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Abstract: Artificial Intelligence (AI) and especially Machine Learning (ML) can play a very important
role in realizing and optimizing 6G network applications. In this paper, we present a brief summary
of ML methods, as well as an up-to-date review of ML approaches in 6G wireless communication sys-
tems. These methods include supervised, unsupervised and reinforcement techniques. Additionally,
we discuss open issues in the field of ML for 6G networks and wireless communications in general,
as well as some potential future trends to motivate further research into this area.

Keywords: 6G; wireless communications; artificial intelligence; machine learning

1. Introduction

Wireless communication systems have experienced substantial revolutionary progress
over the past years. With the rapid progress of 3GPP 5G phase 2 standardization, the
commercial deployment of 5G applications being deployed all over the world cannot fully
meet the challenges brought by the rapid increase of traffic and the real-time requirement
of services [1]. In this behalf, industry and academia are already working towards realizing
the sixth generation (6G) communication systems. ML, as part of AI, involves teaching
the machines to perform tasks independently based on making data-driven decisions.
ML can accurately estimate various parameters and support interactive decision-making.
In [2], the deployment of ML techniques as potential solutions upcoming 6G wireless
communications challenges is being discussed. The application of ML techniques in 6G
wireless communication systems has been the subject that attracts interest in recent years.
In this paper, we extend our earlier work [3].

The remainder of the paper is as follows. Section 2 briefly discusses the 6G network
requirements and challenges. In Section 3, we present some basic ML algorithms. In Section 4,
we present some of the emerging new 6G applications and services and the role of ML.
Finally, Sections 5 and 6 discuss some open issues and future trends in the application of
ML algorithms in 6G and wireless communications, whereas Section 7 concludes this review
paper with some remarks.

2. 6G Network Requirements and Challenges

The global mobile traffic volume is anticipated to reach 5016 exabytes per month
(Eb/mo) in 2030, while in 2010 it was 7.462 EB/mo in 2010 [4] and so 5G will not be able to
address the traffic load. 6G will try to address the shortcomings of 5G by trying creating
smart radio environments through Intelligent Reflecting Surfaces (IRS) and adjusting the
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communication in higher frequency bands (THz and mm-wave) [5]. IRS emerges as a
key technology in future 6G networks. IRS receives a signal from the base station (BS),
and reflects the signal with induced phase changes, which are adjusted by a controller.
The reflected signal can be added coherently with the signal from the BS to either boost
or attenuate the overall signal at the receiver. IRS may not amplify the signal power
without power but has minimal power requirement for the operation of the controller and
reconfiguration of the elements to have full control over the reflection signal.

IRS is energy and cost efficient, by inducing smart radio environments, and is free from
self-interference, so can be used as other related wireless technologies such as, conventional
relaying, backscatter communication (BackCom), and mMIMO relaying. IRS can be a
solution for energy and spectral-efficient issue in 6G systems [6]. IRS will play a crucial role
in 6G communication networks, similar to that of massive MIMO in 5G networks. Thus,
IRS can be used to help achieve massive MIMO 2.0 in 6G networks [7].

6G networks will enhance and expand 5G applications and will meet the following
requirements [8,9]:

• Achieve higher data rate per user/device (10–100 times greater than 5G);
• Support wider coverage;
• Support larger number of connected devices;
• Integrate low latency communications;
• Reduce the energy consumption;
• Support massive Internet of Things (IoT) and integrate virtual reality (VR) and aug-

mented reality (AR) into one extended reality (XR);
• Generate large amounts of data through the Internet of Everything (IoE);
• Suppor distributed massive MIMO;
• Support high and reliable connectivity;
• Support real-time dynamic analysis and self-awareness;
• Support trust and security mechanisms for safer integration.

Application and feature description of 5G and 6G networks [9–12] are presented in
Table 1.

Table 1. Comparison of 5G and 6G networks.

Technology 5G 6G

Applications

Enhanced Mobile Broadband
Communications (eMBB),
Ultrareliable Low Latency
Communications (URLLC),
Massive Machine Type
Communications (mMTC)

Holographic-Type
Communication (HTC), Tactile
Internet, Intelligent Transport and
Logistics, Intelligent and
automated machines, Virtual
Reality (VR), Augmented Reality
(AR), Extended reality (XR)

Peak data rate 10 Gbps 1 Tbps

Frequency 3–300 GHz 1000 GHz

Latency 10 ms <1 ms

Mobility support Up to 500 km/h Up to 1000 km/h

Spectral efficiency 30 bps/Hz 100 bps/Hz

Reliability 99.9999% 99.99999%

3. Machine Learning

Machine Learning (ML) models are computational systems that are able to learn the
features of a system that cannot be represented by using a conventional mathematical model
approach. These models are commonly used in tasks such as regression, classification,
and any interaction between an intelligent agent and an environment. After the model is
trained on the given training data-set, it can be effectively applied to unknown data and
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perform any decision based on the training data. ML is usually classified into three major
categories [13]: supervised, unsupervised, and reinforcement learning.

3.1. Supervised Learning

Supervised learning algorithms are trained using a labeled data-set. In supervised
approach, both the input data and the desired output data to be predicted, are known
to the system. In supervised learning it is essential to have enough data, in order to
be effectively applied in any application [14]. Supervised learning is mostly used for
classification and regression problems and some typical supervised algorithms are logistic
regression, Artificial Neural Networks (ANN), k-Nearest Neighbor (kNN) [15], naive Bayes,
random forest and decision tree [16].

• ANNs: ANNs are inspired by nature and try to imitate biological neural networks,
and so are able to learn from complicated data. In wireless communication systems,
ANNs can be used to learn the structure of the network and predict user’s behavior to
solve different problems such as spectrum and resource allocation, cell association
etc. [17]. Recently deep learning has extended the ANN applicability and capabilities
with Deep Neural Networks (DNN) [18]. Moreover, there are ANN types like the
Autoencoders that are applied for unsupervised learning or other ANN structures
that are used for reinforcement learning.

