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Abstract: This paper addresses the Optimal Power Flow (OPF) problem in Direct Current (DC)
networks by considering the integration of Distributed Generators (DGs). In order to model said
problem, this study employs a mathematical formulation that has, as the objective function, the
reduction in power losses associated with energy transport and that considers the set of constraints
that compose DC networks in an environment of distributed generation. To solve this mathematical
formulation, a master–slave methodology that combines the Salp Swarm Algorithm (SSA) and
the Successive Approximations (SA) method was used here. The effectiveness, repeatability, and
robustness of the proposed solution methodology was validated using two test systems (the 21- and
69-node systems), five other optimization methods reported in the specialized literature, and three
different penetration levels of distributed generation: 20%, 40%, and 60% of the power provided
by the slack node in the test systems in an environment with no DGs (base case). All simulations
were executed 100 times for each solution methodology in the different test scenarios. The purpose
of this was to evaluate the repeatability of the solutions provided by each technique by analyzing
their minimum and average power losses and required processing times. The results show that the
proposed solution methodology achieved the best trade-off between (minimum and average) power
loss reduction and processing time for networks of any size.

Keywords: optimal power flow; power flow problem; optimization algorithms; DC networks;
electrical energy; combinatorial optimization

1. Introduction
1.1. Direct Current Networks and the Optimal Power Flow Problem

As a result of the rapid growth of the world population and increased energy (mostly
electricity) consumption in the last two centuries, the global demand for energy has risen
considerably. There is, therefore, the need to expand the ways of producing and distribut-
ing electrical energy [1–6] while seeking to reduce the associated environmental impact
and provide end users with a high-quality and reliable electrical service. In this regard,
various authors, electric power sectors, and countries have striven to promote the develop-
ment of energy management technologies and strategies to increase electricity production
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worldwide and diversify energy mixes, as well as the development and application of new
energy distribution technologies (e.g., distributed generators [7–10]) and energy storage
elements (e.g., batteries, capacitors, ultracapacitors, and superinductors) [11–14]. In addi-
tion, they have returned to conventional energy transport systems and strengthened them
using modern technologies, as in the case of Direct Current (DC) networks for electricity
supply [15].

In recent years, advances in power electronic devices have driven the development
and widespread use of DC networks in both power transmission and distribution sys-
tems [16,17]. These networks have various advantages over Alternating Current (AC)
networks [16], including (i) no need for reactive element analysis, (ii) lower investment and
operating costs associated with the installation and maintenance of the network, and (ii)
easy integration of energy generation and storage devices into the grid because the main
distributed generation devices (solar panels), batteries, and electrical loads operate in DC.

Like AC networks, DC networks are mainly composed of a slack generator, Distributed
Generators (DGs), power distribution lines, and electrical loads [18]. Hence, once the
electrical network is designed, strategies for dispatching DGs should be proposed to
deliver the highest number of (economic, technical, or environmental [19]) benefits to both
network operators and users connected to the DC network. This need is referred to, in
the literature, as the Optimal Power Flow (OPF) problem, which entails determining the
power level to be injected by the DGs installed in the network in order to meet the goal that
network operators have established. In this study, the objective function is the reduction in
power losses associated with electrical energy transmission. This indicator was selected
due to its widespread use to validate the effectiveness and robustness of the techniques
proposed to solve the OPF problem in DC networks [20].

To solve the OPF problem, it is generally divided into two stages. The first stage seeks
to determine the optimal power levels to be injected by the DGs located in the network,
which are directly linked to their maximum and minimum power levels. The second
stage aims to solve the load flow problem in order to identify the impact of each power
level injected by the DGs into the network on the objective function and the technical
and operational constraints of the network (e.g., power balance, voltage profiles, power
limits [21]). Thus, methodologies that find high-quality solutions in short processing times
should be implemented to solve the problem mentioned above. To that end, different au-
thors have proposed using optimization methods capable of finding high-quality solutions
on a recurring basis within any given dimension in a specific problem (in this case, the
OPF problem) [22,23] by means of techniques based on sequential programming that can
be replicated in any programming language [7]. These optimization methodologies are
often selected to encourage the adoption of open-source software that can be employed in
embedded systems in the near future, thus reducing the complexity and costs associated
with the use of specialized software.

1.2. State-of-the-Art on the Optimal Power Flow Problem in Direct Current Networks

Since DC networks must operate within the right power levels for the DGs in order to
meet the goals defined by users and network operators, various authors have proposed
(i) energy management strategies that are mainly based on intelligent algorithms and use
commercial software and (ii) energy management strategies based on sequential program-
ming, which makes it possible to find the optimal power levels for the DGs in known
power demand scenarios [20].

A number of studies have been conducted on the strategies that use commercial
software [24–26]. These studies employed, as the objective function, the minimization
of power losses associated with energy transport in DC networks and considered all the
constraints of this type of electrical system in a scenario of distributed generation. After
analyzing these studies, it can be concluded that using commercial software increases the
complexity of the problem and the costs associated with the solution, thus limiting the
application of the solution methodologies proposed by their authors. In [24], the MOSEK
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optimization software was used to implement a convex relaxation method based on second-
order conic programming. In such research, the authors only used a 16-node DC network.
Likewise, in [25], the Continuous Genetic Algorithm (CGA) was implemented using the
GAMS/CONOPT software. The authors of such study did not consider processing times
and only employed a 10-node test system to validate their results, which does not allow an
adequate assessment of the impact of their proposed solution methodology. In [26], the
authors used convex quadratic sequential programming models and the 10- and 21-node
test systems. They took into account processing times but not the standard deviation of the
implemented techniques, which is an important parameter to determine how dispersed the
results obtained by each solution methodology are. All of these studies employed small
test systems (10, 16, and 21 nodes), which provide little information, and did not consider
the currents through the lines and the worst voltage at the nodes of the system.

With the aim of proposing methods based on sequential programming and eliminating
the need for commercial software, various methodologies that use optimization algorithms
have been studied in recent years [27–29]. For instance, in [27], the Ant Lion Optimization
(ALO) algorithm and the Successive Approximation (SA) method were employed. The
objective function of such study was the reduction in power losses in DC networks for
the 21- and 69-node systems. The authors, however, did not analyze the average power
losses and standard deviation obtained by each optimization technique they used. In [28],
the authors implemented a master–slave methodology that combines the vortex search
algorithm and the SA method to solve the problem addressed here. They employed the
10- and 21-node test systems but did not take into account processing times. Moreover,
in [29], the authors used the Black Hole (BH) algorithm and the Gauss–Seidel method to
generate a master–slave methodology having, as the objective function, the minimization
of power losses. They validated the solution techniques in the 21- and 69-node systems
but did not consider their processing times and standard deviation. None of these studies
took into account the currents through the lines and their corresponding limits, which
does not ensure that the solutions provided by the methodologies satisfy the technical
constraints of the OPF problem. In addition, the optimization algorithms employed in each
study were not tuned, which does not guarantee the same conditions for all the techniques
implemented to solve the OPF problem in DC networks.

