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Abstract: A set of efficient algorithmic solutions suitable to the fully parallel hardware implemen-
tation of the short-length circular convolution cores is proposed. The advantage of the presented
algorithms is that they require significantly fewer multiplications as compared to the naive method of
implementing this operation. During the synthesis of the presented algorithms, the matrix notation
of the cyclic convolution operation was used, which made it possible to represent this operation
using the matrix–vector product. The fact that the matrix multiplicand is a circulant matrix allows its
successful factorization, which leads to a decrease in the number of multiplications when calculating
such a product. The proposed algorithms are oriented towards a completely parallel hardware
implementation, but in comparison with a naive approach to a completely parallel hardware imple-
mentation, they require a significantly smaller number of hardwired multipliers. Since the wired
multiplier occupies a much larger area on the VLSI and consumes more power than the wired
adder, the proposed solutions are resource efficient and energy efficient in terms of their hardware
implementation. We considered circular convolutions for sequences of lengths N = 2, 3, 4, 5, 6, 7, 8,
and 9.

Keywords: digital signal processing; circular convolution; resource-efficient algorithms

1. Introduction

Digital convolution is used in various applications of digital signal and image pro-
cessing. Its most interesting areas of application are wireless communication and artificial
neural networks [1–5]. The general principles of developing convolution algorithms were
described in [6–12]. Various algorithmic solutions have been proposed to speed up the com-
putation of circular convolution [7–11,13–16]. The most common approach to efficiently
computing the circular algorithm is the Fast Fourier Transform (FFT) algorithm, as well
as a number of other discrete orthogonal transformations [17–20]. There are also known
methods for implementing discrete orthogonal transformations using circular convolu-
tion [20–22]. FFT-based convolution relies on the fact that convolution can be performed as
simple multiplication in the frequency domain [23]. The FFT-based approach to computing
circular convolution is traditionally used for long-length sequences. However, in many
practical applications, a situation arises where both convolving sequences are relatively
short. As examples, we can refer to algorithms for calculating short linear convolutions, as
well as overlap-save and overlap-add methods [24–26]. It is known that these methods use
splitting a long data sequence into small segments, calculating short cyclic convolutions of
these segments and the impulse response coefficients of a Finite Impulse Response (FIR)
filter, and then, combining the short convolutions into a single whole.

To date, many algorithmic solutions have been developed that involve the compu-
tation of cyclic convolution in the time domain [7–10,21,27–29]. In the cited publications,
methods for calculating short convolutions were presented either as a set of arithmetic
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relations or as a set of matrix–vector products. Such approaches to the description of com-
putations do not at all give an idea of the organization of the structures of processor cores
intended for the implementation of the convolution operation. The solutions presented in
the literature do not give a complete picture of the structural organization of such cores, if
only because they (except for the cases N = 2 and N = 3) do not show the corresponding
signal flow graphs. The absence of signal flow graphs in known publications also does not
allow us to assess the possibilities of the obtained solutions from the point of view of their
parallel implementation.

Therefore, in this paper, we propose a set of algorithmic solutions for circular convolu-
tion of small length N sequences from 2–9.

2. Preliminary Remarks

Let {hn} and {xn} be two N-point sequences. Their circular convolution is the se-
quence {yn}, defined by [6]:

yn =
N−1

∑
k=0

hkx((n−k)modN ), 0 ≤ n ≤ N − 1 (1)

Usually, the elements of one of the convolved sequences are constants. For correctness,
we assume that it will be the elements of sequence {hn}.

Because sequences {xn} and {hn} are finite in length, then their circular convolution (1)
can also be represented as a matrix–vector product:

Y N×1 = HN XN×1 (2)

where:

HN =


h0 hN−1 · · · h1
h1 h0 · · · h2
...

...
. . .

...
hN−1 hN−2 · · · h0

 (3)

XN×1 = [x0, x1, . . . , xN−1]
T , Y N×1 = [y0, y1, . . . , yN−1]

T , HN×1 = [h0, h1, . . . , hN−1]
T .

In the following, we assume that XN×1 will be the input data vector, Y N×1 will be the
output data vector, and HN×1 will be the vector containing constants.

Calculating (2) directly requires N2 multiplications and (N − 1)N additions. This
leads to the fact that for a completely parallel hardware implementation of the circular
convolution, N2 multipliers and N N-input adders are required. Since the multiplier is
a very cumbersome device and, when implemented in hardware, requires much more
hardware resources compared to the adder, minimizing the number of multipliers required
for the fully parallel implementation of algorithms is an important task.