• K-Nearest Neighbor: KNN is a classification and regression algorithm based on the
distance between different feature values. The classification of an unknown data
sample is determined based on the class of K nearest neighbors. If the majority of the
nearest neighbors belongs to a certain class, then the sample is assigned into this class.
The advantages of the algorithm are many: it is insensitive to outliers, easy to realize
and suitable for multiclass classifications. The big disadvantage of the approach is
that, for large input dataset, is very time-consuming [16].

• Naive Bayes: it is a simple probabilistic classification model based on the Bayes
theorem. The Bayes theorem provides a model of the conditional probability of a
result Y with the given inpu/ condition X. The Naïve Bayes classifiers can effectively
handle a large number of independent continuous or categorical features. This is
due to the ability to transform a high-dimensional density estimation task into a one
dimensional kernel density estimation task, assuming the features are independent
with one another [19].

• Decision tree: This model imitates trees in natures. Each node of the decision tree
represents a feature of a data, each branch the conjunction of features that are needed
for the classification, and each leaf node represents a specific class. The model tries to
maximize the information gain of each variable split. After the model is trained by
the known labeled dataset, the classification of the unlabeled sample can be achieved
by comparing the feature value with the trained nodes of the decision tree. The basic
advantages of the approach, include simple implementation, and high classification
accuracy. However, it suffers from including many-level data variables because
information gains are biased towards multi-level features [16].

• Random Forest: A random forest usually consists of multiple decision trees. The
method randomly selects a subset of features to be the base of constructing each
decision tree. Each decision tree classifies any new dataset and the unknown data
samples are categorized into a specific class, based on the majority of the decision
trees [16]. The algorithm only examines part of the attributes for an attribute of the
best split and so low correlation between trees is essential to avoid the domination of
a few strong attributes [19]. Figure 1 depicts an example of a Random Forest model.

• Convolutional Neural Networks (CNN): These models are made up of neurons that
can self-optimize through unsupervised learning. They are mostly used for pattern
recognition, especially in classification applications for image recognition. CNN
consists of three layers: the convolutional layer, the pooling layer, and the fully con-
nected layer. When these layers are stacked together, the complete CNN architecture
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is formed [17]. CNNs can be used for both supervised or unsupervised learning
depending on the task in which it is used.

• Recurrent Neural Network (RNN): A RNN is an ANN type that uses sequential
data or time series data. Some common applications of RNNs include ordinal or
temporal problems, like as language translation, natural language processing, speech
recognition, and image captioning. An artificial Recurrent Neural Network type is
Long Short Term Memory (LSTM), which have been introduced in order to overcome
the vanishing gradient problems, which are observed when training traditional RNNs.
LSTM networks can be applied for classification, processing and making predictions
based on time series data. As with CNNs, RNNs can be applied for both supervised
or unsupervised learning.

Figure 1. Random Forest model.

In our study, many different algorithms were applied, but all of them were based
and inspired from the previously mentioned supervised algorithms. The advantages and
limitations of the most common supervised ML methods that were introduced [20–24], are
analyzed in Table 2:
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Table 2. Advantages and limitations of supervised ML methods.

ML Approach Advantages Limitations

ANN

• High fault tolerance
• Distributed memory
• Parallel processing capability
• Robust to noise

• Hardware dependence
• Reduced trust
• Structure through trial and error

knn

• One hyperparameter (k)
• Non-parametric
• No training step
• Easy to implement in multi-class problems

• Computationally expensive
• Sensitive to noise
• Curse of dimensionality
• Needs homogenous features

Naive Bayes

• Fast and can be used in real-time
• Insensitive to irrelevant features
• Performs well with high dimensional data
• Scalable with large datasets

• Not so accurate
• Zero-frequency problem
• Assumes independent features

Decision tree

• Does not require normalization or scaling of data
• Missing values in data do not affect process
• Simple implementation
• High accuracy

• Several level-data variables
• High complexity
• Instable for data variation

Random Forest
• Accurate and robust
• Insesitive to overfitting
• Offers feature importance

• Low correlation between trees
• High complexity

CNN
• Automatically detects important features
• Weight sharing
• Minimizes computation

• Lacks ability to be spatially invariant from
input data

• Slow training procedure

RNN
• Can process inputs of any length
• Model size does not increase with larger input
• Minimizes computation

• Computationally expensive
• Cannot process long sequences for certain

activation functions

3.2. Unsupervised Learning

Unsupervised learning algorithms are given a set of unlabeled data to correctly predict
the output, which is the basic difference with the supervised learning approach. These
algorithms are mostly used for clustering and aggregation problems, but can also achieve
great results for regression problems. Some typical unsupervised algorithms include K-
means, Self-Organizing Maps (SOMs), Hidden Markov Model (HMM), Auto Encoders
(AEs), Principal Component Analysis (PCA), Restricted Boltzmann Machine (RBM), fuzzy
C-means etc. Furthermore, unsupervised ML have been applied to enhance the perfor-
mance of Deep Learning (DL) algorithms such as Convolutional Neural Networks (CNNs)
and Long short-term memory (LSTM) algorithms [16].

• K-means: It is a widely used method to classify unlabeled raw input data into different
clusters. K-means algorithm assigns each new data point to a cluster, based on its
distance from the nearest associated centroid. The centroids are updated based on
the previously assigned data point and the procedure is repeated until there is no
alteration in the input data points and the centroids. K represents the number of
desired clusters and can greatly impact the performance of the algorithm [16].

• Self-Organizing Map (SOM): This approach is mostly used for data clustering and
dimensionality reduction. The model has one input layer and a map layer, with each
layer containing many neurons and a different weight vector is assigned to each
neuron. During the training process, SOM builds the map by using an unsupervised
competitive learning approach. The winning neuron from this competition determines
the cluster in which any new input vector is classified [16]. Figure 2 displays the
architecture of a traditional Self Organizing Map model.

