



Electronics 2021, 10, 2859 13 of 16

Figure 15. Comparisons of latency and resource usage between accelerator models.

According to Table 4, one can see that the floating-point model has a higher clock
period and more clock cycles than the fixed-point model, resulting in approximately twice
as much latency. However, when considering both Tables 4 and 5, one can see that timing
and resource utilization are not completely proportional to the length of the data type.
Although the floating-point model has high latency, it uses fewer DSP blocks compared
to the fixed-point models. Among the fixed-point models, the 18 bit model uses fewer
DSP blocks than the other models, except for the 14 bit model, and the 12 bit model uses
10 more DSP blocks than the 13 bit model. Regarding the timing, the clock period is not
proportional to the length of the data. Based on this result, we can infer that the HLS tool
applies algorithm modification and a resource reuse scheme when required or possible. As



Electronics 2021, 10, 2859 14 of 16

a result of the fixed sizes of FPGA elements (such as DSP blocks), changes in the bit length
of the input and output can result in significant changes in resource usage and mapping.
The floating-point model appears to use fewer DSP blocks by reusing arithmetic units in
multiple layers, whereas the fixed-point models use additional DSP blocks to accelerate the
network further. Additionally, because the FPGA elements are mapped to fixed locations,
changes in resource usage affect the signal paths, thereby changing the maximum operating
frequency through critical paths.

Next, we analyze the results of the proposed accelerator models. The rounded MAC
model and carry MAC model both yield a reduced number of clock cycles compared to the
other models (i.e., 45% less than the floating-point model and 16% less than the fixed-point
models). Regarding each type of network layer, while the convolutional and pooling layers
have the same numbers of cycles as those in the fixed-point models, the fully connected
layer exhibits a noteworthy reduction in cycles. However, our proposed models also have
a higher clock period than the other fixed-point models. It is assumed that the increased
number of LUTs used to implement the proposed approximate MAC cause additional path
delays during routing. When comparing the two MAC models, the rounded MAC model
has a 10% longer clock period than the carry MAC model because the rounding operation
is more complex than the carry injection. Regarding the final latency, the rounded MAC
model achieves a 49% reduction, and the carry MAC model achieves a 54% reduction
compared to the floating-point model. Next, we examine resource usage. Because our
proposed approximate MAC units are implemented using logic resources, the utilization
of configurable logic blocks (CLBs) and LUT is increased. However, the use of DSP blocks
is reduced by approximately 78% compared to the fixed-point models. The memory size
is reduced by 66% compared to the floating-point model. When comparing the rounded
MAC and carry MAC models, the rounded MAC model uses more CLBs and LUTs, but
uses slightly fewer flip-flops (FFs) and shift-register LUTs (SRLs).

A comparison with previous works is shown in Table 6. Our proposed accelerator
models can operate at a moderately high 100 MHz frequency. The data size of the memory
is an 8 bit fixed point, but owing to the removal of unused bits on the integer part, our
proposed models can more efficiently handle data transmission. When compared to
work [28], our models use 78% fewer DSP blocks, 30% fewer LUTs, 33% fewer FFs, and
half the memory. It is notable that our proposed models have low throughput (GOPs)
compared to state-of-the-art accelerators. This is because our proposed models do not have
novel optimizations on the loop algorithm and memory access, resulting in high latency,
due to memory bottleneck. It can be expected, however, that with the same optimizations
applied, our proposed models would have similar performance. Furthermore, optimizing
the activation layers would result in much better performance, as our current models rely
on DSP operations for activation.

Table 6. Results comparison with previous works.

Model [24] [27] [28] This Work
(Rounded MAC)

This Work
(Carry MAC)

Year 2018 2020 2020 2021 2021

FPGA
Zynq

VC7VX485T
Zynq

XCZU9EG
Artix

XC7A20
Zynq

XCZU9EG
Zynq

XCZU9EG
Clock (MHz) - 150 50 100 100

Precision (bit) 16-bit
fixed

16-bit
floating

8-bit
fixed

12/8-bit
fixed

12/8-bit
fixed

Power (W) 0.676 - 14.13 1.673 1.598
GOPs 20.3 28.8 164.1 0.141 0.141
DSP 406 204 571 123 123
LUT 75,221 25,276 88,756 61,713 57,657
FF 38,577 66,569 42,038 27,863 28,311

BRAM 101 55 218 102 102



Electronics 2021, 10, 2859 15 of 16

5. Conclusions

In this study, we designed a CNN accelerator, using an approximate MAC oper-
ator based on a fixed-point data type. The implemented network architecture is the
LeNet-5 CNN, which performs handwritten digit classification on the MNIST handwrit-
ten digit dataset. The proposed MAC operators are the rounded MAC and carry MAC
operators. To perform approximate operations in the adder stage, rounded MAC uses a
round-to-zero function, and carry MAC uses carry bits to reduce errors following least-
significant-bit truncation. The proposed approximate MAC units are implemented using
logic resources on FPGAs instead of high-precision DSP blocks, which are underutilized by
low-precision data.

