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Abstract: Deep learning for 3D data has become a popular research theme in many fields. However,
most of the research on 3D data is based on voxels, 2D images, and point clouds. At actual industrial
sites, face-based geometry data are being used, but their direct application to industrial sites remains
limited due to a lack of existing research. In this study, to overcome these limitations, we present a
face-based variational autoencoder (FVAE) model that generates 3D geometry data using a variational
autoencoder (VAE) model directly from face-based geometric data. Our model improves the existing
node and edge-based adjacency matrix and optimizes it for geometric learning by using a face- and
edge-based adjacency matrix according to the 3D geometry structure. In the experiment, we achieved
the result of generating adjacency matrix information with 72% precision and 69% recall through
end-to-end learning of Face-Based 3D Geometry. In addition, we presented various structurization
methods for 3D unstructured geometry and compared their performance, and proved the method to
effectively perform reconstruction of the learned structured data through experiments.

Keywords: VAE; deep learning; 3D geometry; graph data; generation model

1. Introduction

Deep learning for 3D data is being researched in various fields because of its great
utility. Moreover, 3D data exist in various forms, such as 2D images, voxels, point clouds,
and polygon models, and deep learning research is being conducted based on these
various data. However, as the research is being conducted mainly on 2D images [1–6],
voxels [1,7–11], and point clouds [12–14], which are relatively easy to learn, there is a limit
to directly applying the research results in actual industrial sites as the commonly used
3D data format is polygon based data [15]. In order to overcome this limitation, research
on direct polygon-based data is required [16–18]. In this study, in order to overcome this
limitation, research on a generation model of 3D data was conducted directly through
polygon data.

In deep learning about graphs, much research has been conducted in the fields of
social networks [19–22], chemistry [23,24], medicine [25], and computer vision [6,18,25],
among others, and many achievements have been made. Deep learning’s effectiveness
has been proven in link prediction and label discrimination [19–22]. Since the face data
constituting a polygon basically take the form of graph data, they can be considered closely
related to the study of graph data.

In this research, based on the adjacency matrix and feature matrix, which are graph
data structures, we propose an adjacent matrix face- and edge-optimized for 3D geometric
data by improving the structure of graph data. In addition, we achieved the result of
generating adjacency matrix information with 72% precision and 69% recall through end-
to-end learning with vertex position and face index data, which are basic geometries.
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2. Related Work
2.1. 3D Data

Deep learning for 3D data is being studied in many fields, and because of its dimen-
sionality, it is first converted into various data types, such as images [1–6], voxels [1,7–11],
point clouds [12–14], and polygons [16–18,26]. Most of the studies utilize learning [1–3,7]
with a CNN model for tasks such as searching, classification, segmentation, and generation,
using data composed of 2D images or voxels.

In order to study the 3D environment in which we live, we collect data using various
devices, such as cameras, 3D scanners, depth sensors, and motion sensors [16]. In order
to express these extracted data in a virtual environment, they are transformed into the
geometric data of a vertex and a face unit consisting of a vertex for expression.

In general, the geometry surrounded by the surface has the form of a vertex with
position information, a face consisting of three vertices, and a polygon, a surface, and
a geometry as a group of faces. According to the shape of the geometry, the number of
vertices, the number of faces, and the number of faces sharing one vertex are configured
differently, so it is difficult to structure it into generalized data. Since it is difficult to study
geometric data due to their unstructured characteristics, practical polygon-based studies
are rarely conducted. In this study, to overcome these limitations, we attempted to create
end-to-end 3D geometric data through face-based data, which take the basic configuration
of polygons; see Figure 1.

Figure 1. Face-based 3D geometry.

2.2. Graph Data

The relationship between vertices and faces in 3D data can be expressed as nodes and
edges in graph data. Deep learning for graphs is being researched in various fields, such
as social networks [19–22], chemistry [23,24], medicine [25], and computer vision [6,18,25].
The research closest [23] to our study succeeded in creating small graphs using variational
autoencoders (VAE). However, 3D data that needs to represent a volume with surfaces has
a much more complex structure than a graph data with an adjacency relationship between
nodes and edges, and thus there are limitations in learning with the existing graph data
structure. Accordingly, we propose a matrix structure suitable for 3D data in this study.