• Autoencoders: learning circuits that copy inputs into outputs, aiming to have the
least possible deviation. The have great results on both classification and regression
problems. Autoencoders are stacked approaches and are trained unsupervised bottom-
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up, followed by a supervised learning method. In this way the top layer is trained
based on known input, and so fine-tuning the whole architecture.

Figure 2. Self Organizimg Map Model.

In our study, many different algorithms were applied for unsupervised ML, but
all of them were based and inspired from the previously mentioned algorithms. The
advantages and limitations of the most common unsupervised ML methods that were
introduced [16,25–28], are analyzed in Table 3:

Table 3. Advantages and limitations of unsupervised ML methods.

ML Approach Advantages Limitations

k-means
• Easy to implement
• Suitable for large datasets
• Adapts easily to new examples

• Manual choice of k
• k greatly impacts performance
• Can cluster outliers
• Scales with dimensionality

SOM • Easily understood
• Capable of clustering large and complex datasets

• Needs large number of data
• Nearby data points must behave similarly
• Finds different similarities among sample

vectors

Auto-encoders
• Denoising training
• Dimensionality reduction
• Able to learn non-linear feature representations

• Computationally expensive
• High complexity
• Prone to overfitting

PCA
• Fast
• Dimensionality reduction
• Reduces overfitting

• Independent variables are less interpretable
• Needs data standarization beforehand
• Incapable of learning non linear feature

representations

HMM
• Can handle inputs of variable lengths
• Can combine into libraries
• Can learn from raw input data

• Does not take into account the sequence of
states leading into any given state

• Dependency between appliances cannot be
represented

RBM • Can encode any distribution
• Computationally efficient

• Difficult training procedure
• Needs weight adjustment

3.3. Reinforcement Learning

Reinforcement Learning (RL) is based on the principles of behaviourist psychology
and the model learns the same way as a child learns to perform a new task. RL is realized
on the basis of a feedback performance indicator (reward) conceived from the model’s
environment. The model pursues the ideal performance of the output by maximizing
the indicator of the reward. RL is a hybrid of supervised and unsupervised learning,
because (indirect) supervision is required for the model to understand and learn the ideal
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system’s performance, while there is no available training dataset paired with the desired
output [15]. Basically, RL is a trial and error procedure where an agent interacts with the
environment and based on whether the action tried was good or bad, gets feedback in
terms of reward or penalty. RL tries to learn the best policy that would enable the agent
to make an optimal decision at any given state of the environment.Figure 3 displays an
example of RF. RL algorithms can be categorized to value-based (e.g., Q-learning, SARSA)
and policy-based algorithms (e.g., Policy Gradient (PG), Proximal Policy Optimization
(PPO) and Actor-Critic (A2C) [29].

Figure 3. Example of reinforcement learning.

• Q-learning: Q-learning is the most common used RL algorithm. It is an off Policy
technique and uses a greedy approach to learn the needed Q-value. The algorithm
learns the Q-value given to the agent in a certain state, based on a specific action. The
approach creates the Q-table, where the number of rows represent the number of
states, and the number of columns represent the number of actions. The Q-value is
the reward of the action at a certain state. Once the Q-values are learned the agent can
make quick decisions under a current state by taking the action that has the largest
Q-value from the table [30].

• SARSA: It is an on-policy algorithm which uses each time the action performed by the
current policy of the model, in order to learn the Q-values [19].

• Policy Gradient (PG): The approach uses a random network, and a frame of the agent
is applied to produce a random output action. This output is sent back to the agent
and then the agent produces the next frame and the procedure is repeated until a
good solution is reached. During the training of the model, the network’s output is
being sampled in order to avoid repeating loops pf the action. The sampling allows
the agent to randomly explore the environment and find the better solution [17].

• Actor Critic: The actor-critic model learns a policy (actor) and value function (critic).
Actor-critic learning is always on-policy because the critic needs to learn correct the
Temporal Difference (TD) errors from the ‘actor’ or the policy [19].

• Deep reinforcement learning. In recent years, deep learning has significantly advanced
the field of RL, with the use of deep learning algorithms within RL giving rise to
the field of “deep reinforcement learning”. Deep learning enables RL to operate in
high-dimensional state and action spaces and can now be used for complex decision-
making problems [31,32].

Some advantages and limitations of the most common RL algoriths [33–36], are listed
below in Table 4:
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Table 4. Advantages and limitations of RL methods.

ML Approach Advantages Limitations

Q-learning

• Learns directly the optimal policy
• Less computation cost
• Relatively fast
• Efficient for offline learning

• Use of biased samples
• High per-sample variance
• Computationally expensive
• Not very efficient for online learning

SARSA • Fast
• Efficient for online learning datasets

• Learns a near-optimal policy while
exploring

• Not very efficient for offline learning

Policy Gradient • Capable of finding best stochastic policy
• Effective for high dimensionallity datasets

• Slow convergence
• High variance

Actor Critic

• Reduces variance with respect to pure policy
methods

• More sample efficient than other RL methods
• Guaranteed convergence

• Must be stochastic
• Estimators need high variance

4. Beyond 5G/6G Applications and Machine Learning

6G will be able to support enhanced Mobile Broadband Communications (eMBB),
Ultrareliable Low Latency Communications (URLLC) and massive Machine Type Commu-
nications (mMTC), but with enhanced capabilities compared to 5G networks. Furthermore,
will be able to support application such as Virtual Reality (VR) Augmented Reality (AR)
and ultimately Extended Reality (XR). Based on the problem different ML algorithms are
applied as analyzed below.

