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Abstract: Available digital maps of indoor environments are limited to a description of the geometri-
cal environment, despite there being an urgent need for more accurate information, particularly data
about the electromagnetic (EM) properties of the materials used for walls. Such data would enable
new possibilities in the design and optimization of wireless networks and the development of new
radio services. In this paper, we introduce, formalize, and evaluate a framework for machine learning
(ML) based wireless sensing of indoor surface materials in the form of EM properties. We apply the
radio-environment (RE) signatures of the wireless link, which inherently contains environmental
information due to the interaction of the radio waves with the environment. We specify the content
of the RE signature suitable for surface-material classification as a set of multipath components
given by the received power, delay, phase shift, and angle of arrival. The proposed framework
applies an ML approach to construct a classification model using RE signatures labeled with the
environmental information. The ML method exploits the data obtained from measurements or
simulations. The performance of the framework in different scenarios is evaluated based on standard
ML performance metrics, such as classification accuracy and F-score. The results of the elementary
case prove that the proposed approach can be applied for the classification of the surface material
for a plain environment, and can be further extended for the classification of wall materials in more
complex indoor environments.

Keywords: indoor propagation; channel state information; ray tracing; decision tree; electromagnetic
properties; radio environment signature; random forest; environment characterization; permittivity

1. Introduction

Environmental awareness enables many cutting-edge applications in a range of dif-
ferent domains, such as engineering, architecture, and construction. The potential uses
of outdoor and indoor digital maps are in many different applications that will facili-
tate the human activities heading towards smart living in smart cities [1], such as spatial
understanding (space planning, navigation, emergency response), automation (smart build-
ings, ambient intelligence applications, decision support, facility monitoring, elderly care),
mediated reality (virtual reality, visualization, gaming), and wireless-system optimization.

The elevation maps of the Earth’s surface, clutter maps, and building shapes, which are
acquired using techniques, such as photogrammetry, light detection and ranging (LiDAR),
interferometric synthetic aperture radar, land surveying, or geodetic building databases,
provide sufficient information for a digital representation of the outdoor environment.
However, the accurate description of the indoor spaces is still challenging due to the
complex layout of the indoor structures including different architectural components and
objects, such as furniture, equipment, etc. [2].

Indoor spaces are usually described with building plans that are often inaccurate,
outdated, and difficult to obtain, or with reconstructed models of the environment from
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point clouds. In both cases, these representations of the indoor environment include only
the geometry of the building, without any semantic attributes of the indoor components.
Some of the possible attributes that may be added to the accurate geometrical description
are electromagnetic (EM) properties of the building materials and texture of the surfaces [3].

Such semantically enriched indoor maps are essential for many different applications.
Since building structures and materials used indoors strongly affect the indoor radio
propagation [4–6], the accurate indoor maps with material’s EM properties can benefit
to the design and optimization of the emerging wireless networks. Furthermore, radio-
environment (RE) awareness is essential for development sixth generation (6G) wireless
communication systems [7–9], which are looking at joint optimization of the RE and
wireless networks by applying re-configurable intelligent surfaces [10]. Information about
the RE can also decrease the extent of the training sequence and, thus, increase the link
goodput. An awareness of the RE will result in improved wireless services and reduced
environmental pollution with EM waves. The need for an accurate description of indoor
spaces will be highlighted with near-future trends, such as increasing amounts of time
spent indoors, mega-sized indoor structures in future cities, seamless and ubiquitous
outdoor–indoor navigation, etc.

In this paper, we exploit the multipath propagation channel in indoor environments
in order to sense the EM properties of the building materials by analyzing the RE impact
on the received signal. In the literature, the approach is known as wireless or radio sensing.
The radio signal propagating from the transmitter to the receiver is not directed only to
the receiver location. Due to the nature of electromagnetic waves and antenna properties
it can be broadcast in several directions. Misdirected radio signal may hit the object in
the neighborhood. A part of the signal is reflected from the object, while the rest of it
travels through the object, where it is additionally attenuated and delayed. The energy
of the reflected signal depends on the electromagnetic properties of the material, i.e., the
material conductivity, permittivity and permeability, and the roughness of the object
surface. For example, highly conductive materials, such as metals and water, reflect the
radio signals. On the other hand, building materials, such as brick, wood, and concrete,
only partly reflect radio signal while part of it travels through them. Furthermore, when
the object size is comparable or smaller to the signal wavelength, the object is invisible to
the radio signal and does not obstruct the radio signal. The reflected radio signals may
also hit the receiver antenna. Their path is longer compared to the path of the direct signal,
which is expressed as a time delay and additional attenuation of the reflected signals [11].
Thus, the set of reflected signals with their delays and amplitudes is characteristic for the
particular environment and is known as the radio-frequency or RE signature [12]. The RE
signature can be presented as the channel transform function (CTF) [13], but in order to
exploit the full potential of multipath propagation, we apply a set of the strongest multipath
components described by received power, delay, phase shift, and angle of arrival (AoA)
as the RE signature. Due to the problem complexity, we apply a data-driven instead of a
model-driven approach to tackle the problem.

We focus on machine learning (ML)-based wall-material wireless sensing, which is
modeled as a multi-class classification problem and solved by ML techniques. In particular,
we proposed the complete framework applicable for different indoor environments and
arbitrary transmitter and receiver layouts composed of several steps. First, a dataset of
RE signatures for different wireless links in various propagation environments can be
generated by applying a computer simulations or radio channel measurements [14].

The availability of suitable datasets is very limited, and the creation of such a dataset
is very time consuming. Therefore, for the initial ML analyses, datasets obtained by
computer simulations are used. Since ray-tracing algorithms are able to identify a set of
the main most significant radio signal paths with their delays and attenuations between
the transmitter and receiver, we apply them to generate RE signatures in a room where the
material of the walls, the size and shape of the room, and the position of the transmitter and
receiver vary. The generated dataset assumes a perfect transmitter and receiver, i.e., infinite
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bandwidth, no additive noise, and linear and non-linear distortions in the transmit-receive
chain. However, to investigate the impact of a certain non-ideality on the ML classification,
the distortions in the transmit–receive chain, the noise and the constraints caused by the
system bandwidth should be added later in a controlled manner. Next, the ML analysis
on the dataset is performed in two steps. First, the learner is trained on labeled training
data, i.e., RE signatures of radio links labeled with a target attribute representing the type
of propagation environment. Second, ML models are applied to measured or simulated RE
signatures and the target value, in our case the wall material, is predicted.

Based on the domain knowledge for radio-wave propagation we expect: (i) based on
the electrical properties of materials some of them have a greater effect on the propagation
than others, thus the environment information loaded in the RE signature is richer and
consequently some materials can be more accurately classified than others; (ii) wireless
links that correspond to some transmitter/receiver positions convey richer environmental
information compared to others, and thus materials can be more accurately classified with
some links than with others.

