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Abstract: The stability of the electron thermionic emission current is one of the most important
requirements for electron sources used, inter alia, in evaporators, production of rare gas excimers,
and electron beam objects for high energy physics. In emission current control systems, a negative
feedback signal, directly proportional to the emission current is transferred from the high-voltage
anode circuit to the low-voltage cathode circuit. This technique, especially for high-voltage sources
of electrons, requires the use of galvanic isolation. Alternatively, a method of converting the emission
current to voltage in the cathode power supply circuit was proposed. It uses a linear cathode
current intensity distribution and multiplicative-additive processing of two voltage signals, directly
proportional to the values of cathode current intensity. The simulation results show that a relatively
high conversion accuracy can be obtained for low values of the electron work function of the cathode
material. The results of experimental tests of the dynamic parameters of the electron source and the
steady-state Ie-V characteristic of the converter are presented. The implementation of the proposed
Ie-V conversion method facilitates the design of the emission current controller, especially for high-
voltage sources of electrons, because a negative feedback loop between the anode and cathode circuits
is not required, all controller sub-components are at a common electrostatic potential.

Keywords: thermionic electron source; cathode current intensity distribution; signal processing;
cathode converter; electron work function; emission current controller

1. Introduction

Thermionic electron sources operated in temperature limited or space charge limited
mode are a key component of vacuum devices, which use the interaction of the thermionic
electron beam with matter, including evaporators [1], X-ray photoelectron spectroscopy [2],
electron beam facilities for high energy physics [3], production of rare gas excimers [4], and
others, e.g., electron beam inspection for integrated circuit manufacturing process monitoring [5].

The stability of the emission current has a significant impact on the quality of electron
beam devices. The problem of stabilization includes the conversion of the thermionic
emission current to voltage, comparing its value with the reference voltage and controlling
the electric power supplied to the cathode, e.g., in evaporators, or controlling the bias
voltage on the control grid electrode of electron source, for a constant cathode temperature,
e.g., on the Wenhelt electrode in electron microscopes. With regard to evaporators, there
are also designs in which the electric power supplied to the cathode is controlled by the
voltage directly proportional to the ion current [6]. In commonly used emission current
control systems, the Ie-V conversion is performed in the anode power supply circuit and its
output signal is transferred as a negative feedback signal to the low-voltage cathode power
control circuit [7–10]. For a relatively small value of the cathode-anode potential difference
and, consequently, a relatively low electron energy, e.g., in mass spectrometers, ionization
vacuum gauges, a galvanic connection can be used to implement the negative feedback
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loop. The works [7,9] present systems in which the negative feedback signal is transferred
from the anode power supply circuit to the low-voltage cathode power supply circuit
by means of a current mirror, a high-voltage differential amplifier used for this purpose
is described in [8,10]. These controllers ensure high-quality stabilization of the emission
current, however, the value of the electron accelerating voltage is limited by the breakdown
voltage of semiconductor components. For higher anode power supply voltages, the
problem of stabilizing the emission current is more complex. The paper [4] describes the
original system of the emission current controller for the infrared emission spectroscopy
of rare gas excimers, in which the electron accelerating voltage of 100 kV is used. In
the system, the measurement of the emission current is performed in the high-voltage
anode power supply circuit and its result is transferred as a negative feedback signal to the
cathode control circuit by means of an optical fiber. The optoelectronic connection was also
used in the digital controller of the electron beam evaporator, described in [1].

The necessity to transfer the negative feedback signal from the high-voltage anode
circuit to the low-voltage cathode circuit in the controllers of high-voltage sources of elec-
trons justifies an attempt to convert the emission current into voltage in the cathode power
supply circuit. The article presents the results of simulation tests of the Ie-V conversion
method in the cathode power supply circuit for the electron source in a diode configuration,
operating in temperature limited mode and the results of experimental tests of the dynamic
parameters of the electron source and the static characteristic of the Ie-V converter.