4.1. Supervised Learning
4.1.1. Optimization Problems

Coverage, power and capacity optimization are critical challenges in future 6G net-
works services [16]. In [37], Random Forest and knn algorithms are proposed to predict
and optimize the Path Loss (PL). The results show a higher accuracy and reduced Mean
Squared Error (MSE) compared with conventional approaches. The authors in [38] pro-
pose a novel approach, namely GRL, to address the problems of joint user association
and power allocation. In the proposed model, for optimization purposes, the learning
process is split into two parts, the generalization-representation learning (GRL) part, and
the specialization-representation learning (SRL) part The authors assume a function that
can represent the connection between the network’s parameters and the optimal resource
allocation, and problems are addressed by optimizing this selected function. In this ap-
proach, the data-driven (supervised learning) and model-driven (unsupervised learning)
training methods are combined to accurately predict the optimal function and the results
are satisfactory.

In [39], a supervised ANN-based algorithm, named MLP-DBA, is proposed to predict
the dynamic bandwidth allocation (DBA). The authors, aim to achieve bandwidth allocation
close to optimal conventional approaches. The simulation results indicate that the proposed
model can adaptively allocate the bandwidth, while improving the latency performance
over the conventional DBA schemes. In [40], a DNN algorithm is proposed to predict the
user’s requirements in high dynamic (UAV) network. The results show better performance
than the conventional Q-learning based algorithms that were mostly used. In [41], an RNN
algorithm is proposed for intelligent load balancing. The proposed intelligent load balancer,
named APRIL, can effectively load forecast information to maximize server utilization.
Results show that the proposed forecasting model performs by between 5.88 and 92.6 better
than the alternatives. The deviation in the performance is because the user’s role greatly
impacts the performance of the model.

In [42], machine learning-based Cooperative Spectrum Sensing schemes (CSSs) have
been proposed. In the proposed approaches, some nodes send the received signal power
from the users to the Fusion Center (FC), where some artificial neural networks (ANNs)



Electronics 2021, 10, 2786 9 of 28

and SVM approach are used to determine whether the channels are idle or not. ANN is
used to recognize the transmit power while SVM is used to find the best decision boundary,
acting as a classifier. The results show that proposed approaches can offer great results in
terms of accuracy and performance. In [43], the authors compare different supervised ML
algorithms to predict data rate (ANN, SVM, random forest). Results show that random
forest approach can achieve the lowest prediction error. The error is minimized in the
uplink transmission direction (in downlink it is more significant). In [44], a supervised
cooperative data rate prediction approach is introduced. This cooperative model reduces
average prediction error by 30%.

In [45], combination of 2 well-known beamforming schemes (maximum ratio transmis-
sion and zero-forcing) is used in a K-user Multiple Input Single Output (MISO) channel. The
proposed approach is based on a DNN in which the input nodes take channel vector with
transmit power and the output returns the combining factors from transmitter’s beamform-
ing. The model achieves a sum rate of 99% when compared with conventional approaches.

A K-means clustering model for users in Thz MIMO-NOMA systems is proposed
in [46]. Based on whether the user belong to Small Cell Base Stations (SBSs) coverage or
Macro Base Station (MBSs) coverage, they are separated into different cluster. The great
path spreading path loss and molecular absorption loss are two important challenges in
THz systems. So an efficient clustering scheme can both reduce interference and improve
the channel quality, resulting in higher throughput and Signal-to-interference-plus-noise
ratio (SINR).For the user’s clustering an enhanced K-means approach is proposed in the
same paper. The channel’s correlation parameters of different cluster are examined and
the one that maximizes the metric is used to address the issue of fluctuation of clustering
centers. The simulation results show the efficiency of the proposed schemes.

In [47], a machine learning based predictive DBA algorithm is proposed for the
contention of upstream bandwidth and bottleneck latency in Passive Optical Networks
(PONs). The proposed algorithm using an ANN at the Central Office (CO) to learn the
uplink latency and estimate the bandwidth demand of every units. Using this approach,
the CO can allocate the required bandwidth to forthcoming packet bursts without the need
to have them wait until the following transmission cycle. The simulation results show
that the model is able to achieve a >90% accuracy in predicting the Optical Network’s
status leading to the improvement of the accuracy of estimating the bandwidth demands
of the optical units. Table 5 holds a brief summary of the supervised ML models in Beyond
5G(B5G)/6G optimization problems.

4.1.2. Fault/Anomaly Management

In [48], the authors propose an extended SVM, which is called support Tucker machine,
to detect any fault/outlier detection in IoT systems. The model improved the accuracy and
efficiency of anomaly detection and was able to retain the structure of the big sensor data.

Table 5. Supervised ML models in B5G/6G optimization problems.

Paper ML Approach Application Problem Description

[37] Random Forest, Knn Path loss Prediction and optimization of PL in
mm-wave systems

[38] Novel semi-supervised method Power allocation, joint user
association

Prediction of optimal function for
network’s parameters and power
allocation

[39] ANN Dynamic Bandwidth Allocation
(DBA)

Allocation of bandwitdth and
improvement of latency performance
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Table 5. Cont.

Paper ML Approach Application Problem Description

[40] DNN User’s requirements Prediction of user’s requirements in
high dynamic UAV networks

[41] DNN& RNN Trafic load, power allocation,
Load Balancing

Prediction of trafic load and
optimization of power allocation

[42] ANN, SVM Cooperative Sensing Schemes
(CSSs)

Prediction of trasmit power and
boundary decision classifier

[43,44] ANN, Random Forest, SVM Data rate Accuraty prediction of data rate with
lowest possible prediction error

[45] DNN Beamforming Schemes in MISO
channels

Prediction of trasmit power and
trasmitter’s beamforming

[46] k-means Clustering in MIMO-NOMA
systems

Efficient clustering with higher
throughput and lower SNR

[39] ANN DBA in Pasive Optical Networks
(PONs)

Bandwidth and uplink latency
prediction

4.1.3. Channel Estimation/Allocation

Estimation of future radio communication channels is rather challenging, due to their
growing complexity [16]. In [49], data-driven supervised DNN estimators are used to
predict channels, with results showing that using this approach the authors can predict
more accurate channels compared to conventional channel estimation algorithms. The
authors in [50] propose a supervised deep neural network (DNN) approach for adaptive
bit allocation with imperfect Channel State Information (CSI) in heterogeneous networks.
The accurate CSI estimation in heterogeneous networks can greatly impact the system’s
performance. Furthermore, the reduction of feedback overhead is an important challenge
in heterogeneous networks. Even though many different quantization techniques have
been used to address this issue, the system’s performance cannot increase linearly with the
number of bits increasing exponentially. The bits need to be distributed to the cells and then
they are further allocated to each channel optimally. This conventional approach is time-
consuming and so in order to enable direct allocation for the entire network, the proposed
method is used. Using the supervised DNN the optimized number of bits can be directly
obtained for a different number of bits and scenarios, leading to complexity reduction.
Simulations show that the proposed method achieves a closer to optimal performance than
the conventional approaches.