The main contributions of this study are as follows:

• We specified the RE signature for a rich multipath indoor environment, which is
suitable for the classification of wall materials;

• We defined an ML-based framework for the estimation of a wall material which
takes advantages of three engineering domains, i.e., measurements, modeling and
simulations (environment and communication system modeling and ray-tracing sim-
ulations), artificial intelligence (ML techniques) and electromagnetics (EM properties
of matter and radio-propagation mechanisms);

• With ML we confirmed the domain-knowledge-based assumptions, stating that the
EM properties of the materials and the transmitter/receiver position affect the wall-
material classification performance;

• We analyzed and compared four ML techniques for the wall-material classification
applied to the same dataset.

The remainder of the paper is organized as follows. In the next section, the related
work and the scientific background are given. The concept of the RE signature in the
multipath channel is presented in Section 3. The description of the framework for ML-
based indoor wireless sensing is described in Section 4. In Section 5, an example of the
framework use case for indoor propagation scene is illustrated describing the complete
framework usage procedure starting with definition of the propagation scenario, dataset
building and analyzing the results. The paper is wrapped up with summary and directions
for further work in the last section.

2. Background and Related Work

The methods for estimation of the EM properties of the indoor built-in materials
based on ML techniques applied on RE signatures are not widely studied. However, in the
literature there are several related topics, such as indoor mapping, wireless sensing, relative
permittivity estimation, and indoor environment classification. The representative studies
of the related topics are selected and summarized in the subsequent subsections in order to
provide better understanding of the research work in different related domains and fine
tune the direction of our study.

2.1. Indoor Mapping

The available maps of the indoor environments are: building plans in the form of
two-dimensional (2D) paper drawings, three-dimensional (3D) digital models of the indoor
space geometry, maps obtained by manual sites surveying or maps reconstructed from
point clouds resulting from environment scanning with different technologies [15,16].

The manual surveying of indoor spaces is very time and man-power consuming,
expensive, and of limited accuracy. The well-known examples of the approach are Open-
StreetMap [17] where indoor spatial entities in public buildings, such as shopping malls,
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office buildings, and airports have been tagged by volunteers, and MazeMap where public
buildings, such as hospitals, universities, research campuses, etc., are mapped [18].

Another approach is 3D reconstruction of indoor environments by environment scan-
ning. In [19], the publication statistics for the topic of 3D reconstruction of indoor environ-
ments was summarized and the state-of-the-art studies were reviewed and categorized
according to their inherent principles. Environment scanning is two-step method where
in the first step the distance to neighboring obstacles is measured in a set of predefined
directions while in the second one the environment scans are converted to standard 3D
objects and stored in standard computer formats [20]. In the first step light, sound or radio
waves can be used. Most of the literature on environment scanning was devoted to the
light-based approaches, LiDAR in [21,22], red, green, and blue (RGB) video combined with
depth information [23], or infrared scanners [24,25]. The ultrasound-based approaches
were not widely studied due to multiple reflections that occur from surrounding objects
while the interest in still immature radio-based approaches is increasing [26–33]. Radio-
based approaches are the most promising and of particular interest for the next-generation
wireless communications. In fact, due to employing higher frequencies and consecutive
reduced wavelength integration of large number of antennas and narrow electronically
steering beams which greatly increase the mapping accuracy. In addition, the radio-based
solutions can operate in non line-of-sight and poor visibility conditions.

2.2. Relative Permittivity Estimation

The relative permittivity estimation can be generally classified in relative permittivity
estimation of material samples and relative permittivity estimation of materials built in
varying indoor structures. Although the procedures for the individual materials were
widely studied and reported in the literature, only few studies were dealing with the
defining of the permittivity of heterogeneous indoor structures.

There exist several classes of methods for relative permittivity and permeability
estimation of a material sample: free space measurement, transmission/reflection, and res-
onant. In the free space measurement methods, the relative permeability is estimated by
observing the distortion introduced by a piece of material placed between transmitter and
receiver [34]. In the transmission reflection methods, the relative permittivity is obtained
by observing the reflection coefficient [35–39]. The resonant methods explore the resonant
properties of the material [40] or the perturbation of a piece of material placed in the empty
resonator. The latter approach is called also the resonant perturbation method. Recently,
the cavity perturbation methods are particularly interested, where the original empty cavity
is perturbed by the introduction of a small piece of dielectric [41].

Available approaches for relative permittivity estimation of material samples are not
suitable for relative permittivity estimation of materials built in varying indoor structures.
Thus, several in-situ measurements of the reflection coefficient within the environment
of interest were conducted [42–46] where the reflection loss was used for the relative per-
mittivity estimation [42,45,47–49]. This procedure results in accurate relative permittivity
estimation of built-in materials which can be a tedious task when several surfaces materials
in an indoor structure have to be covered. Therefore, in [3], the authors overcame the need
for separate measurements of each material present in the environment by proposing the
method which utilizes the multipath components from limited channel measurements to
build a 3D permittivity map of the environment. To assure accurate permittivity estimates
the method assumes that abundance of single-bounce specular reflections exist in the envi-
ronment. The inputs of the method are accurate geometrical description of the environment
in form of point cloud obtained with laser scanning, carrier frequency, locations of the trans-
mitter/receiver antennas and set of multipath components for each transmitter–receiver
radio link obtained with channel sounding. The reflecting surfaces were identified in the
point cloud by matching the specular multipath components from measurements and ray
tracing, while the relative permittivity for the points on the reflecting surface was obtained
by solving inverse reflection problem.
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2.3. Wireless Sensing

Wireless sensing is an emerging technique for acquiring information about a remote
object and its characteristics without having any physical contact with it. It analyzes
the impact of the remote object on the received acoustic, optical or radio signal. Other
terms with similar meaning in the literature are device-free radio sensing, sensor-less sens-
ing, radio imaging, non-invasive sensing, and zero-effort sensing. Early wireless-sensing
methods estimated the signal strength on many different paths through the medium as
radio tomographic imaging (RTI) [50], the round-trip time of the reflected signal (pulse
radar) or phase (frequency-modulated continuous-wave radar), while the emerging ap-
proaches look at analyzing the channel state information (CSI) obtained from various
wireless-communication systems. Analyzing the CSI in wireless sensing is referred to
as radio analytics [51]. Recently, a huge effort has been put into taking advantage of
wireless-communication technology, Wi-Fi, radio-frequency identification (RFID), mobile-
communication systems, and wireless-sensor networks. The pros and cons of the different
wireless technologies for sensing are analyzed in [52].