This analysis of the state-of-the-art on the OPF problem in DC networks reveals the
need to propose new techniques based on sequential programming that can be replicated in
any programming language and used to solve the OPF problem with high-quality solutions
and short processing times. Moreover, the standard deviation of the solution techniques,
as well as all the operational constraints of DC networks (which were not considered in the
studies mentioned above) such as the currents through the conducting lines and the nodal
voltages of the system under analysis, should be taken into account.

In view of the above, this paper proposes a master–slave methodology based on
sequential programming that uses the Salp Swarm Algorithm (SSA) presented in [30] for
the master stage and the SA method described in [31] for the slave stage. This methodology
will be validated in the 21- and 69-node systems using efficient comparison methods
reported in the specialized literature. Additionally, three different penetration scenarios of
distributed generation (20%, 40%, and 60% of the power supplied by the slack node) will
be considered, and multiple simulations will be performed to evaluate the effectiveness,
repeatability, and robustness of the proposed solution methodology in terms of solution
quality and processing times.

1.3. Scope and Contributions

This study addresses the OPF problem from the perspective of sequential program-
ming to eliminate the need for commercial software. It seeks to solve such problem by
employing a hybrid methodology that combines the SSA and the SA method and that is
highly effective in terms of solution quality and processing times. The following are the
main contributions of this study:
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• A new application for the SSA,
• A new master–slave methodology to solve the OPF problem in DC networks,
• Better results in terms of solution quality, repeatability, and processing times than

those that have been reported by other methodologies.

Furthermore, the following are the contributions of the proposed methodology to the
energy sector:

• A new methodology to make the most of the DGs installed in electrical networks
when implementing energy management strategies in DC networks. It can be used to
find high-quality solutions in short processing times each time the system experiences
variations in power generation and demand.

• In planning strategies, the sizing of DGs is key to improving their impact when
integrated into electrical networks. The methodology proposed here falls into the
category of methodologies for locating and sizing DGs and, thus, allows for the rapid
identification of the power levels that will bring the best benefits to the network under
a scheme of DGs located by another optimization technique.

1.4. Structure of the Paper

This paper is organized as follows. Section 2 proposes the mathematical formulation
to solve the OPF problem in DC networks. This formulation has, as the objective function,
the reduction in power losses associated with energy distribution and considers the entire
set of constraints that compose DC networks in an environment of distributed generation.
Section 3 details the proposed solution methodology, which is based on a master–slave
strategy that combines the SSA and the SA method. Section 4 presents the optimization
algorithms employed here to compare and validate the proposed solution methodology, as
well as the test systems used for the simulations. Section 5 reports the results obtained by
each optimization algorithm in the 21- and 69-node systems at the different penetration
levels. Finally, Section 6 draws the conclusions and outlines future lines of work.

2. Mathematical Formulation

This section presents the mathematical formulation to solve the OPF problem ad-
dressed in this study. This formulation has, as the objective function, the reduction in
power losses and considers the set of constraints associated with the operation of DC
networks in an environment of distributed generation. It was selected because it is widely
used in the specialized literature to validate the effectiveness of the strategies proposed to
solve the OPF problem in DC networks in terms of both solution quality and processing
times [19,20].

2.1. Objective Function

The objective function refers to the variable to be optimized based on the set of
constraints that govern the problem, in this case, the minimization of the power losses
associated with energy transport. For that purpose, Equation (1) is used.

minPloss = vTGLv (1)

In this equation, Ploss denotes the power losses associated with energy transport,
which depend on v (a vector containing all the nodal voltages of the system calculated
based on the load flow) and on GL (the conductance matrix of the energy distribution lines),
and vT , a transposed vector of vector v.

2.2. Set of Constraints

The equations presented and described below represent the set of technical and
operational constraints of the equipment that make up the DC network in an environment
of distributed generation.
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Pg + PDG − Pd = D(v)[GL + GN ]v (2)

Pmin
DG ≤ PDG ≤ Pmax

DG (3)

vmin ≤ v ≤ vmax (4)

Iij ≤ Imax
ij (5)

OnesT(PDG −MDG) ≤ 0 (6)

Equation (2) represents the power balance in the network, where Pg is the power
generated by the slack node; PDG, the power supplied by the DGs installed in the system;
Pd, the power demanded by the nodes in the system; D(v), a symmetric positive matrix
containing the nodal voltages of the system in its diagonal; GL, the conductance of each
transmission line; and GN , the resistive loads connected to the DC network. Equation (3)
denotes the minimum and maximum power that each DG installed in the DC network can
inject, where Pmin

DG and Pmax
DG are the minimum and maximum powers allowed for the DGs,

respectively. Equation (4) describes the voltage regulation limits, where vmin and vmax are
the minimum and maximum voltages allowed in each node of the system, respectively.
Equation (5) presents the maximum current limit allowed within the power distribution
lines, where Iij is the current that passes through the line that interconnects nodes i and
j; and Imax

ij , the current limit established by the conductor assigned to this line. Finally,
Equation (6) guarantees the maximum penetration percentage allowed for the DGs (MDG),
where OnesT is a transposed vector composed of ones, which can be used to add together
different penalties in the objective function.

Additionally, Equation (7) ensures that the constraints represented in Equations (2)–(6)
are satisfied because it penalizes the objective function if the limits mentioned above
are violated.

min z =



Ploss + β1OnesTmax{0, v−Vmax}
+β2OnesTmin{0, v−Vmin}
+β3OnesTmin{0, Pg − Pmin

g }
+β4OnesTmax{0, PDG − Pmax

DG }
+β5OnesTmin{0, PDG − Pmin

DG }
+β6max{0, OnesT(PDG −MDG)}


(7)

In this equation, β1 to β6 denote the penalty factors, each of which, in this paper, are
equal to 1000 (value established by means of a heuristic search) to force each optimization
method to respect the limits defined in Equations (2) to (6). When all of the constraints
are satisfied, the min{.} and max{.} functions are used to cancel out all the penalty values,
which, in this case, results in z equaling Ploss.

Table 1 lists all the variables used in Equations (1) to (7), along with their meaning.
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Table 1. Notation list.