Thus, taking into account the above, the purpose of this article is to develop and
describe fully parallel resource-efficient algorithms for N = 2, 3, 4, 5, 6, 7, 8, and 9.

3. Algorithms for Short-Length Circular Convolution
3.1. Circular Convolution for N = 2

Let X2×1 = [x0, x1]
T and H2×1 = [h0, h1]

T be two-dimensional data vectors being
convolved and Y2×1 = [y0, y1]

T be an output vector representing a circular convolution.
The task is reduced to calculating the following product:

Y2×1 = H2X2×1 (4)

where:

H2 =

[
h0 h1
h1 h0

]
,
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Calculating (4) directly requires four multiplications and two additions. It is easy to
see that the H2 matrix has an unusual structure. Taking into account this specificity leads
to the fact that the number of multiplications in the calculation of the two-point circular
convolution can be reduced [7].

The optimized computational procedure for computing the two-point circular convo-
lution is as follows:

Y2×1 = H̃2D(2)
2 H̃2X2×1 (5)

where:

H̃2 =

[
1 1
1 −1

]
, D(2)

2 = diag(s(2)0 , s(2)1 ), s(2)0 =
1
2
(h0 + h1), s(2)1 =

1
2
(h0 − h1)

Figure 1 shows a signal flow graph for the proposed algorithm, which also provides a
simplified algorithmic structure of a fully parallel processing core for resource-effective
implementation of the two-point circular convolution. All signal flow graphs are oriented
from left to right. Straight lines denote the data circuits. The circles in these figures show the
hardwired multipliers by a constant inscribed inside a circle. Points, where lines converge,
denote adders, and dotted lines indicate the sign-change data circuits (datapaths with
multiplication by −1).

s0

s1

Figure 1. Algorithmic structure of the processing core for the computation of the 2-point circular
convolution.

Therefore, it only takes two multiplications and four additions to compute the two-
point circular convolution. As for the arithmetic blocks, for a completely parallel hardware
implementation of the processor core to compute the two-point convolution, you need
two multipliers and four two-input adders, instead of four multipliers and two two-input
adders in the case of a completely parallel implementation (4).

3.2. Circular Convolution for N = 3

Let X3×1 = [x0, x1, x2]
T and H3×1 = [h0, h1, h2]

T be three-dimensional data vectors
being convolved and Y3×1 = [y0, y1, y2]

T be an output vector representing circular convo-
lution for N = 3. The task is reduced to calculating the following product:

Y3×1 = H3X3×1 (6)

where:

H3 =

 h0 h2 h1
h1 h0 h2
h2 h1 h0

,

Calculating (6) directly requires nine multiplications and five additions. It is easy to
see that the H3 matrix has an unusual structure. Taking into account this specificity leads
to the fact that the number of multiplications in the calculation of the three-point circular
convolution can be reduced [7,8,11,27].

Therefore, the optimized computational procedure for computing the three-point
circular convolution is as follows:

Y (3)
3 = Ã

(3)
3 A(3)

3×4D(3)
4 A(3)

4×3 A(3)
3 X3×1 (7)
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where:

A(3)
3 =

 1 1 1
1 −1 0
0 1 −1

, A(3)
4×3 =


1 0 0
0 1 0
0 0 1
0 1 1

,

A(3)
3×4 =

 1 0 0 0
0 1 −1 0
0 0 1 1

, Ã
(3)
3 =

 1 1 0
1 −1 −1
1 0 1

,

D(3)
4 = diag

(
s(3)0 , s(3)1 , s(3)2 , s(3)3

)
,

s(3)0 =
1
3
(h0 + h1,+h2), s(3)1 = (h0 − h1), s(3)2 = (h1 − h2), s(3)3 =

1
3
(h0 + h1 − 2h2).

Figure 2 shows a signal flow graph of the proposed algorithm for the implementation
of the three-point circular convolution.

s2

s1

s0

s3

Figure 2. Algorithmic structure of the processing core for the computation of the 3-point circular
convolution.

As for the arithmetic blocks, for a completely parallel hardware implementation of the
processor core to compute the three-point convolution (7), you need four multipliers and
eleven two-input adders, instead of nine multipliers and six two-input adders in the case
of a completely parallel implementation (6). Therefore, we have exchanged five multipliers
for five two-input adders.