The wide deployment of Wi-Fi networks initiated research into Wi-Fi wireless sens-
ing [53]. Ma et al. gave a comprehensive survey of Wi-Fi sensing, including signal pro-
cessing techniques, algorithms, applications, challenges, and future trends [54]. The main
approaches in Wi-Fi sensing, its limitations, application gaps in knowledge, and future
directions were summarized in [55]. The studies looked at specific applications, such
as intrusion detection, room-occupancy monitoring, daily-activity recognition, gesture
recognition, vital-signs monitoring, user identification, and indoor localization and track-
ing [56,57].

The Internet of Things (IoT), based on wireless sensor networks (WSNs) [58], is the
second approach to obtain information about the environment using wireless sensing.
The large number of radio devices spread in an area of interest will communicate with each
other, creating a huge mesh network. The obstacles between nodes additionally attenuate
the radio signal and thus the environmental image can be estimated [50].

However, the application of WSNs to wireless sensing has several drawbacks, includ-
ing costly deployment, device-location ambiguity, the power limitation of wireless nodes
and their non-optimal location. In this respect, the robots equipped with odometers and
gyroscopes were applied to environment mapping and localization. The approach was
referred to as simultaneous localization and mapping (SLAM) [59,60].

In most applications the wireless sensing can be modeled as a pattern-recognition
problem. Many traditional ML methods, such as decision tree (DT), random forest (RF),
support vector machine (SVM), k-nearest neighbor (KNN) and deep learning, have been
utilized to solve wireless-sensing problems [61]. Several studies have appeared recently
investigating the possibilities of reducing the training and retraining, being the most labor-
intensive tasks in ML-based wireless sensing. Different training options in a device-free
radio frequency sensing system were discussed in [62]. The authors showed that reduced
training might not necessarily kill the good performance, but some trade-offs will emerge.
The feasibility of utilizing deep-similarity evaluation networks and collecting samples with
deep generative adversarial networks for reducing the training efforts were studied in [61].

2.4. Indoor Environment Classification

A methodology for the ML classification of indoor environments based on CTF and the
frequency coherence function (FCF) was proposed by AlHajri et al. [63]. They investigated
how CTF and FCF vary within the room and they proved that FCF and CTF can be consid-
ered as a unique fingerprint of the environment. In their later work, they explored several
ML classification methods using different combinations of metrics as features [12,13]. Their
findings are limited to the classification of four different environments with different levels
of clutter: no clutter, low clutter, medium clutter, and high clutter.
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Compared to the methods presented by AlHajri et al., in our work we apply a more
complex RE signature using the channel impulse response (CIR) enreached by AoA of each
signal component, while they apply only CTF and its auto-correlation. Furthermore, we
look at predicting the EM properties of a building material used for a particular wall, while
AlHajri et al. were looking for how cluttered the environment is in a room, considering the
environment as a whole and not paying attention on the size of the room and the type of
the materials forming the walls of the room.

3. Radio-Environment Signature

In a rich, multipath, indoor environment, the transmitted signal interacts with the
surfaces [64]. When the signal collides with a surface, a part of the signal is reflected and
several copies of the transmitted signal reach the receiver via different paths. The wireless
multipath channel is formed of signal paths differing in terms of signal amplitude, delay,
phase shift, and AoA. A set of signal paths compose the CSI. A wireless link between the
transmitter–receiver (Tx-Rx) with omni-directional antennas in an indoor environment is
depicted in Figure 1. The EM waves are represented as radio rays. The yellow stars show
the rays’ interactions with the surfaces. Surface roughness influence the ratio between the
specular reflection and scattering components. The incidence angle impacts the degree of
scattering and the roughness of the surface seen by radio waves is reduced with closing
incidence angle to grazing incidence. The line of sight (LoS) path is denoted by a red line,
single bounce reflections are illustrated by green lines and the scattering is represented
with blue lines.

Figure 1. Multipath component propagation channels between Tx-Rx in an indoor environment.

As a result of the multipath propagation, the received signal sRx is a superposition of
multiple replicas of the transmitted signal described by

sRx =
∞

∑
i=0

s(Pi, τi, φi, θi, ϕi), (1)

where Pi, τi, φi, θi and ϕi are the power, delay, phase shift, and the AoA azimuth and AoA
elevation of the signal multipath component i, respectively.
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Since the propagation environment affects the signal propagation, the information
regarding the environment is included in the radio signals. Thus, each particular envi-
ronment setting results in a corresponding propagation-distortion pattern. Even small
changes to the environment affect the signal propagation, which enables an estimation of
the environment’s characteristics, i.e., geometry, EM properties of the surface materials,
etc. Rich spatial information is contained in the signal with a large number of multipath
components. The number of multipath components that can be distinguished depends
on the signal bandwidth, i.e., a large bandwidth results in a good spatial resolution [65].
The set of Pi, τi, φi, θi and ϕi for all the multipath components arriving at the Rx in position
B from the Tx in position A is a partial RE signature RAB that corresponds to that particular
Tx-Rx positioned in A and B and can be written as

RAB = {[Pi, τi, φi, θi, ϕi]}i=0→∞, (2)

where the delay τi is a function of the propagation distance, i.e., τi = di/c0, di is the run
length of the i-th path and c0 is the speed of light.

Different wireless links contain different amounts of environment information, de-
pending on the interaction with the environment. However, the surrounding environment
cannot be estimated from a single RAB that corresponds to a single wireless link. Hence,
a set of partial RE signatures obtained from a set of wireless links, i.e., (Tx-Rx)s placed at
different positions in the indoor environment, are needed. The set of partial RE signatures
referred to as the RE signature is defined by

R = {RAB|A, B ∈ I}, I = {1, 2, . . ., ∞}. (3)

The RE signature depends on the configuration of the wireless system and the sur-
rounding environment. Since the configuration of the communication system is known,
it can be assumed that the surrounding environment, together with the material prop-
erties, can be estimated from the RE signature by correlating the environment with the
corresponding distortion pattern.

4. ML-Based Wireless-Sensing Framework

To streamline the conducted procedure, we developed a framework that enables the
design and evaluation of the ML-based sensing of EM material properties in an indoor
environment. The framework architecture is given in Figure 2.

The proposed framework is composed of the following modules:

• RE acquisition module: collects the propagation parameters of multiple wireless
links in different indoor environments by measurements or computer simulations,
pre-processes the results and transforms them into the form of partial RE signature;

• Propagation characteristics storage module: stores the partial RE signature, environ-
ment and radio system description in a database for the purposes of building a large
dataset for the ML task and as open-access data for other RE-related studies.

• ML-based radio-analysis module: builds training and testing datasets from the main
dataset according to a predefined scenario, extracts knowledge from the training set,
builds a model and applies the model to classify the RE from the input RE signature.