Variable Meaning

Ploss Power losses associated with energy transport

v Vector containing all the nodal voltages of the system, which are calculated based
on the load flow

GL Conductance matrix of the energy distribution lines

vT Transposed vector of v

Pg Power generated by the slack node

PDG Power supplied by the DGs installed in the system

Pd Power demanded by the nodes in the system

D(v) Symmetric positive matrix containing the nodal voltages of the system in its
diagonal

GL Conductance of each transmission line

GN Resistive loads connected to the DC network

Pmin
DG Minimum power allowed for the DGs

Pmax
DG Maximum power allowed for the DGs

vmin Minimum voltage allowed at each node of the system

vmax Maximum voltage allowed at each node of the system

Iij Current that passes through the line that interconnects nodes i and j

Imax
ij Current limit established by the conductor assigned to this line

OnesT Transposed vector composed of ones, which can be used to add together different
penalties in the objective function

MDG Maximum power injection level allowed for each DG, which varies between 20%,
40%, and 60% of the power supplied by the slack generator

3. Proposed Solution Methodology

The equations presented in the previous section represent the OPF problem, which,
due to its nonlinear nonconvex nature, must be addressed using numerical methods and
optimization algorithms. To solve this problem, this paper proposes dividing it into two
stages. In the first stage (master stage), the SSA [30,32] is used to determine the optimal
power level to be injected by each DG installed in the DC network. In the second stage
(slave stage), the SA method [30,32] is employed to solve the load flow problem. The slave
stage is responsible for calculating the system’s electrical variables that can be used to
estimate the impact of each of the solutions proposed by the master stage (power levels set
for the DGs) on the objective function, as well as the constraints of the problem. The SA
method was selected to solve the slave stage because the authors who first introduced it
reported excellent results in terms of convergence and processing times. The master–slave
(SSA–SA) methodology implemented in this study is further described below.

3.1. Master Stage: Salp Swarm Algorithm (SSA)

The Salp Swarm Algorithm (SSA) is classified as a bio-inspired optimization technique
that mimics the behavior of salps in their habitat. The transparent barrel-shaped body of
these vertebrates is very similar to that of jellyfish. The SSA is based on the navigating
behavior of salps, which move by contracting their gelatinous bodies and pumping water
through them, when foraging in oceans. In other words, while swarming (in a form known
as salp chain) in a coordinated and fast manner, salps feed on phytoplankton by pumping
water through their internal feeding filters. This behavior can be mathematically modeled
in order to be used as an optimization method [30]. The stages followed in this study to
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develop a computational model and find a solution to the OPF problem using the SSA are
presented below.

3.1.1. Generating the Initial Population

Equation (8) is used to generate each one of the salps that compose the initial popu-
lation of salp chains (Salps(i,j)), where each salp in the population is a possible solution
to the problem (power level to be injected by the DGs). In this equation, subscripts i and
j denote the i-th salp chain and the j-th individual in the i element, respectively. In the
problem addressed here, each salp generated in the different salp chains is a power level
to be injected by each DG installed in the DC network. The values generated for each
one of the salps that comprise the salp chains are contained in the solution space, which
is limited by the technical constraints of the problem. This is possible by implementing
upper (ub) and lower bounds (lb), which are assigned to each element of the salps and
denote the maximum and minimum power levels allowed for each generator in the OPF
problem. Furthermore, with the aim of exploring larger regions of the search space, the
first population of salps is generated from random values (rand) in the [0− 1] range for
each object that makes up the various salp chains. These random numbers multiplied by
the difference between the limits can be used to achieve a larger distribution of the particles
over the search space.

Salps(i,j) = ((ub− lb)rand) + lb (8)

The previous equation makes it possible to find the value of the j individuals in the i
salp chain. To generate all the salps, this study proposes a matrix of size nxd, where n is the
number of salps as possible solutions to the problem, and d denotes the number of variables
in the problem (number of salps that belong to the salp chain); see Equation (9). In this
equation, Sn is the n-th salp in the MSalps matrix. In the specific case of the OPF problem,
the number of columns (d) corresponds to the number of DGs that generate the electrical
power inside the DC network (different from the slack node), and its value represents the
power level to be injected by each DG.

MSalps =



Salps1,1 Salps1,2 · · · · · · Salps1,d
Salps2,1 Salps2,2 · · · · · · Salps2,d

...
...

...
...

...
...

...
...

...
...

Salpsn,1 Salpsn,2 · · · · · · Salpsn,d

 =



Salps1
Salps2

...

...
Salpsn

 (9)

3.1.2. Calculating the Objective Function

To assess the impact of all the possible solutions contained in MSalps, the objective
function is evaluated for each individual (aptitude function) using the slave stage. The
values obtained are then stored in a matrix of size nx1 called MOSalp and, in this way,
the power losses are calculated for each DG configuration generated for each Salp; see
Equation (10). In the case of the OPF problem, each individual created from the search
space and assigned within each Salp is evaluated, thus yielding the values of the variables
associated with each possible solution.

MOSalps =


f ([S1,1, S1,2, · · · , S1,d])
f ([S2,1, S2,2, · · · , S2,d])

...
f ([Sn,1, Sn,2, · · · , Sn,d])

 (10)
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In this solution methodology, the salps in the initial population must be sorted based
on the value obtained after evaluating the objective function. In minimization problems,
the population is ordered from the lowest to the highest value obtained after evaluating
the objective function (case under analysis). In maximization problems, the population
is ordered from the highest to the lowest value obtained after evaluating the objective
function. Hence, the first position in the population represents the best solution that has
been found by the salp chain in the initial population.

3.1.3. Movement of the Salp Chain

The SSA employed here uses an iterative process that generates a new salp chain at
each iteration. There are two types of salps: leaders and followers. The salp at the front
of the salp chain (the one with the best adaptation function in the current iteration) is the
leader, while the others are considered followers. The leader is in charge of guiding the
swarm, and the followers follow each other.

Once all the salps that make up the population are evaluated to determine their
impact on the adaptation function and ordered based on said function, the salp with the
best adaptation function is chosen as leader (X):

X = S1 (11)

The leader is updated at each iteration of the algorithm. In the first iteration, the leader
is selected as the phytoplankton (incumbent of the problem), i.e., since it found the area
with the best food in the solution space, the algorithm proposes this location as the best
area to advance with the remaining salps; see Equation (12). It should be noted that the
phytoplankton is represented by an information vector of size 1xd, which can be used to
store information on the leader of the salp chain.

F = X (12)

From the second iteration onwards, the elements that comprise the phytoplankton
(incumbent of the problem) are updated by the leader of the salp chain only if the best
solution obtained thus far is improved.