2.3. Generative Model

The most well-known generative models in unsupervised learning are approximate
density-based variational autoencoders (VAE) [24,27–30] and implicit density-based genera-
tive adversarial nets (GAN) [31–33]. Recently, several papers, such as a study on generating
an image through Multi-Adversarial Variational Autoencoder (MAVEN) combining GAN
and VAE [34], and a study on generating graph data through Conditional VAE and Long
Short Term Memory (LSTM) [35], produced results by combining VAE and other models.
Among them, GAN was mainly used in studies [36] to train generative model using voxel
data and Convolutional Neural Network (CNN) models, and VAE was mainly used in
studies [20,23] to train using models such as graph data and Graph Convolutional Network
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(GCN) [28]. In voxel data, one voxel has information similar to the surrounding voxel,
so useful information can be extracted through a convolutional network, but one node of
graph data has little data similarity with neighboring nodes. In addition, since graph data
only has binary data on connection or not, we considered that it is possible to sufficiently
learn through the VAE model.

In this study, the VAE generation model was used to learn and generate binary data
easily and efficiently. All input data (Adjacency, Feature) was converted into binary data
(0,1). We conducted research and experiments focusing on the most optimal 3D geometry
data structurization and reconstruction for learning using VAE rather than the study of the
VAE generation model itself. Through experiments, we have proven that the structurization
of the optimal input data for the VAE generation model can achieve sufficient results.

3. Methods

For decades now, 3D geometric data has been used for product design, drawing, and
simulation in many businesses. 3D geometric data are composed of a triangular face made
of three points and a polygon with faces—see Figure 1—to realistically represent the shape.
In order to express the shape more precisely and realistically, the face is composed of a
smaller size and larger quantities and includes a normal vector, texture UV, and lighting
map as additional information. However, for this expression, the number of vertices and
faces varies depending on the object, and the location of vertices and the ways in which
faces are organized are informal. For these reasons, it is not easy to study or learn 3D
geometric data themselves, so research has been conducted by transforming these data into
images [1–6], voxels [1,7–11], and point clouds [12–14]. We tried to confirm the possibility
of learning by conducting research on 3D geometric data themselves, rather than on the
existing deformation data. Through the experiment, we succeeded in learning face-based
3D geometry, and we confirmed its possibility.

As shown in Figure 2, we constructed a framework dedicated to geometry to learn
polygonal geometric data. The first structurization is a step to structure unstructured
geometric data into a structured data matrix and then train the structured matrix as
input data through VAE, a generation model, and finally reconstruct the learned output
data into geometry. Since it is not easy to grasp the reconstruction performance in the
geometrical shape, in order to understand the learning performance, the initial geometry
before structurization and the geometry that was reconstructed were respectively voxelized.
By comparing the similarity of the corresponding voxel type, the performances for learning
and generation were identified. Each step is described in more detail below.

Figure 2. Framework of face-based variational autoencoders.
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3.1. Adjacency Matrix Structurization

The structurization step for learning unstructured geometric data was the most im-
portant, and it was the most difficult step to find a formalization method for. Although the
Adjacency||Feature (|| : Concatenating Matrices) (Equations (1)–(4)) of the existing graph
data [19–21,23,25] is the most similar structure, it was not possible to express an optimized
expression from its current form. Accordingly, three schemes for structurization optimized
for 3D geometry were conceived. G in (Equations (1)–(4)) stands for geometry matrix.