• ML performance-evaluation module: calculates ML performance metrics and stores
the statistics.

• Domain-knowledge-based interpretation module: Evaluates the classification results
by taking into account the domain knowledge in the field of EM propagation.
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Figure 2. Wireless sensing framework architecture.

4.1. Radio-Environment Acquisition Module

The RE acquisition module acquires the partial RE signatures of multiple wireless
links that correspond to predefined transmitter and receiver positions in various indoor
environments specified by the given shape, dimensions, and EM properties of surface
materials. The partial RE signature can be obtained experimentally by radio-channel
measurements or by computer simulations. In either cases the system setup must be
specified (used technology, environment, Tx-Rx positions, frequency, bandwidth, antennas,
transmit power, output parameters, and measurement procedure). When performing
the measurements, the equipment must be setup at the chosen location, measurements
must be executed according to the predefined scenario and the result stored, filtered and
forwarded to the database. Computer simulations require to set predefined simulations
inputs, run ray-tracing engine, adapt the ray-tracing simulation parameters if needed and,
similar to measurements, collect, filter, and forward the output to the database.
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The channel sounding is widely used for obtaining CIR, CSI, and RE signature.
The transmitter transmits a predefined signal, which is detected by the receiver. CIRs
are calculated using the knowledge of the transmitted and received signals. The received
signal contains contributions from other sources that transmit at the same frequency band
and the additive Gaussian noise. A noisy CIR can have a huge impact on the performance
of ML algorithms. The sounding signal has to fulfill several requirements, such as a large
bandwidth, a uniform spectral density across the bandwidth, etc., to achieve sufficient
accuracy of the CIR. Since the channel sounding requires professional, high-cost radio
equipment, it will rarely be applied for a massive RE signature estimation. An alternative
approach for an experimental estimation of CIR is using off-the-shelf radio equipment,
which supports the estimation and recording CIR. For example, the radio equipment based
on the IEEE Standard for Local and Metropolitan Area Networks [66], using ultra-wide-
band (UWB) communication technology supports mechanisms to estimate the CIR from a
transmitted training sequence [67–69].

Computer simulations offer a controllable environment for obtaining the RE signature
in various indoor and outdoor environments. Ray-tracing is usually considered as an
efficient way to obtaining the RE signature [14,70]. It is a tractable, brute-force method for
calculating the progress of wave fronts [71]. It is a powerful approximation approach that is
less computationally demanding compared to methods based on Maxwell’s equations. Its
accuracy depends mainly on the ratio of the wavelength to the dimensions of the interfering
objects. The most accurate estimations are achieved when the interfering objects are large
compared to the wavelength. Any ray-tracing software regarding the used principle for
tracing the rays, i.e., ray shooting and bouncing (SBR) or method of images, can be used
as long as it provides adequate outputs needed for further processing [72]. Computer
simulations are particularly convenient when all the aspects that affect the propagation
have to be controlled.

4.2. Propagation Characteristic Storage Module

In order to support ML-based radio analysis and reuse of the measured or simulated
CSI, the following information is stored in a database:

• Description of the environment;
• Description of the radio system, (i.e., transmitters and receivers);
• RE signatures.

In general, any publicly available file format can be applied to store information
about the indoor environment. However, to make the indoor description suitable as
inputs to different indoor radio-propagation software and 3D representation, we present an
indoor environment as a set of cuboids (walls), which have one or more openings (holes).
The information about the wall includes its dimensions (length, width, height), its location
(translation and rotation), the material it is made of and information about the texture that
might have an impact on scattering of the radio signal. The information about the opening
consists of the opening’s size and its position relative to the wall’s origin [73].

The description of the radio system includes the position of transmitter and receiver,
as well as the type and orientation of the antenna. The transmit power, antenna type,
carrier frequency, signal bandwidth, and transmitted-signal waveform are added for the
transmitter. In order not to look for a very weak signal, the receiver sensitivity is added for
the receiver.

The proposed framework presents a general solution and, as such, is able to consider
wide variety of parameters as RE signature since it is designed not to be limited to specific
use cases, measurement equipment capabilities neither to radio propagation simulation
tool. Thus, depending on the capabilities and requirements the suitable subset can be
defined. The radio channel description, the RE signature, can contain a set of received
radio-signal components (rays) with the following information: Pi received power of the
received signal component, τi delay of the signal component, φi phase shift of signal
component, ϕi AoA elevation and θi AoA azimuth. The number of signal components
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is not hard limited and depends on the energy of the components. The contribution of
the components with the higher number of reflections is, due to very low energy, usually
negligible, and thus is not stored in the dataset. The database can be implemented as a
separate entity, as an open-access database, or it can be a part of the framework.

4.3. Machine Learning Based Radio-Analysis Module

In the ML-based radio-analysis module, first, the main dataset is built which is then
split on train and test dataset. Next, a machine learning algorithm is run on the training
data, a model is built and saved for the later use. Finally, the model is used for making
predictions on unseen data samples from the test dataset.

The main dataset is built as a selection of propagation data of radio links stored in
the database. The selection is made based on selection of indoor spaces, radio links, and
RE signature structure. The dataset is a collection of samples, where each sample contains
propagation data that corresponds to single radio link defined with the positions of the Tx
and Rx. The number of input attributes depends on the number of propagation parameters
in the RE signature structure and the number of considered rays. The dataset is labeled
with a single multi-class target attribute that represent the surface material. Meaning
that each sample can be assigned to only one class of finite set of material categories.
The input attributes are numeric, while the output attribute is nominal categorical. The ML
task belongs to supervised learning and can be best framed as multi-class single-target
classification. It predicts the surface material class as target based on the link RE signature
as input.

Since the amount of available data are limited, the main dataset is split to non-
overlapping train and test subsets according to predefined scenario. The defined splitting
scenario has to reflect the real world situation under investigation and training, addi-
tionally the testing dataset must contain representative data of the underlying problem.
The generality of the proposed framework enables the consideration of a variety of split-
ting scenarios.

The task of multi-class classification is widely studied and many ML algorithms are
found to be suitable for solving it [74,75]. Considering the underlying problem we selected
a shortlist of machine learning algorithms that can be used for surface material prediction.
When creating the shortlist of algorithms the nature of the data, interpretability, and the
predicting performance were taken into account. The simpler algorithms are expected to
provide understandable models allowing us to discover the most important correlation
between the input and output attributes. On the other hand, more complex algorithms are
expected to provide high predicting performance with less interpretable models.