2. Modeling of the Emission Current-to-Voltage Conversion in the Cathode Power
Supply Circuit

In terms of the thermionic electron source working under temperature limited condi-
tions, the temperature dependence of the intensity of the emission current is described by
the Richardson-Dushmann equation [11]:

Ie = AST2 exp
(
− ϕ

kBT

)
, (1)

where A = 1.2 × 106 Am−2 K−2 is the Richardson constant, S is the surface from which the
electrons are emitted, T is the temperature, ϕ is the electron work function for the cathode
material, kB is the Boltzmann constant.

Due to the cathode’s heat capacity, the thermionic electron source is a higher-order
inertial system. In order to simplify considerations, its small signal transconductance G(s)
can be approximated by the following expression [12,13]:

G(s) =
G0

TCs + 1
e−sT0 , (2)

where G0 is the DC transconductance, Tc is the time constant, T0 is the delay time, s is the
Laplace operator.

In order to justify the method of converting the emission current to the voltage
in the cathode power supply circuit, a simplified equivalent circuit of the diode-type
electron source has been presented. Figure 1a shows a scheme of the biasing system of the
thermionic electron sources, which simplified equivalent circuit as presented in Figure 1b.

The cathode is divided into n elementary parts with the resistance values r1, r2, . . . , rn,
which at a fixed value of the heating voltage Vh give an emission current with the intensity
values Ie1, Ie2, . . . , Ien. The resistances ri of individual elements and the values of the
intensity Iei of the emission current depend on the temperature of the individual cathode
elements, which can be determined using the cathode temperature distribution [14]. The
current intensity Iei is described by the Richardson-Dushmann equation:

Iei = ASiT2
i exp

(
− ϕ

kBTi

)
, (3)
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where: Si is the side area of the i-th element, Ti is the temperature of the i-th cathode element.
It was assumed that the electron work function is equal to ϕ for all cathode elements.
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Figure 1. (a) Scheme of the thermionic electron source biasing system. Va is the anode voltage, Ie is the thermionic emission 
current intensity, Ve is the electron accelerating voltage, Vh is the cathode heating voltage. (b). Simplified equivalent circuit 
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values of the intensity of the cathode current. 
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Figure 1. (a) Scheme of the thermionic electron source biasing system. Va is the anode voltage, Ie is
the thermionic emission current intensity, Ve is the electron accelerating voltage, Vh is the cathode
heating voltage. (b). Simplified equivalent circuit of a thermionic electron source is inserted inside
the dashed rectangle in place of the electron source. I1, I2 are the boundary values of the intensity of
the cathode current.
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According to the diagram shown in Figure 1b, the intensity of the cathode current Ici
flowing through the i-th element can be expressed as follows:

Ici = I1 +
n

∑
j=i

Iej (4)

The cathode current intensity depends on the location along the cathode, described
by the generalized variable i. Consequently, the above formula describes a linear cathode
current intensity distribution. For the j = 1 limit value, the intensity I2 of the current flowing
from the cathode can be written as follows:

I2 = I1 +
n

∑
j=1

Iej. (5)

As

Ie =
n

∑
j=1

Iej (6)

Then
I2 = I1 + Ie (7)

The above relationship was used to convert the thermionic emission current to voltage
in the cathode power supply circuit.

Based on the diagrams shown in Figure 1, the electron accelerating voltage Ve was
derived. The voltage accelerating the electrons emitted from the i-th element is given by
the formula:

Vei = Va −Vci (8)

In order to determine the voltage Vci, it is helpful to determine, first the voltage Vc1 at
the upper terminal of the resistor r1 with respect to ground:

Vc1 =

(
n

∑
j=1

Iej + I1

)
r1 (9)

Similarly, the voltage at the upper terminal of the resistor r2 with respect to ground is
described by the formula:

Vc2 = Vc1 +

(
n

∑
j=2

Iej + I1

)
r2 (10)