3.3. Circular Convolution for N = 4

Let X4×1 = [x0, x1, x2, x3]
T and H4×1 = [h0, h1, h2, h3]

T be four-dimensional data
vectors being convolved and Y4×1 = [y0, y1, y2, y3]

T be an output vector representing
circular convolution for N = 4.

The task is reduced to calculating the following product:

Y4×1 = H4X4×1 (8)

where:

H4 =


h0 h3 h2 h1
h1 h0 h3 h2
h2 h1 h0 h3
h3 h2 h1 h0

.

Calculating (8) directly requires 16 multiplications and 12 additions. It is easy to see
that the H4 matrix has an unusual structure. Taking into account this specificity leads
to the fact that the number of multiplications in the calculation of the four-point circular
convolution can be reduced.

Therefore, the optimized computational procedure for computing the four-point
circular convolution is as follows:

Y4×1 = A(4)
4 A(4)

4×5D(4)
5 A(4)

5×4 A(4)
4 X4×1 (9)
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where:

A(4)
4 = H̃2 ⊗ I2 =


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

, A(4)
5×4 = H̃2 ⊕

 1 0
0 1
1 1

,

A(4)
4×5 = H̃2 ⊕

[
0 −1 1
−1 0 1

]
,

D(4)
5 = diag(s(4)0 s(4)1 , ..., s(4)4 ),

s(4)0 = (h0 + h1 + h2 + h3)/4, s(4)1 = (h0 − h1 + h2 − h3)/4,

s(4)2 = (h0 − h1 − h2 + h3)/2, s(4)3 = (h0 + h1 − h2 − h3)/2, s(4)4 = (h0 − h2)/2,

where IN is an identity N matrix, H̃2 is the 2 × 2 Hadamard matrix, and signs “⊗” and
“⊕” denote the Kronecker product and direct sum of two matrices, respectively [30,31].

Figure 3 shows a signal flow graph of the proposed algorithm for the implementation
of the four-point circular convolution.

s1

s0

s2

s3
s4

Figure 3. Algorithmic structure of the processing core for the computation of the 4-point circular
convolution.

As for the arithmetic blocks, to compute the four-point convolution (9), you need
five multipliers and fifteen two-input adders, instead of sixteen multipliers and twelve
two-input adders in the case of a completely parallel implementation (8). The proposed
algorithm saves eleven multiplications at the cost of three extra additions compared to the
ordinary matrix–vector multiplication method.

3.4. Circular Convolution for N = 5

Let X5×1 = [x0, x1, x2, x3, x4]
T and H5×1 = [h0, h1, h2, h3, h4]

T be five-dimensional data
vectors being convolved and Y9×1 = [y0, y1, y2, y3, y4]

T be an output vector representing a
circular convolution for N = 5.

The task is reduced to calculating the following product:

Y5×1 = H5X5×1 (10)

where:

H5 =


h0 h4 h3 h2 h1
h1 h0 h4 h3 h2
h2 h1 h0 h4 h3
h3 h2 h1 h0 h4
h4 h3 h2 h1 h0

,

Calculating (10) directly requires 25 multiplications and 20 additions. It is easy to
see that the H5 matrix has an unusual structure. Taking into account this specificity leads
to the fact that the number of multiplications in the calculation of the five-point circular
convolution can be reduced.
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Therefore, an efficient algorithm for computing the five-point circular convolution can
be represented using the following matrix–vector procedure:

Y5×1 = A(5)
5×7 A(5)

7×10D(5)
10 A(5)

10×9 A(5)
9×5 A(5)

5 X5×1 (11)

where:

A(5)
5 =


1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
1 1 1 1 1

, A(5)
9×5 =



1 0 0 0 0
0 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 1 0
1 0 −1 0 0
0 1 0 −1 0
0 0 0 0 1


,

D(5)
16 = diag(s(5)0 s(5)1 , . . . , s(5)9 ),

s(5)0 = (h0 − h2 + h3 − h4)/4, s(5)1 = (h1 − h2 + h3 − h4)/4,

s(5)2 = (3h2 − 2h1 + 2h0 − 2h3 + 3h4)/5, s(5)3 = (−h0 + h1 − h2 + h3),

s(5)4 = (−h0 + h1 − h2 + h3), s(5)5 = (3h0 − 2h1 + 3h2 − 2h3 − 2h4)/5,

s(5)6 = −h2 + h3, s(5)7 = h1 − h2, s(5)8 = (−h0 − h1 + 4h2 − h3 − h4)/5,

s(5)9 = (h0 + h1 + h2 + h3 + h4)/5,

A(5)
10×9 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 1


,

A(5)
7×10 =



1 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1


,

A(5)
5×7 =


1 0 0 0 −1 0 1
−1 −1 −1 −1 0 0 0
0 0 0 1 0 1 1
0 0 1 0 1 0 1
0 1 0 0 0 −1 1

.