To move the salp chain, the SSA employs the following two mechanisms, taking into
account the way the population was ordered:

3.1.4. Movement with Respect to the Incumbent

From the leader to the individual in the middle of the population, the salp chain
moves considering the value of the elements stored in the incumbent of the problem
(phytoplankton), the limits of the elements that make up each salp, and a constant that
controls the advance of the salp chain. By means of a random value, this mechanism
makes it possible to search the region surrounding the incumbent in order to adequately
explore the solution space. Equation (13) is employed here to update the position of half
of the salp chain in the population. In this equation, Salps(i,j) denotes the new value
assigned to the i-th salp in the j-th dimension, i.e., this value assigns a new power level to
each generator considered within the different individuals that make up the population.
Moreover, in this equation, F(1,j) is the position of the food source (phytoplankton) in the
j-th dimension; ub and lb, the upper and lower bounds in each dimension of the problem
(i.e., the power limits set for the DGs), respectively; and C2 and C3, random values in a
[0, 1] range, which determine whether to add or subtract the calculated value from the
incumbent component of the problem (F(i,j)). This process should be performed for each
individual and component element, that is, for each i ∈ n and j ∈ d.
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Salps(i,j) =

{
F(1,j) + C1((ub− lb)C2 + lb) C3 ≤ 0.5
F(1,j) − C1((ub− lb)C2 + lb) C3 > 0.5

(13)

Equation (14) shows coefficient C1, which is responsible for controlling the exploration
and exploitation of the solution during the movement of the salps. In this equation, l
denotes the current iteration and L is the maximum number of iterations.

C1 = 2e−(
4∗l
L )

2

(14)

3.1.5. Movement Using Newton’s Laws of Motion

In order to update the position of the remaining individuals in the salp chain (from
the middle plus one to the last individual in the population), Newton’s laws of motion
are employed here to obtain the equation of motion of the followers; see Equation (15).
This equation allows neighboring salps to share information. This mechanism seeks to
facilitate information sharing between salps with the best and poorest responses according
to the descending order specified in earlier sections. The aim is to improve their objective
function by generating new locations within the solution space.

S(i,j) =
1
2

(
S(i,j) − S(i−1,j)

)
(15)

Once the position of the salp chain is updated at each iteration, it must be verified
that each Salp respects the constraints defined for the problem addressed here, in this case,
that the power limits set for the DGs are not violated. Subsequently, the MOSalp must be
updated by evaluating the new population or salp chain and updating the incumbent of
the problem at each iteration (F). This process is repeated until all the stopping criteria
established for the problem are met.

3.1.6. Stopping Criteria

The master stage uses two stopping criteria, which are described below.

• The master stage will finish when the incumbent of the problem is not updated after n
number of consecutive iterations. In other words, the iterative process ends when the
objective function reaches a certain number of iterations (non-improvement counter)
without finding a better solution to the problem.

• The computational analysis will end when the optimization algorithm reaches the
maximum number of allowable iterations. The iterations of the algorithm are con-
trolled by a counter.

In order to better understand the master stage of the proposed solution methodology,
Algorithm 1 presents the iterative process and methodology of the SSA proposed here for
the OPF problem.
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Algorithm 1 Hybrid SSA-SA optimization algorithm

1: Load system data
2: Initialize the parameters of the algorithms
3: Generate initial population of Salps

(
MSalps

)
4: Calculate adaptation function employing slave stage

(
MOSalps

)
5: Select the incumbent solution

(
F(1,j)

)
6: Select the leading Salp and determine the following Salps
7: Initialize P, Max, and Min parameters
8: while l ≤ L do
9: Initialize C1 of (14)

10: for (i = 1 : Size(Salps)) do
11: if i ≤

(
Size(Salps)

2

)
then

12: for (j = 1 : Dim) for dimension of problem do
13: C2 = rand [0− 1]
14: C3 = rand [0− 1]
15: if C3 ≤ 0.5 then
16: Initialize Salps(i,j) of (13)
17: end if
18: end for
19: else if

(
i > size(Salps)

2

)
& (i ≤ Size(Salps) ) then

20: Initialize Si of (15)
21: end if
22: end for
23: Calculate adaptation function by means of SA
24: Update incumbent solution
25: l = l + 1;
26: end while

3.2. Slave Stage

The slave stage calculates the objective function associated with each possible solution
provided by the master stage (SSA). In other words, it makes it possible to determine their
impact on the electrical variables of the system under analysis in a scenario of known power
generation and demand, which is used to establish the value of the objective function,
as well as that of the set of constraints, associated with each solution proposed by the
master stage.

The problem described above is known as the load or power flow problem, which,
due to its nonlinear nature, must be addressed using numerical methods. This study aims
to solve this problem by means of the SA method [31], which was selected because of
its excellent convergence toward the solution and short processing times. This iterative
numerical method is based on the following equation:

Gdd · vd = −D−1
d (vd)Pd − Gdg · vg, (16)

where Gdd is a symmetric positive matrix containing the conductances of the distribution
lines; vg, the voltage profile of the slack generator; and vd, the voltage in the demand
nodes of the system. By means of a mathematical development applied to Equation (16),
it is possible to obtain the equation that can be used to estimate the nodal voltages in the
demand nodes:

vd = −G−1
dd [D−1

d (vd)Pd + Gdg · vg] (17)

In order to calculate the nodal voltages of the system (vd), an iterative process must be
implemented to find such values with an almost-null convergence error. To that end, a t
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counter should be added to Equation (17). The voltage profiles can thus be estimated using
the following equation:

vt+1
d = −G−1

dd [D−1
d (vt

d)Pd + Gdg · vg] (18)

3.3. Comparison of Methods and Parameters

To evaluate the convergence capacity of the optimization method proposed in this
paper, it was compared with the best optimization techniques reported in the literature:
Particle Swarm Optimization (PSO) [33], the Black Hole (BH) algorithm [34], the Continu-
ous Genetic Algorithm (CGA) [35], Ant Lion Optimization (ALO) [36], and the Multi-Verse
Optimization (MVO) method [37]. They were selected due to their excellent performance in
terms of solution quality and processing times. To solve the OPF problem, a master–slave
methodology was implemented in all the aforementioned techniques. The master stage
employs the optimization algorithm to find the most adequate power levels to be injected
by each DG, and the slave stage uses the SA method to solve the load flow problem. The
effectiveness of the methods used for comparison and the proposed technique were vali-
dated using the 21- and 69-node systems, which are widely employed in the specialized
literature [38–41]. Both test systems are described in the next section.

To ensure a fair comparison between the proposed methodology and the other meth-
ods, each optimization algorithm used in this study was tuned in each test system. The aim
was for each technique to achieve the best response in terms of the objective function. To
carry out said tuning, the PSO algorithm presented in [39] was implemented. The tuning
parameters included a population size in a (1-100) range, a maximum number of iterations
in a (1-1000) range for each algorithm, and a number of non-improvement iterations in a
(1-1000) range. In this tuning, the number of particles was 10, and the maximum number
of iterations was 300. Tables 2 and 3 present the results of the parameters for the 21- and
69-node systems, respectively, which allowed each optimization technique to find the best
solution to the OPF problem considering the objective function selected for this study.