The results revealed that, compared to the floating-point model, our two proposed
accelerator models, namely the rounded MAC model and carry MAC model, have 66%
reduced memory size, and 46% and 54% reduced latency, respectively. Compared to general
fixed-point models, the proposed models use additional CLBs and LUTs to implement the
approximate MAC operators, but use approximately 78% fewer DSP blocks.

Author Contributions: Conceptualization, M.C. and Y.K.; methodology, M.C.; software, M.C.; valida-
tion, M.C. and Y.K.; investigation, M.C.; resources, M.C. and Y.K.; writing—original draft preparation,
M.C.; writing—review and editing, Y.K.; supervision, Y.K.; project administration, Y.K.; funding
acquisition, Y.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by MIST under grant number NRF-2019M3F3A1A02072093 and
by Ministry of Education under grand number NRF-2020R1F1A1055251.

Acknowledgments: This work was supported by the NRF of Korea funded by the MSIT under
Grant NRF-2019M3F3A1A02072093 (Intelligent Semiconductor Technology Development Program).
This research was supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) and funded by the Ministry of Education (NRF-2020R1F1A1055251). The
EDA tool was supported by IC Design Education Center (IDEC), Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
2. Li, H.; Lin, Z.; Shen, X.; Brandt, J.; Hua, G. A convolutional neural network cascade for face detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5325–5334.
3. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4820–4828.
4. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.

Insights Imaging 2018, 9, 611–629. [CrossRef] [PubMed]
5. Xiao, T.; Xu, Y.; Yang, K.; Zhang, J.; Peng, Y.; Zhang, Z. The application of two-level attention models in deep convolutional

neural network for fine-grained image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

6. Vinayakumar, R.; Soman, K.P.; Poornachandran, P. Applying Convolutional Neural Network for Network Intrusion. In Proceed-
ings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India,
13–16 September 2017; pp. 1222–1228.

7. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8,
1–74. [CrossRef] [PubMed]

8. Guo, Z.; Huang, Y.; Hu, X.; Wei, H.; Zhao, B. A Survey on Deep Learning Based Approaches for Scene Understanding in
Autonomous Driving. Electronics 2021, 10, 471. [CrossRef]

9. Anwar, S.; Hwang, K.; Sung, W. Fixed point optimization of deep convolutional neural networks for object recognition. In
Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
QLD, Australia, 19–25 April 2015; pp. 1131–1135.

10. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with
Low Bitwidth. arXiv 2016, arXiv:1606.06160.

11. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized neural networks: Training neural networks with low
precision weights and activations. J. Mach. Learn. Res. 2017, 18, 6869–6898.

http://doi.org/10.1007/s13244-018-0639-9
http://www.ncbi.nlm.nih.gov/pubmed/29934920
http://dx.doi.org/10.1186/s40537-021-00444-8
http://www.ncbi.nlm.nih.gov/pubmed/33816053
http://dx.doi.org/10.3390/electronics10040471


Electronics 2021, 10, 2859 16 of 16

12. Courbariaux, M.; Bengio, Y.; David, J.P. Training deep neural networks with low precision multiplications. arXiv 2014,
arXiv:1412.7024.

13. Gysel, P.; Motamedi, M.; Ghiasi, S. Hardware-oriented Approximation of Convolutional Neural Networks. arXiv 2016,
arXiv:1604.03168.

14. Zhuang, B.; Shen, C.; Tan, M.; Liu, L.; Reid, I. Towards effective low-bitwidth convolutional neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7920–7928.

15. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA,
USA, 22–24 February 2015; pp. 161–170.

16. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going deeper with embedded fpga platform
for convolutional neural network. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 26–35.

17. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.S. Optimizing Loop Operation and Dataflow in FPGA Acceleration of Deep Convolutional
Neural Networks. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 22–24 February 2017; pp. 45–54.

18. Zhou, Y.; Jiang, J. An FPGA-based accelerator implementation for deep convolutional neural networks. In Proceedings of the
2015 4th International Conference on Computer Science and Network Technology (ICCSNT), Harbin, China, 19–20 December
2015; Volume 1, pp. 829–832.