With the above in mind, a generalized equation can be expressed to describe the
voltage at the upper terminal of the resistor ri relative to ground:

Vci =
i

∑
k=1

(
n

∑
j=k

Iejrk

)
+ I1

i

∑
k=1

rk. (11)

Equation (8), after substituting Formula (11), takes the following form:

Vei = Va −
[

i

∑
k=1

(
n

∑
j=k

Iejrk

)
+ I1

i

∑
k=1

rk

]
(12)

The above equation describes the electron accelerating voltage Vei at the i-th cathode
element. For a relatively long cathode, it can be assumed that the temperature distri-
bution is uniform, then the resistances rk and the values of the current intensity Iei are
respectively equal:

rk =
1
n

RC, (13)
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Iej =
1
n

Ie, (14)

where Rc is the cathode resistance for the given heating voltage Vh.
Combining the dependencies (12) and (13) and performing the summation with

respect to j and k, has the following form:

Vei = Va −
i
n

Rc

[
2n− i + 1

2n
Ie + I1

]
(15)

Given the emission current and the electron accelerating voltage for the i-th cathode
element, the electron beam power can be determined:

Pen =
n

∑
i=1

Vei Iei (16)

Taking into account the expression (15), the formula (16) can be presented as follows:

Pen = Va Ie −
Rc

n

(
Ie

n

∑
i=1

iIei −
Ie

2n

n

∑
i=1

i2 Iei ++
Ie

2n

n

∑
i=1

iIei + I1

n

∑
i=1

iIei

)
(17)

Using the equation given in the work [15]:

n

∑
i=1

i2 =
1
6

n(n + 1)(2n + 1) (18)

and summing in Formula (17) with respect to i, we obtain:

Pen = Va Ie − Rc Ie

[
2n2 + 3n + 1

6n2 Ie +
1

2n
I1 +

1
2

I1

]
(19)

Assuming that the cathode is divided into infinitely many elementary parts, the power of
the electron beam can be determined using the relationship:

Pe = lim
n→∞

Pen (20)

Substituting Equation (19) to the above formula, we obtain:

Pe =

(
Va −

1
3

Rc Ie −
1
2

Rc I1

)
Ie (21)

Hence the electron accelerating voltage Ve can be written as follows:

Ve = Va −
1
3

Rc Ie −
1
2

Rc I1 (22)

The above relation shows the effect of the cathode heating current and the thermionic
emission current on the value of Ve. For high-voltage sources, the electron accelerating
voltage can be approximated by the anode power supply voltage Va.

The simplified scheme shown in Figure 2 is used to explain the conversion of the
emission current to voltage in the cathode power supply circuit.

The cathode power supply circuit consists of a voltage source Vh, sensing resistors R1,
R2, and a cathode. The difference in the voltage drops across the resistors R1, R2 is equal to:

V = R2 I2 − R1 I1 (23)

After taking into account the Formula (7), the following is obtained:

V = R2 Ie + (R2 − R1)I1 (24)
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In order to make the voltage V independent of the current I1, the following condition
should be assumed:

∂V
∂I1

= 0 (25)

For the ideal case described in this way, the voltage V = Videal is given by the formula:

Videal = R2 Ie (26)

To determine the electron accelerating voltage, the voltage drop across the resistor R2
should be taken into account in Formula (24), hence:

Ve = Va − I1

(
1
2

Rc + R2

)
− Ie

(
1
3

Rc + R2

)
. (27)

In practice, given the finite values of the tolerances of the resistors δR1 = δR2, the
Equation (26) does not have to be met. The discrepancy between the voltages V and Videal
can be described by the relative voltage difference (V − Videal)/Videal). Using Formulas
(24) and (26) we obtain:

V −Videal
Videal

=
I1

Ie

R2 − R1

R2
. (28)

Assuming that the resistances R1 = R2 and the tolerances of the resistors δR1 = δR2, for the
most unfavorable distribution of the values of R1 and R2, the Formula (28) takes the form:

V −Videal
Videal

=
I1

Ie
2δR1 (29)

In order to quantify the relative voltage difference, first the numerical relationship of
the I1/Ie ratio as a function of the electron work function was simulated, using the cathode
model described by the Formula (A2) and the graphical relationship shown in Figure A3
in Appendix A. For the simulation, model tungsten wire cathodes with a diameter of
d = 1.2 × 10−4 m and a length of l = 4.5 × 10−2 m, surface-coated with materials with the
electron work function ϕ in the range from 0.9 eV to 4.5 eV were used. The calculations
were made for the set values of the intensity of the emission current: Ie = 1 mA, Ie = 10 mA,
Ie = 50 mA, and Ie = 100 mA. The results are shown in Table 1:
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Table 1. The simulation results of the I1/Ie quotient as a function of the electron work function ϕ, at
the set values of the emission current: 1 mA, 10 mA, 50 mA, and 100 mA.

ϕ, eV Ie = 1 mA Ie = 10 mA Ie = 50 mA Ie = 100 mA

I1, A I1/Ie I1, A I1/Ie I1, A I1/Ie I1, A I1/Ie

4.5 1.64 1637.99 1.93 195.51 2.26 45.13 2.42 24.20
4.2 1.44 1442.46 1.73 171.63 1.98 39.55 2.11 20.99
3.9 1.26 1256.39 1.51 150.69 1.73 34.51 1.84 18.40
3.6 1.09 1086.97 1.30 129.77 1.49 29.81 1.59 15.85
3.3 0.93 925.03 1.11 109.76 1.27 25.46 1.36 13.60
3.0 0.78 777.17 0.93 92.59 1.07 21.42 1.14 11.40
2.7 0.64 639.48 0.77 76.63 0.89 17.71 0.94 9.34
2.4 0.52 514.53 0.62 61.78 0.72 14.32 0.76 7.61
2.1 0.40 403.68 0.49 48.44 0.56 11.25 060 5.98
1.8 0.31 304.07 0.37 36.83 0.43 8.52 0.46 4.56
1.5 0.22 217.75 0.27 26.31 0.31 6.13 0.33 3.26
1.2 0.14 143.32 0.18 17.36 0.20 4.09 0.22 2.18
0.9 0.08 80.82 0.10 10.05 0.12 2.40 0.13 1.30

Using the above data, the relative voltage difference ((V − Videal)/Videal) was deter-
mined, based on the Formula (29), for the tolerance of the sensing resistors R1 and R2 equal
to δR1 = δR2 = 0.01%. The results are shown in Figure 3.

The analysis of the results shows that the described Ie-V conversion method in the
cathode power supply circuit is predestined for electron sources with low electron work
function of the cathode material. For a fixed electron work function, the relative voltage
difference decreases with the increase of the emission current. An important design issue is
the selection of sensing resistors with high temperature stability, because a relatively high
cathode current flows through them, which causes their heating.
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3. Experimental Results
3.1. Dynamic Parameters of the Electron Source with Sensing Resistors Connected in Series in the
Cathode Supply Circuit

In order to assess the influence of the sensing resistors on the dynamic properties of
the thermionic electron source, the time constant Tc and the delay time T0 were determined
using step response method [13]. The scheme of the measuring system is presented in
Figure 4. The square wave control signal is fed from the Ao1 output of the NI 6251 data
acquisition card to the input of the power amplifier A1 operating in a voltage follower
configuration, the output of which is connected to the cathode power supply circuit and the
input Ai0. The voltage, directly proportional to the emission current intensity, is supplied
to the Ai2 input from the Ie-V anode converter built on the basis of the current mirror [7].