Table 2. Parameters of the continuous methods employed here in the master stage for the 21-
node system.

21-Node System

Method SSA MVO ALO BH CGA PSO

Number of particles 44 71 79 67 52 49
Maximum iterations 312 613 769 317 592 679
Non-improvement

iterations 294 504 441 317 346 263

P parameter — 8 — — — —

Table 3. Parameters of the continuous methods employed here in the master stage for the 69-
node system.

69-Node System

Method SSA MVO ALO BH CGA PSO

Number of particles 55 86 77 35 40 58
Maximum iterations 187 656 182 566 622 723
Non-improvement

iterations 152 584 182 566 443 252

P parameter — 7 — — — —

4. Test Scenarios and Considerations

To validate the effectiveness and robustness of the methodology proposed in this
paper, two test systems were employed: the 21- and 69-node systems. These systems were
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selected because they are widely used in the specialized literature to validate the impact of
the optimization techniques implemented to solve the OPF problem [39–41]. Both systems
consist of a single slack generator in a scenario with no DGs. Under these conditions, the
results in terms of power losses, voltages, and currents in these systems will constitute the
base case.

4.1. 21-Node System

Figure 1 illustrates the 21-node system, which is a DC network consisting of 21 nodes
and 20 lines. The base case of this system employs a base voltage of 1 kV and a base power
of 100 kW. In this test system, the slack generator produces a power of 581.6 kW, and the
power losses equal 27.603 kW. The location of the DGs was defined as in [29,41], i.e., they
were located at nodes 9, 12, and 16. It should be noted that the location of the DGs in
the system is not considered in the base case. In this system, DGs are allowed to inject a
maximum power of 20%, 40%, and 60% of the power provided by the slack generator in
the base case. In addition, the minimum power for all the DGs was 0 kW for all penetration
levels, and the maximum powers of distributed generation were 116.3207, 232.6414, and
348.9620 kW for each penetration level, respectively. When a load flow was evaluated for
this system with the assigned base values, a maximum operating current of 335 A was
considered, which included the selection of a 900-kcmil conductor located within all the
line segments of the network. Additionally, the voltage limits for this system were set at
±10% of the nominal voltage.

1
2

3

45

6

7

8

9

10
11

12

13
14

15
16

17

18

19

20

21

Gen slack (v)

Figure 1. The 21-node system.

4.2. The 69-Node System

Figure 2 shows the 69-node system, which is composed of 69 nodes and 68 lines.
This test system originally operated in AC, but thanks to an adaptation made in [39],
it is possible to use it for DC networks. For such adaptation, the active elements were
disregarded, and a base voltage of 12.66 kV and a base power of 100 kW were considered.
In this system, the slack generator injects a power of 4043.1 kW, and the power losses equal
153.855 kW. As in the 21-node system, all the DGs are allowed a penetration level of 20%,
40%, and 60% of the power provided by the slack generator, with the minimum power
being 0 kW for each DG and a maximum power of 808.6195, 1617.2390, and 2425.8585 kW
for each penetration level. The location of the DGs was defined as in [39], i.e., they were
located at nodes 26, 61, and 66. For this test system, a maximum current of 335 A was
founded through the power flow evaluation, which corresponds to a 400-kcmil conductor
located in a homogeneous or non-telescopic network. Additionally, the voltage limits for
this system were set at +/− 10% of the nominal voltage.
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Figure 2. The 69-node system.

5. Simulations and Results

This section analyzes the results obtained by the solution methods in the two test
systems. All the simulations were performed in Matlab® (version 2021a), a numerical
computing system running on a laptop with 4 GB of RAM, an Intel® CoreTM i5-8250U
@1.60GHz 1.80GHz processor, a 225 GB solid state drive, and Windows 10 PRO. All the
methods were executed 100 times to evaluate the repeatability of the solutions and the
standard deviation of each of the techniques. The following subsections present their
results in the two test systems.

5.1. 21-Node System

Table 4 reports the results obtained by the methods implemented in this study to
solve the OPF problem in the 21-node system at three penetration levels of distributed
generation: 20%, 40%, and 60% of the maximum power injected by the slack generator.
From left to right, this table shows the solution method implemented, the nodes at which
the DGs are located and the power injected by each of them (kW), the minimum power
losses (Ploss) in kW and the percentage of reduction compared to the base case (%), the
average Ploss in kW and the average percentage of reduction with respect to the base case
(%), the processing time required by the optimization algorithm to obtain the solution (s),
the standard deviation (%), the worst voltage and the node at which it occurs, and the
maximum current passing through the conducting lines.

Table 4. Results of the simulations in the 21-node system.

21-Node System

Method
Node /Power

(kW)

Power Losses
Vworst (p.u)/

Node Imax (A)Minimum (kW)
/Reduction (%)

Average (kW)/
Reduction (%)

Time (s) STD (%)

Without DGs — 27.603 — — — (0.9–1.1) 520

20% penetration

SSA
9/0

13.18226/52.24 13.18271/52.24 1.67 0.003 0.957/20 380.612/17.78

16/98.54

MVO
9/0.0004

13.18228/52.24 13.18277/52.24 12.63 0.003 0.957/20 380.612/17.96

16/98.36

ALO
9/0.03

13.18335/52.23 13.26578/51.94 6.67 1.140 0.957/20 380.612/16.85

16/99.44

BH
9/1.15

13.29974/51.81 14.07025/49.02 2.78 2.418 0.954/17 380.7212/32.73

16/82.44
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Table 4. Cont.

21-Node System

Method
Node /Power

(kW)

Power Losses
Vworst (p.u)/

Node Imax (A)Minimum (kW)
/Reduction (%)

Average (kW)/
Reduction (%)

Time (s) STD (%)

CGA
9/0.07

13.19566/52.19 13.28310/51.87 3.22 0.279 0.957/20 380.7612/17.59

16/98.52

PSO
9/0

13.18226/52.24 13.21501/52.12 6.10 0.783 0.957/20 380.612/17.73

16/98.59

40% penetration

SSA
9/30.59

6.12077/77.82 6.12087/77.82 1.58 0.001 0.971/20 257.2212/72.98

16/129.07

MVO
9/30.60

6.12077/77.82 6.12089/77.82 11.81 0.002 0.971/20 257.2212/72.97

16129.06

ALO
9/30.50

6.12114/77.82 6.12838/77.80 6.28 0.800 0.971/20 257.2212/72.56

16/129.58

BH
9/41.01

6.17466/77.63 6.53525/76.32 2.75 3.238 0.970/20 257.8112/67.44

16/123.66

CGA
9/32.71

6.12238/77.82 6.14733/77.73 3.05 0.236 0.971/20 257.2312/72.06

16/127.87

PSO
9/30.43

6.12079/77.82 6.14710/77.73 3.99 1.243 0.971/20 257.2212/73.22

16/128.99

60% penetration

SSA
9/93.36

2.78532/89.91 2.78533/89.91 1.56 0.0004 0.982/20 137.5612/107.43

16/148.17

MVO
9/93.33

2.78532/89.91 2.78538/89.91 10.64 0.002 0.982/20 137.5612/107.48

16/148.16

ALO
9/93.09

2.78564/89.91 2.78763/89.90 6.19 0.044 0.982/20 137.5712/108.49

16/147.38
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Table 4. Cont.