4.1.4. Beam Selection

The authors in [51] propose a combined supervised ML approach for beams selection
in mm-wave communications. The beam selection problem was addressed as a multi-class
problem, using two supervised learning algorithms (kNN and Support Vector Classifier-
SVC) to address the issue, with simulation results showing that the proposed ML schemes
can retain 90% of the sum rate with optimal beam selection. In [52], a supervised SVM
for beam selection is proposed, aiming to achieve high sum-rate at lower computational
complexity. The results verified that the proposed ML approach can achieve higher Average
Sum Rate (ASR) with substantially lower computational complexity than conventional
approaches. In [53], the authors propose a DNN model for beam selection in mm-wave
systems, to reduce space required for the initial beam. The results show that the proposed
beam selection reduces the beam overhead by up 79.3%. In [54], a DNN for optimal down-
link beam in mm-wave networks is proposed, to enhance prediction accuracy and data
rate. The simulation results show superior performance and robustness of the proposed
model. The conventional approaches mostly rely on the sub 6GHz information, especially
in the low signal-to-noise ratio (SNR) regions. In [55], a novel deep learning solution
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based on a RNN, namely the Gated Recurrent Unit (GRU) is proposed for beam selection.
The model can predict the serving base station and beam for each drone based on their
prior trajectories and locations, extending their coverage. Simulation results show that the
proposed scheme can achieve more than 90% accuracy for beam prediction.

4.1.5. Caching/Computing

In [56], the authors use an ANN-based approach to address the issue of code caching,
with results showing the effectiveness of the model, In [57], a supervised DNN is proposed
to address the issue of caching in IoT systems, with results being close to the optimal of
conventional ones.

4.1.6. Security

In [58], the authors use decision tree algorithms to boost trust management using
eXplainable Artificial Intelligence (XAI) for intrusion detection. Simple decision tree
algorithms are applied to split the sub-choices for the intrusion detection system (IDS),
which resemble a human approach to decision-making.Results show that the accuracy of
the proposed approach is comparable with state-of-the-art algorithms. The authors in [59]
used a supervised-based LSTM algorithm for intrusion detection model. They applied
6 different optimizer to investigate the performance of the model and the results show that
LSTM model with Nadam optimizer can achieve an accuracy of 97.5%, which outperforms
conventional approaches. In [60], the authors propose a supervised CNN-based method to
classify and detect malware traffic, with classification accuracy of up to 99.4%.

4.1.7. MIMO

In [61], the authors propose a combination of ML-estimators, using CNN with Au-
toregressive Network (ARN)) for predicting Channel State Information (CSI) and RNN for
channel prediction in massive MIMO systems with channel aging property. Results show
that proposed model can improve the prediction accuracy and user’s throughput gains
for both low and high mobility scenarios. In [62], the issue of channel mapping in space
and frequency domain in massive MIMO is addressed, by using a novel supervised deep
learning approach, reducing overhead in both the training and feedback aspects.

4.1.8. UAV

In [63], a supervised deep learning approach is proposed for UAV systems. The pro-
posed model uses a Clustering-based Two-layered (CBTL) algorithm for addressing this joint
caching and trajectory prediction issue. Then, a DL approach of a CNN is used to enhanced
make fast decisions online. This approach aims to maximize the network’s throughput by
jointly optimizing cache and trajectory. Simulation results show the effectiveness of the
proposed approach in terms of accuracy. In [64] an ANN-based algorithm is proposed, to
detect GPS spoofing signals in UAV systems. The results show high detection accuracy of
spoofing signals and can reduce possible false alarms in the UAV system. In [65], the authors
propose a SVM-based supervised approach for detecting jamming, spoofing and intrusion
attacks in UAV systems. The proposed model shows high accuracy in detecting any attacks,
reassuring safer UAV systems against cyber security attacks. The authors in [66] proposed
a supervised ANN approach combined with an evolutionary algorithm, to predict the
Received Signal Strength (RSS) in a UAV system. Moreover, in [67] an ensemble approach is
selected, which exhibits satisfactory results in terms of performance and accuracy. Table 6
reports some supervised ML models used for B5G/6G problems.



Electronics 2021, 10, 2786 12 of 28

Table 6. Supervised ML models in B5G/6G problems.