For the square wave period, the value of 10 s was assumed, which is sufficient for the
cathode temperature and the emission current to reach the set values. Measurements were
made for a Bayart-Alpert gauge electron source at a pressure of 0.1 Pa, with a thoriated
tungsten cathode (d = 0.00012 m and l = 0.045 m). Sensing resistors R1 = R2 with nominal
values of 0.100 Ω, 0.383 Ω, 0.562 Ω, 1.000 Ω were used in the measurements. The waveforms
of the control voltage and the emission current step response were acquired for the set
values of the constant component Vh0 and the step voltage ∆Vh. An example of the
waveforms of the control voltage Vh(t), emission current Ie(t) and the step response of the
first-order inertial model with a delay are shown in Figure 5.
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source. The NI 6251 is a data acquisition card (DAQ) from National Instruments, Ai0–Ai3 are the
analog inputs, and Ao1 is the analog output of DAQ, A1 is a power amplifier in a voltage follower
configuration with an output current up to 3 A.

Successive step responses Ie were registered for the set values of the constant compo-
nent Vh0 and the step voltage ∆Vh = 0.05·Vh0. The values of the time constant Tc and the
delay time T0 determined on the basis of these waveforms are presented as a function of
the intensity of the emission current in Figure 6.
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Figure 5. Emission current step response and the step response of the first-order inertial model with a
delay, for thoriated tungsten cathode with dimensions d = 0.00012 m and l = 0.045 m, sensing resistors
R1 = R2 = 0.383 Ω, sampling period Ts = 1 ms, and anode voltage Va = 100 V.

As can be seen, with increasing emission current, the time constant decreases while the
delay time remains approximately constant. According to the results of work [13], for the
electron source without sensing resistors, the delay time decreases with increasing emission
current. In the present work, the delay time remains approximately constant due to the use
of linear, sensing resistors connected in series with the cathode, which have a linearizing effect
on the temperature dependence of the resistance of the new control object (cathode + sensing
resistors). The decrease in the time constant results from faster cathode-ambient thermal energy
exchange at higher and higher temperatures. Analogous measurements were made for the
electron source itself and for the electron source with sensing resistors 0.100 Ω, 0.562 Ω, 1.000 Ω.
The summary of all the results is shown in Figure 7.

Increase in series resistance in the cathode circuit causes an increase in the time
constant of the electron source circuit. For example, for Ie = 0.45 mA and resistance
R1 = R2 = 1.000 Ω the increase of time constant is close to 75% in relation to time constant
of the electron source itself. For this reason, the resistances of R1, R2 should be as low
as possible. On the other hand, the resistance values have an influence on the measured
voltage drops (Formula (23)) and the signal/noise ratio, hence the need for a compromise
when choosing their values.
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3.2. Static Characteristic of the Ie-V Converter

In order to verify the proposed conversion method, a prototype of the Ie-V converter
was designed. A simplified scheme of the converter, hereinafter referred to as the cathode
converter, is presented in Figure 8.
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Figure 8. A simplified scheme of the Ie-V cathode converter. IA1, IA2, IA3 are instrumentation amplifiers AD8221 (Analog
Devices), R1, R2 are sensing resistors (Caddock Electronics), RG1 = 49.42 kΩ; 47 kΩ ≤ RG2 ≤ 52.47 kΩ Vh is the LPS-305
power supply (Motech Industries INC.), Va is the CPX400DP (Aim TTi) power supply, all instrumentation amplifiers are
powered with +/−15 V from the DF 1743005C (NDN) power supply.

The converter consists of sensing resistors R1, R2 placed on a common heat sink and
three instrumentation amplifiers IA1, IA2, IA3 with differential-mode gains kd1, kd2, kd3,
respectively. Resistors RG1, RG2, RG3 are used to adjust these gains. The common-mode
gains of the amplifiers were assumed to be negligible. The output voltages V1, V2 are
directly proportional to the voltage drops across the sensing resistors R1, R2, respectively:

V1 = kd1R1 I1, (30)

V2 = kd2R2 I2. (31)

The output voltage V of the amplifier IA3 is equal to:

V = kd3(V2 −V1). (32)

Combining the relations (30)–(32) and (7), we obtain:

V = kd3[Iekd2R2 + I1(kd2R2 − kd1R1)]. (33)

Assuming the condition:
∂V
∂I1

= 0, (34)

the ideal case is obtained, in which the voltage V = Videal is expressed by the relationship:

Videal = kd3kd2R2 Ie. (35)
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The discrepancy between the output voltage of the ideal converter (Formula (35)) and
the output voltage of the analyzed converter (Formula (33)) is expressed by the relative
voltage difference:

V −Videal
Videal

=
I1

Ie

(kd2R2 − kd1R1)

kd2R2
. (36)

Appropriate selection of the kd2 differential-mode gain value with the RG2 resistor
allows to compensate the influence of the sensing resistors tolerance on the conversion
accuracy. The estimated maximum relative contributions of components in the output
signals of the IA1 and IA2 amplifiers due to common-mode gains are 0.43% and 3.00%,
respectively.

In order to determine the static dependence of the output voltage V as a function of
the emission current Ie of the cathode converter, measurements were carried out in the
circuit, the diagram of which is shown in Figure 9.
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Figure 9. Scheme of the measuring system for determining the static characteristic of the Ie-V.
Regulated voltage Vh is supplied with LPS-305 (Motech Industries INC.), Va = 100 V is supplied with
CPX400DP (Aim TTi).

The system uses an electron source with a tungsten cathode installed in a Bayard-
Alpert gauge. The sensing resistors R1 = R2 = 0.383 Ω were used. The intensity of the
emission current was adjusted by the voltage Vh. The output voltage V of the cathode
converter was measured with an Agilent 34461A multimeter, while the emission current
was measured with a Brymen 859 multimeter in the anode power supply circuit. Figure 10
shows the static characteristic of the converter output voltage as a function of the emission
current intensity.

The characteristic of the converter was approximated by the equation:

V = 0.37 Ie + 0.01. (37)

The relative non-linearity of the characteristic is lower than 0.77%.
The obtained results constitute an experimental verification of the proposed method

of converting the emission current into voltage. Based on the dependencies (30)–(32), it
can be concluded that the multiplicative-additive processing of voltage signals directly
proportional to the values of the cathode current intensity enables the conversion of the
emission current into voltage in the cathode power supply circuit. Although the anode
voltage Va = 100 V was used in the measurements, it is clear that the upper value of the
voltage Va is only limited by the parameters of the electron source.
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Figure 10. Static characteristic of the emission current to voltage converter. The Type B relative
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The use of a cathode converter facilitates the design of the emission current controller. The
simplified scheme of an exemplary controller using a cathode converter is shown in Figure 11.

Figure 11. A simplified scheme of the controller of the emitted electron current using a cathode
converter. A1 is the kv voltage transmittance amplifier, Vref is the reference voltage.

For the amplifier A1, the voltage V, directly proportional to the emission current Ie, is a
negative feedback signal that is compared with the reference voltage Vref and the amplified
error signal (Vref–V)kv controls the cathode heating so as to maintain the pre-set value of
the emission current. In the controller diagram shown, the anode is at a high potential,
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but it is easy to polarize the cathode circuit with a high negative voltage, and the anode is
grounded, which is used in many electron beam devices.

As can be seen in Figure 11, the Ie-V cathode converter is the negative feedback loop
of the A1 amplifier. Comparison of presented and reported feedback loop applications
used in emission current controllers is shown in Table 2.

Table 2. Comparison of feedback loop applications used in emission current controllers.