21-Node System

Method
Node /Power

(kW)

Power Losses
Vworst (p.u)/

Node Imax (A)Minimum (kW)
/Reduction (%)

Average (kW)/
Reduction (%)

Time (s) STD (%)

BH
9/91.48

2.81543/89.80 3.04165/88.98 2.67 4.760 0.982/20 139.3812/110.59

16/145.10

CGA
9/92.13

2.79016/89.89 2.81172/89.81 3.00 0.449 0.983/20 137.6612/105.11

16/151.64

PSO
9/93.34

2.78532/89.91 2.80165/89.85 3.79 2.007 0.982/20 137.5612/107.45

16/148.18

Table 4 presents the solutions provided by each optimization technique to the OPF
problem for the 21-node system. Using these values, Figures 3 and 4 were constructed,
which show the differences, in percentage, between the algorithms in terms of minimum
and average Ploss reduction.

Figure 3 illustrates the minimum Ploss reduction obtained by each technique at the
different penetration levels of distributed generation. In the scenario where 20% of dis-
tributed power penetration was considered in relation to the power provided by the slack
generator, both the SSA and the PSO reduced the minimum Ploss by 52.2382%. The MVO
took third place in this regard, being outperformed in 1 × 10−4% by the SSA and the
PSO. The ALO, the CGA, and the BH are in fourth, fifth, and sixth position, respectively,
with a reduction in minimum Ploss of 52.2343%, 52.1896%, and 51.8126%, respectively. At
40% penetration, the SSA and the MVO exhibited the same reduction in minimum Ploss
(77.8233%), thus outperforming the PSO, the ALO, the CGA, and the BH by 1× 10−4%,
0.0013%, 0.0058%, and 0.1953%, respectively. Finally, at 60% penetration, the SSA, the MVO,
and the PSO achieved a reduction in minimum Ploss of 89.9083%, thus outperforming the
ALO by 0.0012%, the CGA by 0.0176%, and the BH by 0.1091%.

Figure 4 details the average Ploss reduction obtained by each methodology at the
different penetration levels of distributed generation. As observed in this figure, the
SSA presented the highest average power loss reduction for the 21-node system. At 20%
penetration, the SSA achieved an average Ploss reduction of 52.2366%, thus outperforming
the MVO, the PSO, the ALO, the CGA, and the BH by 2 × 10−4%, 0.1170%, 0.3010%,
0.3637%, and 3.2157%, respectively. At 40% penetration, the SSA presented an average Ploss
reduction of 77.8229%, thus outperforming the MVO, the ALO, the PSO, the CGA, and the
BH by 1× 10−4%, 0.0272%, 0.0951%, 0.0959%, and 1.5014%, respectively. Finally, at 60%
penetration, the SSA exhibited an average Ploss reduction of 89.9081%, thus outperforming
the MVO by 2× 10−4%, the ALO by 0.0083%, the PSO by 0.0591%, the CGA by 0.0956%,
and the BH by 0.9287%. This demonstrates the superiority of the SSA in finding a solution
to the OPF problem in terms of average Ploss reduction in the 21-node system.

To analyze the repeatability of the proposed solution methodology, Figure 5 shows its
reduction, in standard deviation, compared to that of the methods used for comparison.
According to this figure, the proposed algorithm outperforms, in most cases, all the other
techniques in terms of repeatability in the 21-node system. At 20% penetration, both the
SSA and the MVO obtained a standard deviation of 0.0031%, followed by the CGA, the
PSO, the ALO, and the BH, which were outperformed by 0.2756%, 0.7802%, 1.1368%,
and 2.4150%, respectively. At 40% penetration, the SSA yielded a standard deviation of
9.68× 10−4, thus outperforming the MVO by 8× 10−4, the CGA by 0.2346%, the ALO
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by 0.7992%, the PSO by 1.2424%, and the BH by 3.2368%. Finally, at 60% penetration,
the SSA outperforms the MVO, the ALO, the CGA, the PSO, and the BH by 0.0015%,
0.0432%, 0.4489%, 2.0064%, and 4.7598%, respectively. These values demonstrate that,
when executing multiple solutions in small networks, the proposed solution methodology
is most likely to produce the best average response.

Figure 3. Percentage of reduction in minimum power losses obtained by the SSA in the 21-node
system compared to that of the other methodologies.

Figure 4. Percentage of reduction in average power losses obtained by the SSA in the 21-node system
compared to that of the other methodologies.

Tables 5 and 6 report the technique with the best response at the shortest process-
ing time.

From left to right, Table 5 specifies the optimization method that was implemented;
the average minimum Ploss obtained by each algorithm at all the penetration levels of
distributed generation; the required average processing time; and the distance with respect
to the origin (0,0), with the best solution to the problem being zero power losses at a
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required processing time of 0 s (Figure 6). The values reported in Table 5 are graphically
represented in Figure 6, with the X-axis indicating the average minimum power losses
obtained by each method; and the Y-axis, their required average processing time. As
observed in this figure, the SSA (in blue) provides the best ratio of minimum Ploss reduction
to processing time, and the MVO (in red) the worst ratio for the 21-node system. Therefore,
the SSA is the most efficient method in terms of reduction in minimum power losses in
small systems (in this case, the 21-node system).

Figure 5. Standard deviation obtained by the SSA in the 21-node system compared to that of the
other methodologies.

Figure 6. Trade-off provided by the solution methodologies between average minimum power losses
and required processing time in the 21-node system.

Table 6 shows the mean average power losses obtained by each technique when
combining their impact on the three power injection levels allowed for the 21-node system,
as well as their required processing times and distance to the origin (0,0). Figure 7 analyzes
the ratio of average Ploss to processing time for each solution methodology.
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Table 5. Average minimum power losses vs. average processing time in the 21-node system.

Method Average Minimum
Ploss (kW)

Average
Time (s)

Distance between the Origin
and the Method

SSA 7.3628 1.603 7.535
MVO 7.3628 11.693 13.818
ALO 7.3634 6.378 9.742
BH 7.4299 2.733 7.917

CGA 7.3694 3.092 7.992
PSO 7.3628 4.623 8.694

Table 6. Mean average power losses vs. average time in the 21-node system.