Figure 4 shows a data flow graph of the proposed algorithm for the implementation
of the five-point circular convolution.
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Figure 4. Algorithmic structure of the processing core for the computation of the 5-point circular
convolution.

As for the arithmetic blocks, to compute the five-point convolution (11), you need
ten multipliers, and thirty two-input adders, instead of twenty-five multipliers and twenty
two-input adders in the case of a completely parallel implementation (10). The proposed
algorithm saves 15 multiplications at the cost of 11 extra additions compared to the ordinary
matrix–vector multiplication method.

3.5. Circular Convolution for N = 6

Let X6×1 = [x0, x1, x2, x3, x4, x5]
T and H6×1 = [h0, h1, h2, h3, h4, h5],T be six-dimensional

data vectors being convolved and Y11×1 = [y0, y1, y2, y3, y4, y5]
T be an output vector repre-

senting a circular convolution for N = 6.
The task is reduced to calculating the following product:

Y6×1 = H6X6×1 (12)

where:

H6 =



h0 h5 h4 h3 h2 h1
h1 h0 h5 h4 h3 h2
h2 h1 h0 h5 h4 h3
h3 h2 h1 h0 h5 h4
h4 h3 h2 h1 h0 h5
h5 h4 h3 h2 h1 h0

,

Calculating (12) directly requires 36 multiplications and 30 additions. It is easy to
see that the H6 matrix has an unusual structure. Taking into account this specificity leads
to the fact that the number of multiplications in the calculation of the six-point circular
convolution can be reduced.

Therefore, an efficient algorithm for computing the six-point circular convolution can
be represented using the following matrix–vector procedure:

Y6×1 = P̃
(6)
6 A(6)

6 A(6)
6 A(6)

6×8D(6)
8 A(6)

8×6 Ã
(6)
6 A(6)

6 P(6)
6 X6×1 (13)
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where:

P(6)
6 =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0

, A(6)
6 = H̃2 ⊗ I3 =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

,

D8 = diag(s(6)0 , s(6)1 , ... , s(6)7 ),

s(6)0 = h0 + h3 + h4 + h1 + h2 + h5, s(6)1 = 3(h4 + h1 − h0 − h3),

s(6)2 = 3(h2 + h5 − h0 − h3), s(6)3 = 3(h0 + h3)− (h0 + h3 + h4 + h1 + h2 + h5),

s(6)4 = h0 − h3 + h4 − h1 + h2 − h5, s(6)5 = 3(h4 − h1 − h0 + h3),

s(6)6 = 3(h2 − h5 − h0 + h3), s(6)7 = 3(h0 + h3)− (h0 − h3 + h4 − h1 + h2 − h5),

Ã
(6)
6 =



1 1 1 0 0 0
1 −1 0 0 0 0
1 0 −1 0 0 0
0 0 0 1 1 1
0 0 0 1 −1 0
0 0 0 1 0 −1

,⊕I5, P̃
(6)
6 =



1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

.

Figure 5 shows a data flow graph of the proposed algorithm for the implementation
of the six-point circular convolution.

s2

s1

s0

s3

s6

s5

s4

s7

Figure 5. Algorithmic structure of the processing core for the computation of the 6-point circular
convolution.

As far as arithmetic blocks are concerned, eight multipliers and thirty-four two-input
adders are needed for the completely parallel hardware implementation of the processor
core to compute the six-point convolution (13), instead of thirty-six multipliers and thirty
two-input adders in the case of a completely parallel implementation (12). The proposed
algorithm saves twenty-eight multiplications at the cost of six extra additions compared to
the ordinary matrix–vector multiplication method.