The selected shortlist includes simple algorithms, such as DT and Naive Bayes (NB),
as well as more complex algorithms, such as RF and Multilayer Perceptron (MP) [76–79].
NB is generative probability technique used for classification problems which is based on
Bayes Theorem. The major assumption of NB is that all features are mutually independent.
It can capture patterns in the data and provide efficient models with short training time.
Furthermore, it does not require large training data, thus it can be considered as a starting
point for analysing practical datasets and obtaining the base accuracy of the dataset.
DT models are obtained without large computational expenses even on large datasets.
The models are interpretable and easy to understand. This algorithm is suitable for inferring
the correlations between input and target variables, visualizing how the learner extracts
knowledge from the data and for problems that require a short run-time. The predictive
performance of DTs can be further improved if they are combined into an ensemble.
An ensemble combines the predictions of a set of base models to obtain an overall prediction.
The performance of the ensemble will be higher if the base models have high performance
and are uncorrelated. RF is one of the most famous ensemble methods for tree based
predictive models that can improve the performance of DT and prevent from overfitting.
MPs provide models through highly interconnected perceptrons that accept inputs, apply
weighting coefficients and feed their output to other perceptrons which continue the
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process through the network to the output. MPs involve constant back and forth until
the error is minimized, state known as convergence. MPs can learn from extremely large
datasets and provide models with high predictive performance. However, these models
are hard to understand. The parameters of DT, RF and MP are summarized in Table 1.

Table 1. Summary of the parameters used for DT, RF, and MP [80].

ML
Algorithm Parameter Description Value

DT
Confidence factor Confidence factor used for pruning 0.25
Number of objects Minimum number of instances per leaf 2
Number of folds Size of the pruning set 3

RF
Number of trees Number of trees in the forest 25

Number of instances Minimum number of instances per leaf 1
Number of levels Maximum number of levels in each decision tree unlimited

MP
Learning rate Learning rate for the backpropagation algorithm (value between 0 and 1) 0.3
Momentum Momentum rate for the backpropagating algorithm (value between 0 and 1) 0.2

Traininng time Number of epochs to train trough 500

4.4. Machine Learning Performance-Evaluation Module

In the ML performance-evaluation module, the performance of the classifier is evalu-
ated with ML performance metrics. The results are first stored in a database and next used
in the domain-knowledge-based interpretation module.

An evaluation of the ML algorithm is an essential part in the ML pipeline. The stan-
dard performance metrics calculated from the confusion matrix (CM) are applied for the
evaluation [81]. The CM describes the complete performance of the model. The rows
represent the true labels of the instances and the columns represent the predicted labels in
the CM. In the multi-class classification problem, the element Eij of the CM represents the
number of instances that belong to class Ci and are classified as class Cj, i, j = 1, 2, . . ., Nc,
where Nc is the number of classes. Each prediction falls into four categories denoted as
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).
The performance metrics suitable for an environment-classification task are:

• Classification accuracy is the ratio between the number of correct predictions and the
total number of input instances. It is a relevant metric in our classification problem
since the number of instances belonging to each class is the same. The classification
accuracy for the ith class is calculated with (4):

Accuracyi =
TPi + TNi

TPi + TNi + FPi + FNi
. (4)

• F-score (F) is the harmonic mean of precision and recall. It is the measure of classifier
precision and robustness. It tells us how many instances are classified correctly and if
it does not miss a significant number of instances. The large F values represent good
performance of the model. F calculated for the ith class is obtained by using (5)–(7):

Precisioni =
TPi

TPi + FPi
, (5)

Recalli =
TPi

TPi + FNi
, (6)

Fi = 2× Precisioni × Recalli
Precisioni + Recalli

. (7)
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4.5. Domain-Knowledge-Based Interpretation Module

Since ML techniques are intended for general purpose, the use of domain knowledge
is valuable for benchmarking the ML results and validating that the conclusions are in
line with the assumptions based on existing physical models. In our study, the classi-
fication results can be interpreted with those properties of the RE that affect the signal
propagation. Assuming the same geometry of the RE, the important role is played by the
EM properties of the wall materials. The fundamental EM property of the material is the
relative permittivity εr. Different related quantities, such as refractive index, loss tangent,
etc., depend on it, assuming the signal carrier frequency is known [4]. Permittivity is a
dimensionless, complex-valued quantity (8). Its real and imaginary parts are denoted as ε

′
r

and ε
′′
r , respectively:

εr = ε
′
r + jε

′′
r . (8)

Conductivity σ is related to the imaginary part of εr as given in (9) where ε0 is the
permittivity of free space (8.854× 10−12 F/m) and ωc = 2π fc is the angular frequency in
rad/s.

ε
′′
r =

σ

ε0ωc
(9)

The reflection coefficient of a material is a function of the relative permittivity of the
material εr and the angle of incidence α. For vertical (VP) and horizontal polarization (HP)
it can be calculated according to (10) and (11), respectively, where the angle of incidence is
equal to the angle of reflection [82]:

ΓVP =
εr cos α−

√
εr − sin2 α

εr cos α +
√

εr − sin2 α
(10)

and

ΓHP =
cos α−

√
εr − sin2 α

cos α +
√

εr − sin2 α
. (11)

The reflection coefficients as functions of the incidence angle for brick, concrete, glass,
and wood are plotted in Figure 3. It shows that the reflection coefficient of the material
depends on its relative permittivity and the angle of incidence. The materials with similar
permittivities, for example, concrete and glass, have similar reflection coefficients and, thus,
they have similar impacts on the RE signature, as seen from Table 2 and Figure 3. Materials
with a large difference in the relative permittivity, for example, wood and glass, perform
completely differently. However, when the angle of incidence is larger than 80 degrees,
i.e., the radio ray become nearly parallel with the facet of obstacle, the reflection coefficient
approaches the same value, i.e., 0 dB, and all materials perform similarly, even they have a
large difference in relative permeability. However, in an indoor environment, the incidence
angle is rarely above 80 degrees, since the transmitter and receiver are usually not placed
close to the walls.

Given the reflection coefficient of the materials, it is expected that the ML algorithms
will distinguish all the classes. However, we expect that the separation between some
classes is clearer than between the others. In particular, the separations between wood and
glass, wood and concrete, and brick and glass should be very clear, while the algorithms
could face a problem in distinguishing concrete from glass, brick from concrete, and wood
from brick.
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Figure 3. Comparison of the reflection coefficients of brick, concrete, glass, and wood.

Table 2. Electrical properties of wall materials [4].

Material ε
′
r σ (S/m)

Brick 3.75 0.038
Concrete 5.31 0.120

Glass 6.27 0.029
Wood 1.99 0.026

5. Framework Use Case Example

The proposed framework is evaluated by initial scenario where the EM material of a
single wall in a room, without any doors, windows, and furniture is classified. We applied
computer simulations (i.e., ray-tracing) to build the dataset, specified the train–test scenar-
ios and discussed and evaluated the obtained results. The initial indoor scene setting and
the computer simulations for obtaining the RE signatures were selected in order to test the
applicability of the proposed concept and to analyze the impact of the EM properties of the
materials and Tx-Rx position on the classification performance.