G = (A, F) (1)

Vertex Adjacency (AV ). In general, the geometry surrounded by the surface has the
form of a vertex with position information, a face consisting of three vertices, and a polygon,
a surface, and a geometry as a group of faces. Vertex and edge information connected
to each other can be extracted from Geometry, and it has two to six connected vertices
for forming a surface. In general, in the order of the vertex index, there is a connection
relationship, and as shown in Figure 3, the vertex adjacency (AV) matrix has diagonally
sparse data. The size of the AV matrix (300) is greater than the number of vertices of the
geometry with the most vertices (296), and it has a value of 1 if the horizontal vertex index
and the vertical vertex index are connected, or 0 otherwise. The meaning of the horizontal
and the vertical is the same, and it always has a symmetrical shape based on the diagonal.
Unlike the existing graph data, as shown in Figure 3, the vertex adjacency (AV) matrix has
no value in the same horizontal and vertical index because the value of 1 represents the
edge of two points. However, this matrix is expressed only with edge information; the
surface information is missing and only the wireframe information is available.

GAV+FV = (AV , FV) (2)

Figure 3. Vertex adjacency (AV) and vertex feature (FV : position value of x/y/z) of a simple cube.

Vertex*Face Adjacency (AV F). Since the geometry consists of a vertex and a face
that shares the vertex, there is a limit to expressing the information using only the vertex
adjacency. To solve this problem, a vertex*face adjacency (AVF) matrix was conceived so
that the vertex and face information can be simultaneously configured. The column of the
adjacency matrix represents the vertex index, and the row represents the face index. Since
one face always consists of three vertices, there are always three values in one face index
column, as shown in Figure 4. Unlike the vertex adjacency, it can include face relationship
information. However, the matrix efficiency differs depending on the ratio of vertex count
and face count. This will be explained again in Section 4. Experiments.

GAVF+FV = (AVF, FV) (3)
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Figure 4. Vertex-face adjacency (AVF) and vertex feature (FV) of a simple cube.

Face Adjacency (AF). The third method is to express the adjacency matrix consisting
of faces that exist only in Geometry, not in a general vertex-centered graph structure. In
general, a face is a triangle made of three vertices, and in a closed geometry, a triangle
always has information connected to three other triangles. Like vertex adjacency, if the
horizontal face index and the vertical face index share one edge, it has a value of 1 or 0
otherwise. Also like vertex adjacency, it has a symmetrical shape around the diagonal.
However, since there are always three faces adjacent to one face, as shown in Figure 5, the
face adjacency matrix (AF) has a much more sparse characteristic than other adjacencies,
and it is less efficient because it requires information about three vertices as a feature at the
same time. For this reason, we proposed Face Adjacency (AF) only in the methods section,
we do not conduct experiments.

GAF+FF = (AF, FF) (4)

Figure 5. Face adjacency (AF) and face feature (FF: position value of 3 vertices x/y/z) of a sim-
ple cube.

3.2. Feature Matrix Structurization

Vertex Feature (FV ). Essentially, the most important information among vertex fea-
tures in geometry is position (X,Y,Z). In order to generalize various sizes for each geometry
type, the vertex position was generalized to a size of 0 to 1. All positions were expressed as
real values to 4 decimal places (0.0001 to 0.9999) between 0 and 1. However, for accurate
real value encoding, each digit number was expressed as one hot encoding. Accordingly,
to store each value of X, Y, and Z, each of 40 binary values for a total of 120 vertex features
were expressed; see Figure 6.
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Figure 6. One hot encoding/decoding of vertex feature.

Face Feature (FF). Since a triangle is specified by three vertices, it can include the
position information of three points, the area of the face that can be extracted into three
points, and the face normal vector as feature data. However, in this paper, for the purposes
of simple comparison, feature information is conceived only with position information
identical to the vertex feature. In addition, the generation model experiment for the face
feature was excluded, as well as the face adjacency (AF).

3.3. Face-Based Variation Autoencoders (FVAE)

We trained the generation model for graph-based geometric data using the existing
variational autoencoder model [27,37]. The VAE model has the characteristic that the
output value becomes blurry than the input value because of the reason that the result is
generated through the small latent dimension of the mean and variance [38]. We converted
all input data (adjacency, feature) into binary data (0, 1) so that we can achieve performance
through the VAE model. In addition, we used an extended model (Face-Based VAE) with
three hidden layers (with 1000 nodes) for encoding and decoding of the existing VAE
model [27,37] to improve the learning performance Figure 7.