3.6. Circular Convolution for N = 7

Let X7×1 = [x0, x1, x2, x3, x4, x5, x6]
T and H7×1 = [h0, h1, h2, h3, h4, h5, h6],T be seven-

dimensional data vectors being convolved and Y7×1 = [y0, y1, y2, y3, y4, y5, y6]
T be an

output vector representing a circular convolution for N = 7.
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The task is reduced to calculating the following product:

Y7×1 = H7X7×1 (14)

H7 =



h0 h6 h5 h4 h3 h2 h1
h1 h0 h6 h5 h4 h3 h2
h2 h1 h0 h6 h5 h4 h3
h3 h2 h1 h0 h6 h5 h4
h4 h3 h2 h1 h0 h6 h5
h5 h4 h3 h2 h1 h0 h6
h6 h5 h4 h3 h2 h1 h0


.

Calculating (14) directly requires 49 multiplications and 42 additions. It is easy to see
that the H7 matrix has an unusual structure. Taking into account this specificity leads to
the fact that the number of multiplications in the calculation of the seven-point circular
convolution can be reduced.

Therefore, an efficient algorithm for computing the seven-point circular convolution
can be represented using the following matrix–vector procedure:

Y7×1 = A(7)
7×9 A(7)

9×10 A(7)
10×11 A(7)

11×12 A(7)
12×15 A(7)

15×11 A(7)
11 A(7)

11×16D(7)
16 A(7)

16 A(7)
16×18 A(7)

18×11 A(7)
11×8 A(7)

8×7X7×1 (15)

where:

A(7)
8×7 =



1 1 1 0 0 0 0
1 0 0 0 0 0 −1
0 1 0 0 0 0 −1
0 0 1 0 0 0 −1
0 0 0 1 0 0 −1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
0 0 0 0 0 0 1


, A(7)

11×8 =



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 −1 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 −1 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0



,

A(7)
18×11 =



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 0 1



,
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A(7)
16×18 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



,

A(7)
16 =



1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



,

D(7)
16 = diag(s(7)0 , s(7)1 , ... , s(7)15 ),

s(7)0 = (h6 + h5 + h4 + h3 + 2h2 + h1 + h0)/7,

s(7)1 = (−h6 − 2h5 + 3h4 − h3 − 2h2 + h1 + 2h0)/2, s(7)2 = (2h4 − h3 − 2h2 + h1)/2,

s(7)3 = (−h6 + h5 + 2h4 − h3 − 2h2 + 3h1 − h0)/2,

s(7)4 = (10h6 + 3h5 − 11h4 + 10h3 + 3h2 − 11h1 − 4h0)/14,

s(7)5 = (−2h6 − 2h5 − 2h4 + 12h3 + 5h2 − 9h1 − 2h0)/14,

s(7)6 = (2h6 + 3h5 − h4 − 2h3 + 3h2 − h1)/6,

s(7)7 = (3h6 − 11h5 − 4h4 + 10h3 + 3h2 − 11h1 + 10h0)/14,

s(7)8 = (−2h3 + 3h2 − h1)/6, s(7)9 = (3h6 − h5 − 2h3 + 3h2 − h1 − 2h0)/6,

s(7)10 = (−h6 + h4 − h3 + h1)/6, s(7)11 = (−h3 + h1)/6, s(7)12 = (h5 − h3 + h1 − h0)/6,

s(7)13 = 2h6 − h5 − 2h4 + 3h3 − 2h2 − 2h1 + h0, s(7)14 = 2h3 − h2 − 2h1 + h0,
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s(7)15 = −h6 − 2h5 + h4 + 2h3 − h2 − 2h1 + 3h0,

A(7)
11×16 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1



,

A(7)
11 =



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1



,

A(7)
15×11 =



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1



,

A(7)
12×15 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0



,
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A(7)
11×12 =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 −1 −1 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0



,

A(7)
10×11 =



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1


,

A(7)
9×10 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 −1 0 0 −1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0


,

A(7)
7×9 =



1 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1


.

Figure 6 shows a data flow graph of the proposed algorithm for the implementation
of the seven-point circular convolution.

As far as arithmetic blocks are concerned, sixteen multipliers and sixty-eight two-input
adders are needed for the completely parallel hardware implementation of the processor
core to compute the seven-point convolution (15), instead of forty-nine multipliers and
forty-two two-input adders in the case of a completely parallel implementation (14). The
proposed algorithm saves 33 multiplications at the cost of 26 extra additions compared to
the ordinary matrix–vector multiplication method.
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Figure 6. Algorithmic structure of the processing core for the computation of the 7-point circular convolution.