19. Ghaffari, S.; Sharifian, S. FPGA-based convolutional neural network accelerator design using high level synthesize. In Proceedings
of the 2nd International Conference of Signal Processing and Intelligent Systems (ICSPIS), Tehran, Iran, 14–15 December 2016;
pp. 1–6.

20. Gschwend, D. Zynqnet: An Fpga-Accelerated Embedded Convolutional Neural Network. arXiv 2020, arXiv:2005.06892.
21. Abdelouahab, K.; Bourrasset, C.; Pelcat, M.; Berry, F.; Quinton, J.C.; Serot, J. A Holistic Approach for Optimizing DSP Block

Utilization of a CNN implementation on FPGA. In Proceedings of the 10th International Conference on Distributed Smart Camera,
Paris, France, 12–15 September 2016; pp. 69–75.

22. Lee, S.; Kim, D.; Nguyen, D.; Lee, J. Double MAC on a DSP: Boosting the performance of convolutional neural networks on
FPGAs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2019, 38, 888–897. [CrossRef]

23. Wang, D.; Xu, K.; Guo, J.; Ghiasi, S. DSP-efficient hardware acceleration of convolutional neural network inference on FPGAs.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 4867–4880. [CrossRef]

24. Chen, W.; Wu, H.; Wei, S.; He, A.; Chen, H. An asynchronous energy-efficient CNN accelerator with reconfigurable architecture.
In Proceedings of the IEEE Asian Solid-State Circuits Conference (A-SSCC), Tainan, Taiwan, 5–7 November 2018; pp. 51–54.

25. Giardino, D.; Matta, M.; Silvestri, F.; Spanò, S.; Trobiani, V. FPGA implementation of hand-written number recognition based on
CNN. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 167–171. [CrossRef]

26. Rongshi, D.; Yongming, T. Accelerator implementation of Lenet-5 convolution neural network based on FPGA with HLS. In Pro-
ceedings of the 2019 3rd International Conference on Circuits, System and Simulation (ICCSS), Nanjing, China, 13–15 June 2019;
pp. 64–67.

27. Shi, Y.; Gan, T.; Jiang, S. Design of Parallel Acceleration Method of Convolutional Neural Network Based on FPGA. In Proceedings
of the 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China,
10–13 April 2020; pp.133–137.

28. Shan, D.; Cong, G.; Lu, W. A CNN Accelerator on FPGA with a Flexible Structure. In Proceedings of the 2020 5th International
Conference on Computational Intelligence and Applications (ICCIA), Beijing, China, 19–21 June 2020; pp. 211–216.

29. Xiao, T.; Tao, M. Research on FPGA Based Convolutional Neural Network Acceleration Method. In Proceedings of the 2021
IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 28–30 June 2021;
pp. 289–292.

30. UltraScale Architecture DSP Slice User Guide. 2020. Available online: https://www.xilinx.com/support/documentation/user_
guides/ug579-ultrascale-dsp.pdf (accessed on 28 July 2021).

31. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

32. The MNIST Database of Handwritten Digits. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 29 July 2021).
33. Zeiler, M.D.; Fergus, R. Stochastic pooling for regularization of deep convolutional neural networks. arXiv 2013, arXiv:1301.3557.
34. Yu, D.; Wang, H.; Chen, P.; Wei, Z. Mixed Pooling for Convolutional Neural Networks. In Proceedings of the Rough Sets and

Knowledge Technology: 9th International Conference (RSKT 2014), Shanghai, China, 24–26 October 2014; pp. 364–375.
35. Sun, M.; Song, Z.; Jiang, X.; Pan, J.; Pang, Y. Learning pooling for convolutional neural network. Neurocomputing 2017, 224, 96–104.

[CrossRef]
36. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.
37. Karlik, B.; Olgac, A.V. Performance analysis of various activation functions in generalized MLP architectures of neural networks.

Int. J. Artif. Intell. Expert Syst. 2011, 1, 111–122.
38. Reduce Power and Cost by Converting from Floating Point to Fixed Point. 2017. Available online: https://www.xilinx.com/

support/documentation/white_papers/wp491-floating-to-fixed-point.pdf (accessed on 28 July 2021).

http://dx.doi.org/10.1109/TCAD.2018.2824280
http://dx.doi.org/10.1109/TCAD.2020.2968023
http://dx.doi.org/10.18517/ijaseit.9.1.6948
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
http://dx.doi.org/10.1109/5.726791
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1016/j.neucom.2016.10.049
https://www.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf
https://www.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf

	Introduction
	Background
	CNN
	LeNet-5
	FPGA

	Proposed Accelerator Design
	Loop Parallelization
	Fixed-Point Data Optimization
	Approximate MAC Operations

	Experimental Results
	Conclusions
	References