Figure 7. Architecture of face-based variational autoencoders.

Two types of input data were trained: a vertex-based adjacency matrix and a vertex*face-
based adjacency matrix. Input value G = (A, F) (1), A is the adjacency matrix of the vertex
or face, and F is the position of one hot encoding data of the vertex. In Equation (5) of
the total loss for reconstruction error (E) and regularization (KL), the input value x was
replaced by G of Geometry. Except for the input value, the other equation is the same as in
the previous study [27].

L(φ, θ : G) = −Eqθ(z|G)[log(pθ(G|z))] + KL[qφ(z|G)||p(z)] (5)

As shown in Figure 8, the input data have information about vertex or vertex*face
adjacency data in diagonal form and one hot encoding of the vertex position feature in
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vertical line form. Since it has the geometric information in a fixed (300 × 370: vertices
data(300) × (faces data(250) + feature data(120))) matrix, there is a blank space depending
on the sizes of the vertex and face. The issue of increasing voids in the matrix depending
on the number of vertices and faces needs to be improved in future works.

Figure 8. Input data of vertex-face adjacency (AVF) and vertex feature (FV) (4 × 4).

3.4. Reconstruction

The step of reconstructing the geometric information from the structured output
matrix was another challenge. In order to reconstruct the vertex of the geometry and the
unstructured data of the face, the following solutions are suggested for each of the three
matrices performed in the structurization step.

Vertex Adjacency (AV ). To create each piece of face information in an AV that contains
only vertex and vertex edge information, it was necessary to find the total number of faces
and the three points constituting each face. When we mapped the column and row values
of 3 vertices of the cube blue triangle (Figure 9) in the vertex adjacency matrix (AV), we
found a rule for grouping the three points constituting the face (triangle) in the form of a
right triangle. We found that the three points that make up this triangle are the three points
that make up one face. Since the matrix has a symmetrical shape around the diagonal,
the face information was extracted only at the top of the gray area. However, among the
information was a case where some incorrect faces that did not exist as actual faces were
created, such as the red triangle in Figure 9. However, it was impossible to distinguish
incorrect information, such as a red face in the generated AV matrix, and since the face was
an internal face in the overall shape, it was not a subject of great consideration from the
perspective of the overall shape.

Figure 9. Reconstruction error of vertex adjacency (AV) matrix.

Vertex*Face Adjacency (AV F). As shown in Figure 4, in the AVF structure, vertex
and face information can be clearly restored compared to AV . The Geometric Object is
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clearly reconstructed by extracting the three indexes of vertices from the vertical, which are
organized according to the face index in the horizontal. However, it is distributed more
sparsely than AV and is composed of an asymmetric shape rather than a horizontal and
vertical square shape.

Face Adjacency (AF). As can be seen in Figure 5, it is not easy to restore vertex index
information because AF contains face-based information, not vertex-based information.
We consider that the structure is more suitable for the task of supervised learning than the
generative model. Accordingly, the generation model experiment for AF was omitted from
this study.

3.5. Voxelization

It was not easy to evaluate the performance of the generated model using the face-
based geometric data itself. There was too much information to be compared, such as the
number of vertices, the X/Y/Z position to four decimal places of the vertex, the number
of faces, and the composition of the vertex index within the face. Therefore, a similarity
evaluation method that could be used as a standard was needed. To solve this problem,
we evaluated the similarity by voxelizing the initial geometry and the generated geometry.
Figure 10. This made it possible to compare objective and quantitative performance. If the
face of each geometry passes through the corresponding voxel in the entire 30 × 30 × 30
voxel space, or if there is a vertex in the voxel area, a value of 1 is entered, and if not, a
value of 0 is entered. In order to measure consistent similarity for 3D geometries of various
sizes, the bounding box of geometry was adjusted and transformed to a size that is full in
voxel space. However, since the size ratio between x/y/z of geometry was maintained, a
considerable proportion (over 80%) of voxels existed as empty spaces.