3.7. Circular Convolution for N = 8

Let X8×1 = [x0, x1, x2, x3, x4, x5, x6, x7]
T and H8×1 = [h0, h1, h2, h3, h4, h5, h6, h7],T be

eight-dimensional data vectors being convolved and Y8×1 = [y0, y1, y2, y3, y4, y5, y6, y7]
T

be an output vector representing a circular convolution for N = 8.
The task is reduced to calculating the following product:

Y8×1 = H8X8×1 (16)

H8 =



h0 h7 h6 h5 h4 h3 h2 h1
h1 h0 h7 h6 h5 h4 h3 h2
h2 h1 h0 h7 h6 h5 h4 h3
h3 h2 h1 h0 h7 h6 h5 h4
h4 h3 h2 h1 h0 h7 h6 h5
h5 h4 h3 h2 h1 h0 h7 h6
h6 h5 h4 h3 h2 h1 h0 h7
h7 h6 h5 h4 h3 h2 h1 h0


.

Calculating (16) directly requires 64 multiplications and 56 additions. It is easy to see
that the H8 matrix has an unusual structure. Taking into account this specificity leads to
the fact that the number of multiplications in the calculation of the eight-point circular
convolution can be reduced.

Therefore, an efficient algorithm for computing the eight-point circular convolution
can be represented using the following matrix–vector procedure:

Y8×1 = P(8)
8 A(8)

8 A(8)
8×10 A(8)

10×14D(8)
14 A(8)

14×10 A(8)
10×8 A(8)

8 X8×1 (17)

where:
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A(8)
8 = H̃2 ⊗ I4 =



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1


,

A(8)
10×8 = (H̃2 ⊗ I2)⊕

 I2 02
02 I2
I2 I2

, A(8)
14×10 = H̃2 ⊕

I4 ⊗

 1 0
0 1
1 1

,

D(8)
14 = diag(s(8)0 , s(8)1 , ... , s(8)13 ),

s(8)0 =
1
8
(h0 + h1 + h2 + h3 + h4 + h5 + h6 + h7),

s(8)1 =
1
8
(h0 − h1 + h2 − h3 + h4 − h5 + h6 − h7),

s(8)2 =
1
4
(−h0 + h1 + h2 − h3 − h4 + h5 + h6 − h7),

s(8)3 =
1
4
(−h0 − h1 + h2 + h3 − h4 − h5 + h6 + h7), s(8)4 =

1
4
(h0 − h2 + h4 − h6),

s(8)5 =
1
2
(h0 − h1 − h2 + h3 − h4 + h5 + h6 − h7),

s(8)6 =
1
2
(h0 + h1 − h2 + h3 − h4 − h5 + h6 − h7), s(8)7 =

1
2
(−h0 + h2 + h4 − h6),

s(8)8 =
1
2
(h0 − h1 + h2 − h3 − h4 + h5 − h6 + h7),

s(8)9 =
1
2
(h0 − h1 + h2 + h3 − h4 + h5 − h6 − h7), s(8)10 =

1
2
(−h0 − h2 + h4 + h6),

s(8)11 =
1
2
(−h0 + h1 + h4 − h5), s(8)12 =

1
2
(−h0 − h3 + h4 + h7), s(8)13 =

1
2
(h0 − h4),

A(8)
10×14 = H̃2 ⊕

(
I4 ⊗

[
0 1 1
1 0 1

])
, A(8)

8×10 = (H̃2 ⊗ I2)⊕
[

02 I2 I2
I2 02 I2

]
,

P(8)
8 =

[
05×3 I5

I3 03×5

]
=



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0


.

Figure 7 shows a data flow graph of the proposed algorithm for the implementation
of the eight-point circular convolution.
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Figure 7. Algorithmic structure of the processing core for the computation of the 8-point circular
convolution.

As far as arithmetic blocks are concerned, fourteen multipliers and forty-six two-input
adders are needed for the completely parallel hardware implementation of the processor
core to compute the eight-point convolution (17), instead of sixty-four multipliers and
fifty-six two-input adders in the case of a completely parallel implementation (16). The
proposed algorithm saves 50 multiplications and 10 additions compared to the ordinary
matrix–vector multiplication method.