Feedback Loop Based on
the Cathode
Converter

(Present Work)

Feedback Loop Based on
the Differential
Amplifier [8,10]

Feedback Loop Based on the
Current Mirror [7,9]

Feedback Loop Based on the
Optical Link [4]

Ie-V conversion
implementation Cathode circuit Anode circuit Anode circuit Anode circuit

Feedback signal transferring
from the anode to the

cathode circuit
Not required Voltage Current Voltage

Electron accelerating voltage High Low Low High

Electron work function of
the cathode Low Wide range Wide range Wide range

Galvanic isolation in the
feedback loop Not required Not required Not required Applied

Complexity Low Low Low High

4. Conclusions

The method of converting the emission current to the voltage in the cathode power
supply circuit was proposed. Based on the original static model of the thermionic electron
source in a diode configuration, a linear distribution of the cathode current intensity was
determined on the basis of which the conversion of the emission current to voltage with
the use of sensing resistors in the cathode power supply circuit was justified. The results
of simulation studies show that a relatively high conversion accuracy can be obtained
for low values of the electron work function of the cathode material. The influence of
the sensing resistors on the time constant of the electron source system was determined
experimentally. A prototype of a cathode converter with a tungsten cathode was developed
and its static characteristic was determined, for which the relative nonlinearity is lower
than 0.77%. The use of the Ie-V cathode converter in the automatic control system of the
emitted electron current eliminates the need to transfer the negative feedback signal from
the high-voltage anode circuit to the low-voltage cathode circuit, which may be the key
application advantage of the presented converter, especially in relation to high-voltage
sources of electrons.

Currently, a prototype of a digital cathode converter applied in a digital emission
current controller is being designed and tested. The investigations for electron sources
with an yttrium oxide coated iridium cathode and a thoriated tungsten cathode will
be performed.
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Appendix A

In many devices that use the thermionic electron sources, the directly heated cathode is
made of a thin wire of a suitably selected metal or composite. For high vacuum conditions,
the cathode power balance equation for a steady state can be written as follows [16,17]:

I2
c

ρ0
F [1 + α(T − T0)]dx =

= σεL
(
T4 − T4

0
)
dx− λF d2T

dx2 dx + AL 2kBT+ϕ
e T2e−

ϕ
kBT dx

(A1)

where Ic is the cathode heating current, ρ0 is the cathode material resistivity, F is the
cathode cross-sectional area, α is the temperature coefficient of the cathode resistance,
T is the cathode temperature, T0 is the ambient temperature, σ = 5.671·10−8 W·m2·K−4 is
the Stefan-Boltzmann constant, ε is the temperature-dependent total emissivity of the cathode
surface, L is the cathode circumference, λ is the temperature-dependent conductivity of the
cathode material, A = 1.2 × 106 Am−2 K−2 is the Richardson constant, kB is the Boltzmann
constant, ϕ is the electron work function of the cathode material, e is the charge of the electron.

The expression on the left side of the Equation (A1) describes the power delivered to
an element dx of the cathode, the first component of the right side of the equation describes
the power dissipated by radiation, the second term describes the power dissipated by
heat conductivity of the cathode material [16], the third term describes the energy per unit
time dissipated by electrons (cathode cooling effect [17]). For a relatively long cathode, its
temperature can be determined from Equation (A1) omitting the power dissipated by the
heat conductivity of the cathode material. The power balance equation has the form:

I2
c

ρ0

F
[1 + α(T − T0)]l = krLl

(
T4 − T4

0

)
+ ALl

kBT + ϕ

e
T2e−

ϕ
kBT . (A2)

From the above equation, the dependence of the cathode temperature T as a function of
the heating current intensity Ic, for a tungsten cathode with dimensions d = 0.00012 m and
l = 0.045 m was determined. The results are presented in Figure A1.

Then, using the Richardson-Dushmann equation, the dependence of the intensity Ie of
the emission current as a function of the temperature T was determined. The results are
presented in Figure A2

By combining the relationships shown in Figures A1 and A2, the characteristic of the
intensity Ie of the emission current as a function of the intensity Ic of the cathode heating
current, which is illustrated in Figure A3, was determined.

The obtained dependence combines the electrical quantities of the input Ic and the
output Ie of the thermionic electron source and is helpful in the simulation studies of the
method of converting the emission current to voltage in the cathode power supply circuit.
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