Paper ML Approach Application Problem Description

[48] Support Tucker Machine Fault detection Accurately predicts faults/outliers, while retain-
ing structure of big sensor data in IoT systems

[49] DNN Channel estimation Effectively predicts channels and CSI

[50] Deep DNN Adaptive bit allocation Accurately predicts system’s CSI in heteroge-
neous networks, reducing feedback overhead

[51] knn & SVC Beam selection Addresses beam selection in mm-wave commu-
nication systems as multi-class problem

[52] SVM Beam selection sum-rate Achieves higher Average Sum Rate (ASR) with
substantially lower computational complexity

[53] DNN Beam selection Optimal beam selection to reduce space for ini-
tial beam, reducing beam overhead

[54] DNN Downlink beam prediction Accurately predicts downlink beam in mm-
wave systems, enhancing data rate

[55] GRU Beam prediction
Predicts BS and beam for each drone, extending
their coverage leading to optimal beam predic-
tion

[56] ANN Caching Effectively addresses challenge of code caching

[57] DNN Caching Optimizes caching in IoT systems

[58] Decision Tree Security Boosts trust management using XAI for intru-
sion detection

[59] LSTM Security Boosts accuracy using Nadam optimizer for in-
trusion detection

[60] CNN Security Boosts accuracy for classification and detection
of malware traffic

[61] CNN & ARN, RNN Channel Estimation Accurately predicts CSI in massive MIMO sys-
tems with channel aging property

[62] Deep supervised mapping
model Channel Mapping

Addresses channel mapping in space and fre-
quency domain for massive MIMO systems, re-
ducing training and feedback overhead

[63] CBTL, Deep CNN Trajectory prediction
Maximizes network’s throughput by jointly
optimizing cache and trajectory, then DCNN
makes fast decisions online

[64] ANN Security Detects GPS spoofing signals in UAV systems,
reducing possible false alarms

[65] SVM Cyber Security Detects jamming, spoofing and intrusion attacks
in UAV systems

[66,67] Ensemble, ANN RSS prediction Accurately predicts RSS in UAV systems

4.2. Unsupervised Learning
4.2.1. Optimization Problems

Coverage, power and capacity optimization are critical challenges in future 6G net-
works services [16]. In [68,69], an unsupervised K-means algorithm is used to address the
user selection and optimization of power allocation challenges in NOMA systems. Results
show that the proposed model achieves great results in terms of accuracy and optimization.
In [70], two Power Control (PC) algorithms, which are trained both using supervised and
unsupervised learning, were proposed for Device-to-Device (D2D) scenarios. The compari-
son of the hybrid algorithms with conventional PC methods, show satisfactory results in
terms of computational complexity, throughput, energy efficiency, resource allocation and
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power control optimization. This work is categorized in unsupervised ML, because for the
approach the supervised decision tree occurs from the unsupervised Q-learning method,
so for the final hybrid approach the most significant impact factor is the performance of
the unsupervised model that defines the supervised phase of the model and so the final
performance of the approach.

Conventional approaches in modulation recognition of the received signals include
several procedures such as preprocessing, classification and feature extraction. The au-
thors in [71,72] addressed the challenge of modulation recognition, by investigating the
performance of different deep learning algorithms such as CNN, LSTM etc, by using unsu-
pervised learning paradigms for optimization purposes. The comparison results suggest
that LSTM can achieve better performance than other DL based approaches.

CNN and LSTM are categorized as supervised learning methods, but they can be used
in an unsupervised learning approach with satisfactory results. CNN is mostly supervised
ML approach, but can be also used in an unsupervised way depending on the problem
at hand [73]. The authors in [74] propose an automatic unsupervised cell event detection
and classification method, which expands convolutional Long Short-Term Memory (LSTM)
neural networks. The LSTM network could be trained in an unsupervised manner, by using
a branched structure where one branch learns the regular appearance and movements of
objects and the second learns the stochastic events, which occur rarely and without warning
in a cell video sequence. Furthermore, the authors in [75] investigated anomaly detection in
an unsupervised framework and introduce long short-term memory (LSTM) neural network-
based algorithms with significant performance gains. The authors in [76] propose a new
architecture for extracting features from images in an unsupervised manner, which is based on
CNN. The model, namely Unsupervised Convolutional Siamese Network (UCSN), is trained
to embed a set of images in a vector space, in a way that the local distance structure in the
image space is preserved.The results indicate that the UCSN produces representations that
are suitable for classification purposes. So LSTM and CNN are mainly used as supervised
ML approaches, they can also be used in an unsupervised manner and as an unsupervised
learning paradigm.

4.2.2. Fault Management

Fault management includes detection, identification and mitigation of any abnormal
status of networks. Fault management in future 6G network needs to be effective, due
to their heterogeneous, complex and dynamic nature. The authors in [77] compared five
different unsupervised learning approaches (including K-means clustering, Fuzzy C-means
clustering, Local Outlier Factor- LOF, Local Outlier Probabilities- LoOP and Kohonen’s Self
Organizing Maps-SOM) for fault detection in 6G networks. The results show that SOM-
based approach outperforms Fuzzy C-means and K-means in detecting and predicting
faults/abnormalities in 6G networks.

In [78], an extension of the conventional K-Means clustering algorithm, named K-
Aware K-means, is used for fault detection in 6G network systems. In this extended version
of K-means, the model uses an unsupervised learning phase to acquire a temporary expert
knowledge of what the smallest cluster of the current data is like and then labels them as
outliers, while updating the temporary knowledge. In this way, the model self-optimizes
the K value (K ≤ 1). and achieves a prediction accuracy of 99.7%. The authors in [79]
propose an unsupervised learning approach with a SOM algorithm as the centerpiece for
both fault recognition and recovery, achieving great accuracy results.

4.2.3. Channel Estimation

Estimation of future 6G radio communication channels is rather challenging, due
to their growing complexity [16]. State-of-the-art unsupervised learning approaches (DL
unsupervised model, CNN and RNN) have been used for channel detection in molecular
communication [80,81]. A DL-based detector called DetNet was proposed in [82] and is able
to achieve similar accuracy as conventional algorithms with much lower computation time.
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The unsupervised DL-based detectors suggested in [81] can also outperform conventional
detectors. Especially, the LSTM-based detector shows an outstanding performance for
molecular communication use-cases, when dealing with inter-symbol interference [80].

4.2.4. User Mobility Estimation

Predicting user’s position, movement and trajectory can improve resource allocation
and reduce signal overhead in 6G networks [16]. The authors in [83] used a discrete-time
Markov chain based approach to predict the next cell a user is most likely to move into.
Results show that the solution can accurately predict both the movement and trajectory of
the users. Furthermore, in [84] the authors used HMM algorithm to predict user’s location.
The model addresses the mobile network as a state-transition graph. The efficiency and
accuracy results of the approach were satisfactory. Two unsupervised algorithms for user
equipment (UE) association are proposed in [85] in heterogeneous networks at RF and
THz frequencies. The simulation results show that proposed algorithms can outperform
conventional approaches in both data rate and balancing traffic load.