3.8. Circular Convolution for N = 9

Let X9×1 = [x0, x1, x2, x3, x4, x5, x6, x7, x8]
T and H9×1 = [h0, h1, h2, h3, h4, h5, h6, h7, h8]

T

be nine-dimensional data vectors being convolved and Y9×1 = [y0, y1, y2, y3, y4, y5, y6, y7, y8]
T

be an output vector representing a circular convolution for N = 9.
The task is reduced to calculating the following product:

Y9×1 = H9X9×1 (18)

H9 =



h0 h8 h7 h6 h5 h4 h3 h2 h1
h1 h0 h8 h7 h6 h5 h4 h3 h2
h2 h1 h0 h8 h7 h6 h5 h4 h3
h3 h2 h1 h0 h8 h7 h6 h5 h4
h4 h3 h2 h1 h0 h8 h7 h6 h5
h5 h4 h3 h2 h1 h0 h8 h7 h6
h6 h5 h4 h3 h2 h1 h0 h8 h7
h7 h6 h5 h4 h3 h2 h1 h0 h8
y8 h7 h6 h5 h4 h3 h2 h1 h0


.

Calculating (18) directly requires 81 multiplications and 72 additions. It is easy to
see that the H9 matrix has an unusual structure. Taking into account this specificity leads
to the fact that the number of multiplications in the calculation of the nine-point circular
convolution can be reduced.
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Therefore, an efficient algorithm for computing the nine-point circular convolution
can be represented using the following matrix–vector procedure:

Y9×1 = Ã
(9)
9 A(9)

9×13 A(9)
13×15 A(9)

15 A(9)
15×19D(9)

19 A(9)
19×16 A(9)

16×14 A(9)
14×9 A(9)

9 X9×1 (19)

where:

A(9)
9 =



1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 −1
0 0 0 1 0 0 −1 0 0
0 0 0 0 1 0 0 −1 0
0 0 0 0 0 1 0 0 −1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


,

A(9)
14×9 =



1 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 −1
0 0 0 0 0 1 0 0 0
0 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 0 1 −1
0 0 1 0 0 0 0 0 0



,

A(9)
16×14 =



0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1



,
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A(9)
19×16 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


D(9)

19 = diag(s(9)0 , s(9)1 , ... , s(9)18 ),

s(9)0 = b17 =
1
3
(2b0 − b2 + b4), s(9)1 = b23 =

1
9
(−b0 + b2 − b3 + b5),

s(9)2 = b24 = b23 − b22, s(9)3 = b16 =
1
3
(2b0 + b1 − b2 − 2b3 + b5),

s(9)4 = b10 =
1
18

(b0 + 3b1 + 2b2 − 2b3 − 3b4 − b5), s(9)5 = b12 = b10 + b11,

s(9)6 = b11 =
1
18

(b0 − b2 + b3 + 3b4 + 2b5), s(9)7 = b13 =
1
6
(−b0 + b1 − b4 + b5),

s(9)8 = b15 = b13 + b14, s(9)9 = b14 =
1
6
(b0 − b2 − b3 + b4), s(9)10 = b9 =

1
9
(b6 + b7 + b8),

s(9)11 = b25 =
1
3
(b6 − b8), s(9)12 = b27 =

1
3
(b25 + b26), s(9)13 = b18 = b17 − b16,

s(9)14 = b22 =
1
9
(b0 − b2 − 2b3 + 2b5), s(9)15 = b19 =

1
3
(b0 − b1 − 2b2 + b4),

s(9)16 = b20 =
1
3
(−b1 + b3 − 2b5), s(9)17 = b26 =

1
3
(b7 − b8), s(9)18 = b21 = b20 − b19,

b0 = h0 − h3 + 2h6, b1 = h1 − h4 + 2h7, b2 = −h2 − h5 + 2h8, b3 = h0 − 2h3 + h6,

b4 = h1 − 2h4 + h7, b5 = h2 − 2h5 + h8, b6 = h0 + h3 + h6, b7 = h1 + h4 + h7,

b8 = h2 + h5 + h8,
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A(9)
15×19 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



,

A(9)
15 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 −1 0 0 0 1 0 0 0 0 0 0



,

A(9)
13×15 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



,

A(9)
9×13 =



1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1


,
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Ã
(9)
9 =



−1 1 1 0 0 0 0 0 0
0 0 0 −1 1 1 0 0 0
0 0 0 0 0 0 −1 1 1
0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 1 −1
1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0


.

Figure 8 shows a data flow graph of the proposed algorithm for the implementation
of the nine-point circular convolution.
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Figure 8. Algorithmic structure of the processing core for the computation of the 9-point circular convolution.