Figure 10. Voxelization of 3D geometry (30 × 30 × 30).

3.6. Similarity

In order to measure the similarity in this study, performance through the values of
Accuracy = (TN + TP)/(TN + TP+ FN + FP), Precision = TP/(TP+ FP), and Recall =
TP/(TP + FN) was compared.

• True Positive (TP): Exists in the input voxel and exists in the output voxel;
• True Negative (TN): When it does not exist in the input voxel and does not exist in the

output voxel;
• False Positive (FP): If it does not exist in the input voxel, but exists in the output voxel;
• False Negative(FN) : Exists in the input voxel and not in the output voxel.

However, since a large proportion of voxels in the voxel space (30 × 30 × 30) are
empty spaces, the accuracy of using True Negative (TN) does not have a great meaning.

4. Experiments

The experiment was performed on five types of input data: FV , AV , AVF, AV ||FV ,
and AVF||FV , FV only learned about vertex features excluding adjacency, and AV and AVF
only learned about adjacency excluding features. AV ||FV concatenates AV and FV to learn
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about the entire matrix, and AVF||FV concatenates AVF and FV to learn about the entire
matrix. The source code was improved to optimize 3D geometry learning based on [37].
Tensorflow and Python packages (numpy, scipy, PIL, matplotlib) were used as libraries. The
experiment environment was tested on a GPU (NVIDIA GeForce GTX 1070)-based i7-875H
2.20 GHz notebook, and the average value was measured by repeating each experiment
10 times (takes about 20 min at a time).

4.1. 3D Geometry Data

For the study of the 3D geometry generation model, Princeton Modelnet10 [2] was
used as the data. Princeton Modelnet10 is divided into 10 categories for interior furniture
and is a text file with only pure vertex position and face index information. In this study,
for considering the performance of Multilayer Perceptron (MLP) learning and the system
limitations, 64 geometry instances with less than 300 vertices were used as training data
among about 900 Modelnet10 data, as shown in Figure 11, and 16 instances were used as
test data. Even if only 300 vertices are converted to AV Matrix, 90,000 input nodes will
be obtained. The number of input nodes on MLP used in the experiment was limited to
126,000 (300 × 420) of GAV+FV .

4.2. Model

As shown in Figure 7, the structure of the model is in the form of MLP-based varia-
tional autoencoders. According to the FV , AV , AVF, AV ||FV , and AVF||FV 5 experiments,
each has 300 × 120(vertices × feature) , 300 × 300(vertices × vertices) , 300 × 250(vertices
× faces) , 300 × 420(vertices × (vertices + feature)) and 300 × 370(vertices × (faces +
feature)) input nodes. Encoding and decoding are composed of three hidden layers with
1000 nodes each.

Figure 11. Princeton Modelnet10 data (under 300 vertices).

4.3. Generation

In the comparison of total training losses shown in Figure 12, it can be seen that AV
and AVF learning-only adjacency learn much better than the FV learning-only feature. Here,
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it was confirmed that the sparse adjacency matrix is more effective in learning than the one
hot encoded feature information. Of AV ||FV and AVF||FV , it was confirmed that AVF||FV
was more effective in learning, and AVF with vertex*face information learned better than
vertex-based adjacency.

Finally, the results learned while changing the latent variable z value for the five
experiments, FV , AV , AVF, AV ||FV , and AVF||FV , can be seen in Table 1. Basically, the
accuracy was considered high in all experiments because the ratio occupied by true negative
(TN) in the voxel space is high. For this reason, the performance was evaluated by the
values of precision and recall rather than accuracy. The comparisons of FV/AV/AVF, AV
and AVF show much higher performance than FV in the precision (72.32, 63.48) and recall
(69.86, 59.78) of test data. This confirms that it is much more difficult to learn position
feature information than vertex and face adjacency information. It can be determined that
the adjacent matrix is relatively well trained. Here, it can be seen that AV has a slightly
higher performance on test data than does AVF, which is considered due to somewhat
overfitting during AVF learning because the number of input data is not large during
training. In AV ||FV (z = 10) and AVF||FV (z = 10), Precision (88.26, 99.99) and Recall (96.91,
100.00) of Training Data were high, but the reason for relatively low performance in Test
Data is considered to be overfitting.