5.1. Dataset Building

Building the RE signature dataset consists of the following steps:

• Setting up an indoor scene, including the geometry and EM properties of the wall ma-
terials;

• Specification of the communication technology and its parameters and the location of
the radio nodes;

• Specification or ray-tracing algorithm;
• Execution of simulations to obtain the dataset.

The indoor scene is an empty room with no doors and windows. The room has
a square floor with size 3 m × 3 m. The ceiling is 2.5 m above the floor. The room is

Figure 3. Comparison of the reflection coefficients of brick, concrete, glass, and wood.

Table 2. Electrical properties of wall materials [4].

Material ε
′
r σ (S/m)

Brick 3.75 0.038
Concrete 5.31 0.120

Glass 6.27 0.029
Wood 1.99 0.026

5. Framework Use Case Example

The proposed framework is evaluated by initial scenario where the EM material of a
single wall in a room, without any doors, windows, and furniture is classified. We applied
computer simulations (i.e., ray-tracing) to build the dataset, specified the train–test scenar-
ios and discussed and evaluated the obtained results. The initial indoor scene setting and
the computer simulations for obtaining the RE signatures were selected in order to test the
applicability of the proposed concept and to analyze the impact of the EM properties of the
materials and Tx-Rx position on the classification performance.

5.1. Dataset Building

Building the RE signature dataset consists of the following steps:

• Setting up an indoor scene, including the geometry and EM properties of the wall
materials;

• Specification of the communication technology and its parameters and the location of
the radio nodes;

• Specification or ray-tracing algorithm;
• Execution of simulations to obtain the dataset.

The indoor scene is an empty room with no doors and windows. The room has a square
floor with size 3 m × 3 m. The ceiling is 2.5 m above the floor. The room is constrained with
six surfaces: floor, ceiling, wall 1 (W1), wall 2 (W2), wall 3 (W3), and wall 4 (W4). The floor,
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ceiling, walls W1, W2, and W3 are made of concrete. The material of wall W4 should
be classified, and thus it varies for each simulation run. The electrical properties of the
considered wall materials are summarized in Table 2 in terms of ε

′
r and σ [4]. The materials

are considered to be non-ionized and non-magnetic; therefore, the free-charge density ρ
is set to zero and the permeability for all the materials µ is set to the permeability of free
space (µ0 = 4π × 10−7 H/m).

The parameters of the communication technology were specified in such a way that
the study case can be upgraded with the experimentally measured RE signatures in a real
environment. In this respect, the central frequency fc is 3494.4 MHz and the bandwidth
BW is 499.2 MHz, which corresponds to one of the channels supported by UWB radio
communications according to the IEEE802.15.4-2011 UWB standard [66,69]. At the trans-
mitter and receiver, omni-directional antennas are considered. Both the transmitter and
receiver antennas are 2 m above the floor. The positions of the transmitter and receiver
were determined to uniformly cover the floor of the room, no transmitter overlaps any
receiver, different distances of the transmitters from the walls and to capture the most
realistic, as well as corner cases. In this respect, we selected seven transmitter positions,
one at the room’s center, others almost equally distributed around the central transmitter.
The coordinates of the transmitters are summarized in Table 3 and the transmitter position
with appropriate labels, i.e., CC, DC, DL, DR, UC, UL, and UR, corresponding to the
center, down-center, down-left, down-right, upper-center, upper-left, and upper-right, are
illustrated in Figure 4 with blue stars. The 676 receivers were laid out on a square 2-D grid
with 26 horizontal and 26 vertical grid lines, forming squares with a size of 0.1 m × 0.1 m.
Receivers were positioned at the grid lines’ intersection lines and are depicted in Figure 4
with orange dots. The corners of the receiver grid were placed 0.25 m from the walls.

Table 3. The coordinates of transmitters.

Transmitter Position Position Coordinates (x,y)

CC (1.5 m, 1.5 m)
DC (1.5 m, 0.1 m)
DL (0.5 m, 0.5 m)
DR (2.5 m, 0.5 m)
UC (1.5 m, 2.9 m)
UL (0.5 m, 2.5 m)
UR (2.5 m, 2.5 m)

Figure 4. Transmitters (stars) and receivers (dots).
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There are many software programs for radio-channel prediction that use ray trac-
ing [73,83]. In our case, the ray-tracing simulations are conducted using the commercially
available software Remcom Wireless InSite, which is capable of evaluating the site-specific
propagation characteristics between the Tx-Rx and of generating accurate values for specific
propagation parameters [83]. Wireless InSite is a suite of ray-tracing models and high-
fidelity EM solvers. It has several functionalities that are particularly suitable for our study.
First, its modeling and importing functionality allows the environment and communication
system entities to be modeled within the software, as well as imported from available
databases. Next, the command-line execution functionality allows the use of scripts for
input parameter values’ change and execution in the case of exhaustive simulations. Finally,
all the output is saved in ASCII format files that can be post-processed externally.

The propagation was modeled with the implementation of a full 3-D model. The SBR
method takes account of the 3-D surrounding geometry that was used [84]. Since the
analyzed scene is an empty room with no edges where the diffraction could emerge and
the receiver are placed within a room the diffraction and transmission effects are not
present and thus have no need to be considered. For this reason, only reflections were
considered when building the dataset. The closed room scene generates an infinite number
of multipath components, but after several reflections the multipath component level
reaches the receiver sensitivity.

Transmitters at seven positions together with receivers at 676 positions form 4732 wire-
less links, which, when combined with four different wall materials, result in 18,928 partial
RE signatures. Since a large dataset of a RE signature has to be built using the ray-tracing
tool, we developed a Python script for the automatic change of the simulation input pa-
rameters, including the environment shape, the environment dimensions, such as width,
length, and height, the EM properties of the surface materials, the wireless system’s con-
figuration parameters, such as waveforms and antenna properties, the transmitter and
receiver positions.

A study-case dataset is built from the database as a selection of observed environments,
radio links, and a RE signature corresponding to the radio link. In the presented use case
example the dataset conveys the propagation distortion patterns corresponding to the
different materials for all the observed radio links.