4.2.5. Security

AI/ML technologies can also be considered in applications of authentication and
access control to detect different kinds of attacks, such as jamming and malware attacks,
Denial of Service (DoS) or Distributed DoS (DDoS) attacks. In IoT devices, it is important
to address authentication and access control without leaking privacy-sensitive information
such as localization. In [86], the authors use non-parametric Bayesian methods for IoT
authentication, access control, malware detection, with satisfactory results. The authors
in [87] propose a DRL based approach that detects various attacking possibilities through
unsupervised learning to address the security issue, with result showing a 6 percent extra
gain in accuracy. The authors in [88] propose an unsupervised Gausian Mixture Model
(GMM) approach for Physical Layer security, enhancing the performance of the model,
whereas the authors in [89] used an unsupervised approach combining CNN and Stacked
Encoders (SAE) for intrusion detection, achieving a precision of 98.44% black.

4.2.6. UAV Networks

Future 6G networks will support high transmission data rates and wireless broadcast.
Unmanned Aerial Vehicle (UAV)-assisted communication networks will be widely used
towards achieving these challenges [90]. In UAV-NOMA systems, an UAV often acts as a
flying BS to boost the capacity of an existing terrestrial network. In [91], a K-means clustering
algorithm is used to spatially cluster correlated users and then a reinforcement Q-learning
algorithm is used to place the UAV as BS in a 3-D manner. The authors in [92] proposed
MLP and LSTM algorithms techniques to predict the optimal UAV location and optimize user
throughout and system performance. The proposed model accurately predicts UAV position
and enhances user throughput and system performance.

4.2.7. MIMO

With multiple antennas at the transmitter and receiver, Multiple Input Multiple Out-
put (MIMO) has been widely adopted in wireless systems. The authors in [93] propose
an unsupervised fast beamforming DNN design method for maximization of sum-rate
in a MIMO single base station system. The proposed approach can preserve the perfor-
mance, while improving considerably the computational speed, thus achieving results
close to optimal.

4.2.8. Visible Light Communications

Effective Radio Frequency (RF) communications systems in indoor use-cases emerge as
an important challenge in 6G networks. Visible Light Communications (VLC) as a potential
technology, can offer various solutions to this issue. VLC is based on the principle of
modulating Light Emitted by Diodes (LEDs), without affecting the human eye, giving an
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opportunity to exploit the existing illumination infrastructure for wireless communication.
VLC technology is expected to offer very high data-rate short-range communications,
needed for 6G Networks [90]. 6G is expected to support transmission rates 100–1000 times
higher than those for 5G, so there will be growing frequency and bandwidth demands.VLC
can employ high transmission rates and use unlicensed bands. So, it is a promising technique
to replace conventional wireless local area networks for indoor communications in 6G
networks [94].

Optical Wireless Communications (OWCs) will be widely used in 6G networks and
among them, VLC is the most promising frequency spectrum because of the technology
advancement and extensive using of light-emitting diodes (LEDs). VLC-based communica-
tions do not emit electromagnetic (EM) radiation and have minor interference with other
potential EM interference source. Furthermore, VLC has significant advantages in terms of
communication security and privacy [95].

VLC can also be widely exploited in Vehicle to everything (V2X) applications and
especially in n Vehicle to Vehicle (V2V) applications [90]. In [94], some clustering unsu-
pervised ML techniques (K-means and clustering algorithm perception decision-CAPD))
have been proposed to reduce non linearity in VLC systems. In 2017, CAPD was applied
in a multi band VLC system, with the results showing an improvement in the Q-factor by
1.6–2.5 dB. Furthermore, in 2018 a K-means-based pre-distorter was proposed, leading to a
50% improvement of performance [94]. The data for the unsupervised ML models used in
6G problems are listed in Table 7.

Table 7. Unsupervised ML models in 6G problems.

Paper ML Approach Application Problem Description

[68,69] K-means Power allocation Addresses user selection issue and achieves
power optimization in NOMA systems

[70] PC algorithms D2D systems optimization Optimizes power control, computational
complexity, throughput and resource allocation

[71,72] CNN, LSTM Modulation recognition Achieves better performance results in
modulation recognition

[77]
k-means clustering, Fuzzy
C-means clustering, LOF,
LoOP, Kohonen’s SOM

Fault management Effectively predicts and detects faults/outliers

[78] k-aware k-means Fault detection Self optimizes k-value and accurately detects
anomalies

[79] SOM Fault detection Effective fault recognition and recovery

[82] DetNet Channel estimation Effectively estimates channel with much lower
computation time

[80,81] LSTM Channel estimation Deals with inter-symbol interference for
molecular communication cases

[83] Discrete Markov chain
model User’s mobility estimation Predicts next cell a user is most likely to move

into, predicting movement and trajectory

[84] HMM User’s location
Addresses the mobile network as a
state-transition graph, accuratyle predicting
user’s location

[85] Unsupervised UE
association algorithms Data rate, traffic load Optimizes data rate and traffic load in RF and

THz frequency systems

[86] Non-parametric Bayesian
approach Security Access control, malware detection in IoT systems

[87] Unsupervised trained
DRL Security Detects attack possibilities in 6G systems
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Table 7. Cont.