Looking at the performance results of AV ||FV and AVF||FV , it seems that it is difficult
to draw a strong conclusion from the performance of test data yet, but it was confirmed
that AVF||FV is better trained than AV ||FV in training data.

Figure 13 shows the input geometry of test data and the generated output geometry
for AV . The dark face of the output geometry is caused by the reverse application of the
normal vector direction of the face, but this research excluded the learning of the normal
vector. Thus, it was confirmed that a fairly similar polygon geometry was created. Even if
vertex position information is used as input data, that adjacency matrix data is generated
with 72% Precision and 69% Recall performance is a great achievement.

Figure 12. Comparison of total training losses.
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Table 1. Performance on 3D geometry generation.

Training Data(64) Test Data(16)
G Type Accuracy Precision Recall Accuracy Precision Recall

FV (z = 5) 99.99 98.95 100.00 78.25 12.41 33.84
AV (z = 5) 99.72 97.82 98.64 95.84 72.32 69.86
AVF (z = 5) 100.00 100.00 100.00 94.08 63.48 59.78

AV ||FV (z = 2) 93.20 7.44 8.24 92.54 0.00 0.00
AV ||FV (z = 5) 88.92 49.01 71.27 81.80 10.91 8.63
AV ||FV (z = 10) 98.61 88.26 96.91 82.06 8.63 16.28

AVF||FV (z = 2) 93.63 6.25 6.25 92.54 0.00 0.00
AVF||FV (z = 5) 93.72 61.94 80.14 80.25 11.53 27.78
AVF||FV (z = 10) 99.99 99.99 100.00 80.57 10.28 25.86

4.4. Geometry Data Analysis

We analyzed the data of 900 test data sets from Princeton Modelnet10 and found that
the face/vertex ratio value was concentrated to a value of less than 1, as shown in Figure 14.
This shows that most of the geometries consist of fewer faces than the number of vertices.
This analysis demonstrates that in terms of data efficiency, AVF can perform structurization
through a smaller matrix size than AV and learning proceeds better.

Figure 13. Representation of AV test data generation.
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Figure 14. Face/vertex ratio according to vertex count.

5. Conclusions

In this research, we presented a face-based variational autoencoders (FVAE) model
that generates 3D geometric data. Unlike the existing voxel-based research, our model
conducts end-to-end learning using face information, which is the basic configuration of
polygons actually used in industrial sites. The existing node- and edge-based adjacency
matrix was improved and optimized for geometric learning using a face- and edge-based
adjacency matrix according to a 3D geometric structure, and its performance was verified.
The performance of the test data was not as high as expected, creating polygon data directly
from end to end with 72% precision and 69% recall is a great achievement.

The contributions of this study are as follows:

• We presented a face-based 3D geometry generation model that directly generates
polygon data from end-to-end without data conversion.

• We achieved the result of generating adjacency matrix information with 72% precision
and 69% recall through end-to-end learning of Face-Based 3D Geometry.

• We presented various structurization methods for 3D unstructured geometry and
proved the method to effectively perform reconstruction of the learned structured data.

Future Works. In this study, in consideration of the performance of MLP learning,
learning was conducted only for geometries with 300 or less vertices. Of the 900 test
data sets of the entire Princeton Modelnet10, 64 geometries (training data) were too small
to form sufficient manifold space. In order to improve this situation, further research is
needed on the processing plan for large-capacity vertex geometry. To accomplish this,
additional research should utilize the concept of octree, a traditional CAD query method.
Through sufficient training data, we can expect improvement of learning effect and genera-
tion performance.
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