5.2. Dataset Summary

The dataset is a matrix of instances versus attributes. It has 18,928 rows and 126 columns.
The number of instances corresponds to 4732 radio links obtained in four rooms with dif-
ferent wall materials. Each instance represents a RE signature of a single wireless link in an
analyzed environment. The dataset has 125 numerical input attributes representing the
received power, delay, phase shift, AoA elevation, and AoA azimuth for the 25 strongest
radio rays between pair of radio nodes (P1, τ1, φ1, θ1, ϕ1, . . . , P25, τ25, φ25, θ25,ϕ25). The data
are labeled with nominal target attributes, that describe the surface material and can cater-
gorized as one of four categories (brick, concrete, glass, wood). An extract of the dataset is
shown in Figure 5. The dataset is balanced, i.e., all class categories have the same number
of observations and the number of instances per class is 4732.

index power1 delay1 shift1 azimuth1 elevation1 · · · power25 delay25 shift25 azimuth25 elevation25 class

0 −36.01 1.89× 10
−9

167.10 355.94 90.00 · · · −74.52 2.08× 10
−8

131.77 284.21 90.00 concrete

1 −48.46 7.91× 10
−9

145.41 124.27 90.00 · · · −75.33 1.55× 10
−8

15.05 124.27 149.33 brick

2 −48.10 7.59× 10
−9 −111.10 83.33 90.00 · · · −77.74 1.40× 10

−8
159.68 37.05 76.21 wood

3 −43.53 4.49× 10
−9

28.10 19.99 90.00 · · · −81.01 1.99× 10
−8

26.42 230.55 80.44 wood

4 −43.10 4.27× 10
−9 −12.88 318.94 90.00 · · · −77.28 2.71× 10

−8
149.96 30.86 90.00 wood

5 −39.74 2.90× 10
−9

150.23 196.02 90.00 · · · −73.01 1.71× 10
−8

98.47 220.23 78.77 glass

...
...

...
...

...
... · · ·

...
...

...
...

...
...

Figure 5. Excerpt from dataset.
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5.3. Simulation Scenarios

In order to investigate how the transmitter position affects the wall-material classifica-
tion, we specified three scenarios, which reflect the actual real world situations, as well as
provide good inside of the results, as follows:

• CtrainCtest: training and testing on the dataset that corresponds to the central transmit-
ter position;

• MtrainMtest: training and testing on the dataset that corresponds to multiple transmitter
positions;

• CtrainMtest: training on the dataset that corresponds to the central transmitter position
and testing on the data that corresponds to the multiple non-central transmitter positions.

In the CtrainCtest scenario the training data corresponds to the CC transmitter po-
sition and the 96 random receiver positions, while the testing data corresponds to the
same transmitter position used for the training and the remaining 580 receiver positions.
In the MtrainMtest scenario, the training data corresponds to the CC, DC, DL, DR, UC, UL,
and UR transmitter positions and the 96 random receiver positions, while the test dataset
corresponds to the same transmitter positions used for the training and the remaining
580 receiver positions. In the CtrainMtest scenario, the training dataset corresponds to the
CC transmitter position and all 676 receiver positions, while the test data correspond
to multiple different transmitter positions, i.e., DC, DL, DR, UC, UL, and UR and all
676 receiver positions.

5.4. Results and Analysis

In order to evaluate the performance of the framework, we calculated the confusion
matrices for all three scenarios. The results are presented in Figure 6. The darker-colored
cells of the matrix represent higher percentage values. The dark-matrix diagonal ele-
ments and light off-diagonal elements represent good model performance. In this respect,
the models based on the CtrainCtest and the MtrainMtest scenarios perform significantly
better than the models based on the CtrainMtest scenario. The reason is that in the CtrainMtest
scenario the learner was trained using only radio links with a single transmitter position,
while it was tested on radio links, where the transmitter position is significantly different
from the training links. Further, by observing the confusion matrices for different algo-
rithms for scenario CtrainMtest it seems the RF shows better performance than the other
tested ML algorithms.

Thus, in the next step we compared the prediction performance of selected ML al-
gorithms when applied to the same data regarding the percentage of correctly classified
instances. It is demonstrated in the Table 4, where the accuracies of the NB, DT, MP,
and RF in different scenarios are given, that all algorithms have more than 68% correctly
classified instances for each scenario. Additionally, it can be seen that NB has lowest and
RF highest percentage of correctly classified instances in all scenarios, respectively. For
scenario CtrainCtest all algorithms have more than 94% correctly classified instances and
the difference in performance between algorithms is less than 5%. For scenario MtrainMtest
DT and MP perform similar to RF while NB has around 13% less correctly classified in-
stances. RF significantly outperforms all algorithms in scenario CtrainMtest. Additionally,
it should be noted that while the difference in correctly classified instances between RF
and MP for scenarios CtrainCtest and MtrainMtest is very small, i.e., less than 1%, for scenario
CtrainMtest the difference is significantly larger, i.e., around 14%. These results indicate that
for scenario CtrainCtest all algorithms can be used, for scenario MtrainMtest DT, MP, and RF
should be preferred over NB, and for scenario CtrainMtest RF should be preferred over other
tested algorithms.
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Figure 6. Confusion matrices for different ML algorithms and scenarios, (B—brick, C—concrete, G—glass, W—wood).
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Table 4. Accuracy of DT and RF in different scenarios.

Scenario
ML Algorithm

NB DT MP RF

CtrainCtest 94.2% 94.9% 98.1% 98.4%
MtrainMtest 84.4% 94.1% 96.8% 97.6%
CtrainMtest 68.8% 72.1% 71.0% 85.5%

We calculated F-score since for the material-classification task we would like to max-
imize the TPs, while the FPs and FNs are both costly. Table 5 summarizes the F values
per class for all three scenarios and for all ML algorithms, calculated on the basis of the
confusion matrices given in Figure 6.

Table 5. F-score per material with different ML algorithms.

Material

Scenario

CtrainCtest MtrainMtest CtrainMtest

ML Algorithm

NB DT MP RF NB DT MP RF NB DT MP RF

Brick 0.90 0.89 0.97 0.97 0.72 0.89 0.94 0.96 0.43 0.55 0.51 0.76
Concrete 0.92 0.92 0.97 0.98 0.80 0.93 0.96 0.97 0.60 0.60 0.58 0.80

Glass 0.99 0.99 1.00 0.99 0.98 0.99 0.99 0.99 0.96 0.95 0.93 0.98
Wood 0.96 0.98 0.99 0.99 0.89 0.96 0.97 0.98 0.70 0.74 0.82 0.88

The presented F values highlight the impact of the transmitter position used for
building the training and testing dataset on the prediction performance. The F values
for scenario CtrainCtest and scenario MtrainMtest are larger than 0.85 for DT, MP, and RF,
and larger than 0.7 for NB, for all the classes, indicating that both the precision and recall are
high and all the material classes can be clearly classified when the model is tested on data
that correspond to the learned transmitter positions. These results confirm our assumption
that the wall material can be classified based on the RE signatures. However, when the
transmitter location for the model training differs significantly from those for testing,
the classification of the wall materials becomes significantly worse. The ability of the
models to generalize well on data that correspond to unknown transmitter positions can be
confirmed if the F values for scenario CtrainMtest are satisfactory. The presented F values
for scenario CtrainMtest when RF is applied are above 0.85 for glass and wood and above 0.7
for brick and concrete, indicating that glass and wood can be clearly classified with a very
small number of FP and FN, while brick and concrete can be classified with a slightly larger
number of FP and FN compared to glass and wood. For classes glass and wood MP and RF
have similar high F values, while for classes brick and concrete the MP has lower F values.
Although NB and DT have poorer performance compared to MP and RF, glass and wood
still can be distinguished. These results are in line with our previous assumptions based on
the reflection coefficient and confirm that the materials with considerably different relative
permittivity values can be easily distinguished with all algorithms.