As far as arithmetic blocks are concerned, nineteen multipliers and seventy-four
two-input adders are needed for the completely parallel hardware implementation of the
processor core to compute the nine-point convolution (19), instead of eighty-one multipliers
and seventy-two two-input adders in the case of a completely parallel implementation (18).
The proposed algorithm saves sixty-two multiplications at the cost of the one extra addition
compared to the ordinary matrix–vector multiplication method.

4. Implementation Complexity

We now estimate the hardware implementation costs of each solution. We assumed
that the hardware implementation cost of the hardwired multiplier is α and the hardware
implementation cost of the two-input adder is β. By the hardware implementation cost
of the estimated solution, we mean a generalized assessment of the hardware complexity
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of implementing specific solutions, considering the area within the VLSI, the dissipation
power, and therefore, the consumed energy. We also took into account that the N-input
adder consists of N − 1 two-input adders. In this way, we treated the implementation cost
of an N-input adder as the sum of the implementation costs of N − 1 two-input adders.
Then, the total hardware implementation cost C of each solution is equal to:

C = αM + βA

where M and A mean, respectively, the number of multipliers and the number of two-input
adders required for the fully parallel implementation of a particular solution. We can
normalize the above equation regarding the cost of the adder, obtaining the normalized
cost:

C̃ = γM + A

where γ = α/β is the relative cost coefficient of the multiplier.
Table 1 shows estimates of the number of arithmetic blocks for the fully parallel

implementation of the short-length circular convolution algorithms. The last two columns
of the table show the unified hardware costs for the implementation of the corresponding
solutions, expressed in terms of the implementation cost of one two-input adder. The charts
presented in Figure 9 illustrate the normalized hardware implementation costs C̃ of the
proposed solution and naive method for various values of γ and N.

Table 1. Comparative estimates of the number of hardwired multipliers and adders for the case of completely parallel
implementations of the naive-method-based solutions and of the proposed solutions.

Length N
Number of Arithmetical Blocks
(Multipliers—“×”
and Adders—“+”)

Implementation Normalized
Cost Estimate

Naive Method Proposed Solutions C̃
0 “×” “+” “×” “+” Naive Method Proposed

Solutions

2 4 2 2 4 4γ + 2 2γ + 4
3 9 6 4 11 9γ + 6 4γ + 11
4 16 12 5 15 16γ + 12 5γ + 15

5 25 20 10 31 25γ + 20 10γ + 31

6 36 30 8 32 36γ + 30 8γ + 32

7 49 42 16 70 49γ + 42 16γ + 70

8 64 56 14 46 64γ + 56 14γ + 46

9 81 72 19 73 81γ + 72 19γ + 74

Cost comparisons can also be made using percentage changes:

δc =
C̃p − C̃n

C̃n
100%

where C̃p and C̃n are the normalized cost of proposed algorithm and naive method, respec-
tively.

Figure 10 shows the value of percentage changes as a function of the relative cost
coefficient for various values of N. Assuming that the cost of the multiplier is always at
least equal to, and most often greater than, the cost of the adder γ ≥ 1, the cost of the
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proposed algorithm is never greater than that of the naive method, and in some cases, even
cost savings of over 70% are obtained.
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Figure 9. The normalized hardware implementation costs C̃ of the proposed solution and naive
method, as a function of the relative cost coefficient γ of the multiplier, for various N.
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Figure 10. The value of percentage changes δc as a function of the relative cost coefficient γ for
various values of N.
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5. Conclusions

In this article, we analyzed the possibilities of reducing the multiplicative complexity
of computing circular convolutions for input sequences of small lengths. We synthe-
sized new hardware-efficient, fully parallel algorithms to implement these operations for
N = 3, 4, 5, 6, 7, 8, and 9. The reduced multiplicative complexity of the proposed algo-
rithms is especially important when developing specialized fully parallel VLSI processors,
since it minimizes the number of necessary hardware multipliers and reduces the power
dissipation, as well as the total cost of the implementation of the entire system being
introduced [30–32]. Thus, a decrease in the number of multipliers, even at the expense
of a moderate increase in the number of adders, plays an important role in the hardware
implementation of the proposed algorithms. Consequently, the use of the proposed solu-
tions makes it possible to reduce the complexity of the hardware implementation of the
cyclic convolution kernels. In addition, as can be seen from Figures 1–8, the algorithms
presented in the article have a pronounced regular and modular structure. This facilitates
the mapping of these algorithms to the ASIC structure and unifies their implementation in
FPGAs. Thus, the acceleration of computations in the implementation of these algorithms
can also be achieved by parallelizing the computations.
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