Method Mean Average
Ploss (kW)

Average
Time (s)

Distance between the Origin
and the Method

SSA 7.3630 1.603 7.536
MVO 7.3630 11.693 13.818
ALO 7.3939 6.378 9.765
BH 7.8824 2.733 8.343

CGA 7.4141 3.092 8.033
PSO 7.3876 4.623 8.715

From this figure, it can be seen that, as in the previous analysis, the proposed solution
methodology presents the best ratio of average Ploss reduction to processing time, while
the MVO continues to provide the worst solution. This may be explained by the fact
that the proposed solution methodology not only has an excellent impact on solution
quality but also requires shorter processing times, making it the most efficient method in
terms of reduction in minimum and average power losses in small networks (such as the
21-node system).

Figure 7. Trade-off provided by the solution methodologies between mean average power losses and
required processing time in the 21-node system.

5.2. The 69-Node System

Table 7 presents the results of the methods used in this study to solve the OPF problem
in DC networks for the 69-node system. Using the information in this table, which was
organized the same way as Table 4, Figures 8–10 were constructed.

Figure 8 compares the percentages of reduction in minimum Ploss obtained by each
solution methodology at the three allowable penetration levels. As observed in this
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figure, at 20% penetration, the SSA reported a minimum Ploss reduction of 63.2854%,
thus outperforming the MVO and the PSO by 2× 10−4%, the ALO by 0.0481%, the CGA by
0.0647%, and the BH by 0.8577%. At 40% penetration, the SSA and the MVO presented a
minimum Ploss reduction of 90.9052%; followed by the PSO, which takes the third position
with a reduction of 90.9048%; the ALO, with a reduction of 90.8948%; and, finally, the
CGA and the BH, with a reduction of 90.8936% and 90.5027%, respectively. At 60%
penetration, the SSA, the MVO, and the PSO achieved a minimum Ploss reduction of
96.3888%, followed by the CGA, the ALO, and the BH, with a reduction of 96.3884%,
96.3876%, and 96.1755%, respectively.

Figure 9 compares the solutions obtained by the algorithms employed here in terms
of average Ploss reduction. At 20% penetration, the MVO reported the highest percentage
of reduction in average Ploss (63.2822%), thus outperforming the SSA by 0.0028%, which
was followed by the PSO, the CGA, the ALO, and the BH, with a reduction of 63.1448%,
62.8972%, 62.6976%, and 59.4855%, respectively. At 40% penetration, the MVO is again the
technique with the highest percentage of reduction (90.9049%), thus outperforming the SSA
by only 3× 10−4%, which was followed by the CGA (in third place), the PSO (in fourth
place), the ALO (in fifth place), and the BH (in sixth place), with a reduction of 90.8006%,
90.6968%, 90.6226%, and 87.8768%, respectively. At 60% penetration, the SSA, the MVO,
and the PSO achieved a reduction of 96.3888%, followed by the CGA, the ALO, and the
BH, with an average Ploss reduction of 96.3384%, 96.2746%, and 94.4431%, respectively.

Figure 8. Percentage of reduction in minimum power losses obtained by the SSA in the 69-node
system compared to that of the other methodologies.

To complete the analysis of the 69-node system, Figure 10 compares the standard
deviation obtained by each optimization technique when solving the OPF problem in DC
networks. From this figure, it can be seen that although the proposed solution methodology
is outperformed by the MVO by only 0.0036% at 20% penetration, it outperforms the PSO
by 0.3932%, the CGA by 0.4040%, and the BH by 4.4799%. At 40% penetration, the MVO
is again the technique with the best standard deviation, thus outperforming the SSA by
0.0012%; however, the SSA outperforms all the other methodologies by 5.3894% on average.
At 60% penetration, the SSA presented the best standard deviation (7.39× 10−8%), thus
outperforming the PSO and the MVO by only 5.12× 10−7% and 6.63× 10−6%, respectively.
Likewise, the SSA outperforms the CGA by 0.2977%, the ALO by 6.3320%, and the BH
by 21.5430%.
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Table 7. Results of the simulations of the 69-node system

69-Node System

Method
Node /Power

(kW)

Power Losses
Vworst (p.u)/

Node Imax (A)Minimum (kW)
/Reduction (%)

Average (kW)/
Reduction (%)

Time (s) STD (%)

Without DGs — 27.603 — — — (0.9–1.1) 335 (A)

20% penetration

SSA
26/0

56.48539/63.29 56.49460/63.20 5.94 0.014 0.961/64 247.861/562.74

66/245.88

MVO
26/0.0001

56.48563/63.29 56.49026/63.28 144.73 0.011 0.961/64 247.861/564.21

66/244.40

ALO
26/0

56.55938/63.24 57.39904/62.69 9.833 1.159 0.961/64 247.8361/616.06

66/192.22

BH
26/0.29

57.80503/62.43 62.33161/59.49 14.076 4.494 0.962/61 248.3861/330.66

66/471.60

CGA
26/1.60

56.58498/63.22 57.08262/62.90 23.252 0.418 0.961/64 247.8661/560.06

66/246.25

PSO
26/0

56.48562/63.29 56.70174/63.14 28.26 0.407 0.961/64 247.861/566.67

66/241.94

40% penetration

SSA
26/157.94

13.99234/90.91 13.99337/90.90 5.49 0.006 0.985/21 180.5761/1213.58

66/245.72

MVO
26/158.31

13.99235/90.91 13.99287/90.90 131.953 0.005 0.985/21 180.5761/1212.45

66/246.48

ALO
26/156.07

14.00838/90.89 14.42711/90.62 9.515 2.378 0.985/21 180.661/1234.42

66/226.40

BH
26/141.05

14.61159/90.50 18.65151/87.88 13.927 12.623 0.984/21 181.6661/1093.53

66/369.47

CGA
26/156.56

14.01013/90.89 14.15333/90.80 16.286 0.644 0.985/21 180.5961/1189.74

66/270.64
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Table 7. Cont.