The results show that, even when the model is tested on transmitter positions not
included in training set, more than 65% of the instances are correctly classified for NB,
more than 70% for DT and MP, and more than 85% for RF. This proves that the model
is able to estimate the surface material type (EM properties) using radio links with the
transmitter positions which are different than those used for building the model. The
obtained classification results confirm the assumptions based on the material’s reflection
coefficient that materials with different values of relative permittivity can be easily classi-
fied. In particular, the differentiation between the materials with considerably different
relative permittivities is clearer which suggest that the materials with similar properties
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should be grouped together in a class, since they have similar impacts on radio-wave
propagation and thus the model cannot (and even does not need to) distinguish them.
Finally, the classification results obtained by applying NB, DT, MP, and RF on the same
data indicate that the same conclusions regarding the classification of indoor materials
can be drawn with different ML algorithms. However, RF brings significant performance
improvements, which suggests its use in preference to the other considered algorithms.
These findings add substantially to the understanding of surface materials’ classification.
In addition, they highlight the need to understand the indoor radio channel, the impact
of the communication system’s setup and the surrounding environment’s characteristics
on radio propagation for building training datasets that will result in improved predictive
models, as well as for an interpretation of the classification results.

6. Conclusions and Future Work

In this work we have proposed, formalized, and evaluated a framework for the
ML-based wireless sensing of indoor surface material EM properties using RE signatures.
In particular, we specified the propagation characteristics to be included in the RE signature,
dataset acquisition and storage procedure, ML based radio analyses and performance eval-
uation, and integration of the domain-knowledge interpretation. The framework has been
evaluated on EM material classification in an indoor environment by four ML techniques
using different transmitter positions. Results confirm that the proposed methodology
can be used for the classification of the surface material in a plain environment and it is
promising for more complex indoor environments.

The concept of the pervasive wireless communications will increase the number of
radio devices operating in the entire radio spectrum. The distortion of the radio signal
does not depend only on its interaction with the environment, but also on the radio
transmitter/receiver chains, including antennas, high power amplifiers and housing of the
transmitters and receivers. In this respect, the ML is foreseen as an approach to tackle the
problem of the wireless sensing of indoor radio environment, in particular due to: (i) huge
amount of radio channel state information data in the complete range of radio spectrum
supported by location of the transmitter and receiver, and (ii) complexity of the problem,
which cannot be solved by traditional mathematical-physical modeling.

We assume that we can prove the proposed concept using datasets obtained by
computer simulations and measurements. In the simulated dataset, the signal bandwidth is
infinite and the AoA is detected with very high accuracy, even when noise and interference
are added to the dataset. In measured datasets, the CIR is usually quantized, resulting
in quantization noise. Our preliminary analysis has shown that this has no significant
influence on the classification of the wall material. To detect AoA in the measured datasets,
which is assumed to be perfect in the simulated datasets, we need to use a multiple antenna
system or a massive MIMO approach at the transmitter and receiver, or distribute multiple
transmitter–receiver links in the room. The bandwidth of the measurement equipment
is a crucial factor in the temporal resolution of the CIR, which affects the estimation of
the size and shape of the room. Existing ultra-wideband communication systems have
a bandwidth in the range of GHz, resulting in a time resolution of the CIR in the range
of tens of centimetres. However, in THz wireless communication, the bandwidth of
the communication system is thousands of times larger, resulting in a much better time
resolution of the CIR and allowing a more accurate determination of the room properties.

Our investigations in this area still have several open challenges. In future, we will
analyze the impact of superimposed errors that exist in real communication system, as
well as the indoor space characteristics (geometry, interacting objects, openings, material
combinations, surfaces texture) on the proposed approach. In particular, in this work
we assumed that radio waves reflect of flat, smooth, and electrically large surfaces and
we considered computer generated noiseless RE signature to prove the concept of the
proposed framework. Although, in the future, we will additionally consider the scattering
effect, and errors introduced by the wireless system, such as limited bandwidth, the non-
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linearities introduced by the radio-chains of transmitters and receivers, the Gaussian
noise added to the received signal, etc. Analyzing how the superimposed errors affect
the proposed concept is difficult, thus we will first evaluate the proposed approach in
a controlled environment with generated noise and than we will proceed to the real-
life evaluation. For that purpose, we will use radio-propagation data corresponding
to many radio links with different position of the end-nodes in versatile indoor spaces,
labeled with environment properties, stored in proprietary database. The propagation data
includes selection of propagation parameters for many radio-rays between the radio nodes.
The indoor environments range from empty, plain rooms, without openings, to complex
office and living-space rooms with versatile geometries, with one or several openings for
windows and doorways, and equipped with furniture and other objects made of different
materials. In that context, we have already built a portable radio-equipment and have
started extensive measurement campaigns. At first we look at the office environment
measuring the RE in rooms with different shape, size and wall materials.The measured
data are than integrated, labeled, and prepared, in the line with a proposed framework,
in order to be suitable for ML analysis.
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Abbreviations
The following abbreviations are used in this manuscript:

6G sixth generation
ANN artificial neural network
AoA angle of arrival
CTF channel transform function
CIR channel impulse response
CM confusion matrix
CSI channel state information
DT decision tree
EM electromagnetic
F F-score
FCF frequency coherence function
FP false positives
FN false negatives
HP Horizontal polarization
IoT Internet of Things
KNN k-nearest neighbor KNN
LiDAR light detection and ranging
LoS line of sight
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ML machine learning
MP Multilayer Perceptron
NB naive Bayes
RE radio environment
RF random forest
RTI radio tomographic imaging
RX eceiver
SLAM simultaneous localization and mapping
SBR shooting and bouncing ray
SVM support vector machine
TN true negatives
TP true positives
TX transmitter
UWB ultra-wide-band
VP vertical polarization
W wall
WSN wireless sensor network
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