69-Node System

Method
Node /Power

(kW)

Power Losses
Vworst (p.u)/

Node Imax (A)Minimum (kW)
/Reduction (%)

Average (kW)/
Reduction (%)

Time (s) STD (%)

PSO
26/158.00

13.99289/90.90 14.31295/90.70 42.309 5.936 0.985/21 180.5761/1211.24

66/248.00

60% penetration

SSA
26/375.10

5.55580/96.39 5.55580/96.39 5.35 7.4×10−8 0.995/12 133.1461/1588.45

66/245.75

MVO
26/375.11

5.55580/96.39 5.55580/96.39 120.066 6.7×10−6 0.995/12 133.1361/1588.50

66/245.73

ALO
26/380.38

5.55775/96.39 5.73150/96.27 9.686 6.332 0.995/12 132.6461/1584.26

66/250.89

BH
26/401.27

5.88404/96.18 8.32468/94.59 13.739 21.543 0.995/12 136.8961/1417.44

66/343.43

CGA
26/373.60

5.55645/94.54 5.55645/94.54 17.388 0.298 0.995/12 133.4961/1589.01

66/242.18

PSO
26/375.11

5.55580/96.39 5.55580/96.39 13.68 5.9×10−7 0.995/12 133.1361/1588.47

66/245.74

Figure 9. Standard deviation obtained by the SSA in the 69-node system compared to that of the
other methodologies.
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Finally, in order to establish which optimization technique presents the best ratio of
solution quality to processing time, Tables 8 and 9 report the average results obtained by
each methodology in terms of minimum and average power losses at the three penetration
levels of distributed generation for the 69-node system.

Figure 10. Percentage of reduction in average power losses obtained by the SSA in the 69-node
system compared to that of the other methodologies.

Table 8. Average minimum power losses vs. average time in the 69-node system.

Method Average Minimum
Ploss (kW)

Average
Time (s)

Distance between
the Origin and

the Method

SSA 25.345 5.59 25.954
MVO 25.345 132.25 134.657
ALO 25.375 9.68 27.159
BH 26.100 13.91 29.575

CGA 25.384 18.98 31.695
PSO 25.345 28.08 37.827

Table 8 is organized the same way as Table 5, but it contains information for the
69-node system. In this table, the minimum Ploss obtained by each optimization technique
at the three penetration levels of distributed generation and their required processing
times were averaged. Subsequently, using the data contained in Table 8, Figure 11 was
constructed. In this figure, as in Figure 6, the X-axis indicates the average minimum power
losses, and the Y-axis, the average time required by each technique to converge to the
solution. As observed in Figure 11, the technique with the best ratio of minimum power
losses to average processing time is the SSA (in blue) and that with the worst ratio is
the MVO (in red). Thus, the SSA is the most efficient algorithm in terms of reduction in
minimum power losses at any penetration level in large DC networks (in this case, the
69-node system).
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Figure 11. Trade-off provided by the solution methodologies between average minimum power
losses and required processing time in the 69-node system.

Table 9 presents the average time that each technique takes to converge to the solution
(Y-axis in Figure 12), the mean of the average Ploss obtained by each algorithm (X-axis
in Figure 12), and the distance between the origin (0,0) and the point of each technique
in Figure 12.

Table 9. Mean average power losses vs. average time in the 69-node system.

Method Average Minimum
Ploss (kW)

Average
Time (s)

Distance between
the Origin and

the Method

SSA 25.348 5.59 25.957
MVO 25.346 132.25 134.657
ALO 25.853 9.68 27.605
BH 29.769 13.91 32.860

CGA 25.605 18.98 31.870
PSO 25.523 28.08 37.948

As observed in Figure 12, the SSA is the technique that is closest to the origin, i.e., it
exhibits the best ratio of average Ploss to average processing time, while the MVO is the
technique that is farthest from the origin, i.e., it presents the worst ratio of average Ploss
to average processing time. From Figures 11 and 12, it can be concluded that the SSA is
the algorithm that provides the best solution in terms of minimum and average Ploss at the
shortest processing time for large networks.
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Figure 12. Trade-off provided by the solution methodologies between mean average power losses
and required processing time in the 69-node system.

6. Conclusions

This paper proposed the implementation of a new optimization technique (SSA) to
solve the OPF problem in DC networks using a master–slave methodology. In the master
stage, the SSA determines the power to be injected by each DG located in the DC network.
In the slave stage, the SA method estimates the impact of each solution proposed by the
master stage on the objective function and the constraints of the OPF problem. In order
to demonstrate the effectiveness and robustness of the proposed solution methodology,
it was compared with five other optimization techniques that have been reported in the
specialized literature to solve the OPF problem in DC networks: MVO, ALO, BH, CGA,
and PSO. Each method was validated in two test systems (the 21- and 60-node systems)
at three penetration levels of distributed generation: 20%, 40%, and 60% of the power
provided by the slack node. Each test scenario was executed 100 times in order to evaluate
the repeatability of the solutions obtained.

Based on the results of the test scenarios proposed in this study, the SSA proved to de-
liver the best average solution in terms of reduction in minimum and average power losses
at an adequate processing time. Additionally, when comparing the ratios of minimum and
average power loss reduction to processing time of each technique used here, the proposed
methodology yielded the best ratio for DC networks of any size. In other words, the SSA
manages to have a better impact on power losses, through power injection by the DGs, at
a shorter processing time. Since algorithms are required to find a solution to each power
generation and demand variation occurring in the network, the computation time necessary
to solve the OPF problem is critical. Energy management systems must react before the
power generation and demand conditions change again. Additionally, processing times
can be used to broaden the search and improve the response, which is useful in scenarios
with large solution systems. According to the results of this study, the proposed solution
technique achieves the best ratio of solution quality to processing time, which is ideal
in energy management or planning strategies. Importantly, convex optimization solvers
produce high-quality solutions at short processing times but demand using specialized
software, which increases costs and forces to acquire specialized computer equipment for
its execution. This goes against the purpose of this paper, which is to achieve high-quality
solutions at short processing times while eliminating the need for specialized software and
related costs.
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Regarding the repeatability of the solutions obtained, the proposed solution methodol-
ogy exhibited low standard deviations (with values around 1× 10−3%) and outperformed
most of the other techniques in the different test systems and scenarios considered here,
thus demonstrating the reproducibility and achievability of its solution every time the
algorithm is executed. At the user level, this ensures that every time this technique is used
to solve the OPF problem, its solutions will almost always be the best that the algorithm
can produce.

For all the reasons mentioned above and after comparing the proposed solution
methodology with the most efficient methods reported in the specialized literature thus
far, it can be concluded that the SSA is the best technique to solve the OPF problem in DC
networks of any size when it comes to reducing power losses and when considering the set
of constraints of DC networks in an environment of distributed generation.

Future studies could consider using, as the objective function, the reduction in the
operating costs of DC networks in a scenario of distributed generation. In addition,
they could include an environmental impact assessment, considering the integration of
distributed generation based on fossil fuels. It would also be interesting to analyze the
power generation and demand curves in a multi-hourly optimal power dispatch setting.
Moreover, further research should explore the integration of energy storage elements (e.g.,
batteries), which were not covered in this paper. Finally, future studies might implement
the SSA–SA methodology to solve the OPF problem in AC networks. For this purpose,
they should adequately analyze its impact on solution quality and required processing
times to determine its impact on electrical networks in general.
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