Paper ML Approach Application Problem Description

[88] Unsupervised GMM Security Enhances physical layer security

[89] Unsupervised CNN,SAE Intrusion detection Accurately detects intrusion

[91] k-means clustering &
Q-learning Clustering Spatially clusters correlated users and places the

UAV in 3-D manner

[92] MLP, LSTM UAV location Predicts optimal UAV location and optimizes
user throughout and system performance

[93] DNN Sum rate
Maximization of sum-rate in a MIMO single base
station system, while improving considerably
the computational speed

[94] k-means, CAPD VLC

Reduces non-linearity in VLC and multi-band
VLC systems. CAPD was also applied as
pre-distorter, with great performance
improvement

4.3. Reinforcement Learning
4.3.1. Optimization Problems

In [96], the authors propose a multi-agent deep reinforcement learning-based model,
named Neighbor-Agent Actor Critic (NAAC), for spectrum allocation in 6G network D2D
scenarios. This model uses information from user’s neighbors for centralized training
and utilizes any cooperation between the users to optimize system’s performance. The
simulation results show that the proposed approach can improve the sum rate of D2D links
and have good convergence.

In [97], a deep Q-learning based approach is proposed, namely a Generative Adver-
sarial Network-powered Deep Distributional Q Network (GAN-DDQN) for spectrum
allocation per network slice. Simulation results show enhanced performance accuracy
compared with conventional deep Q-learning algorithms. In [98], the authors propose a
reinforcement Q-learning-based algorithm, for resource allocation. The model minimizes
the outage probability of information by assigning the channel resources. The results
demonstrate the superior performance and effectiveness of the proposed scheme while
satisfying the average power constraint at the energy harvesting node.

In [99], the authors propose a Q-learning based algorithm for channel selection, scan-
ning the order of the channel and so reducing the overhead and possible delays. The
proposed approach achieves higher detection probability and accuracy, and reduction
of scanning overhead and access delay when compared with state-of-the-art algorithm,
resulting to enhanced spectrum sharing. In [100], a deep Q network based algorithm
is proposed for cooperative communications in 6G networks. The model aims to select
optimal relay from different nodes without needing a network model. Results show that
the proposed algorithms can achieve better performance probability, and reduced energy
consumption with lower convergence time than existing approaches.

In [101], a deep RL-based algorithm is developed for dynamic power allocation. Each
transmitter exploits its neighbors to collect CSI and QoS information and then adapt its
needed transmit power. Random variations and delays in the CSI are addressed using deep
Q-learning based approach. The proposed algorithm is shown to achieve near-optimal
power allocation results based on delayed CSI measurements and is excellent for scenarios
where the CSI is significant.

In [102], novel reinforcement learning-based transmission approaches, named Rein-
forcement Learning Channel-aware Transmission (RL-CAT) and Reinforcement Learning
pCAT (RL-pCAT), for data rate optimization are proposed. The proposed models signifi-
cantly outperform conventional probabilistic approaches and achieve data rate improve-
ments of up to 181 in uplink and up to 270 in downlink transmission direction.
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In [103], a DRL-based approach for joint mode selection and resource management is
proposed. Each user equipment (UE) can operate either in cloud RAN (C-RAN) mode or
D2D mode. The network controller makes intelligent decisions on UE communications and
aims to minimize system’s power consumption. The proposed approach is compared with
other different models to show its effectiveness. In [104], the authors propose a DRL based
model to maximize downlink SNR in Intelligent Reflecting Surface (IRS) communications.
Simulations results show that the system can, not only achieve almost the upper bound of
received SNR, but also reduce the time consumption.

In [105], a DRL actor-critic based model is used for resource allocation optimization and
to solve the joint network control challenge in IoT systems. The actor-critic based algorithms
reduce the data rate assigned to each IoT network and IoT devices. The algorithm also
chooses whether transmission will be in space or terrestrial network. The proposed model
outperforms conventional approaches with different network parameters and metrics.

In [106], a Single-Agent Q-learning (SAQ-learning) algorithm is proposed for resource
allocation using historical experience with satisfactory result. In the same paper, a Bayesian
Learning Automated (BLA) Multi-Agent Q-learning (MAQ-learning) algorithm is proposed
for task offloading decision. The effectiveness of the proposed algorithm is confirmed from
the comparison with the results of conventional algorithms in various network scenarios.

4.3.2. Caching/Computing

In [107], a DRL MDP-based algorithm is proposed to enhance caching and computing
capabilites in cache-aided MEC networks. This approach lead to resource allocation
optimization with low complexity and thus is able to achieve quasi-optimal performance
under various system setups, and significantly outperform the conventional methods.
In [108], the authors propose a deep actor-critic reinforcement learning based model for
caching (centralized and decentralized). For centralized edge caching, the model aims
at the maximization of cache hit rate, where both the cache hit rate and transmission
delay are addressed as performance metrics that need optimization. Results show that the
proposed approach outperforms previously applied conventional approaches, such as least
frequently used (LFU), least recently used (LRU, etc. In [109], a Multi-Agent Multi-Armed
bandit (MAMAB) approach is proposed for caching in 6G networks. The proposed model
learns online the caching strategy in various environments (stationary and non-stationary),
whereas conventional approaches first estimate the users preference and need and then
tries to optimize the caching. Results show great accuracy and performance results of
the proposed algorithm. Table 8 reports the RL models used in 6G for optimization and
caching problems.

4.3.3. Channel Estimation/Allocation

In [110], the authors propose a RL-based algorithm (based on auction theory model)
for channel allocation. Each user try to converge to the optimal allocation while achieving
an optimal regret order O (log T ), where T is the length of time horizon. The algorithm is
based on a Carrier Sensing Multiple access (CSMA) implementation. Simulations show
that the algorithm performs very well on realistic LTE and 5G channels and has great
potential for B5G systems. In [111], a Markov decision process (MDP)-based algorithm for
channel allocation is proposed. The model allocates channels in densely deployed WLANs,
leading to enhancement of throughput. The proposed method can achieve more efficient
channel allocation or realizes the optimal channel allocation and reducing the number of
changes in the systems performance, when compared with state-of-the-art approaches.

4.3.4. Energy Consumption/Harvesting

In [112], author propose a Q-learning and a deep Q-learning algorithms for coopera-
tive networks to user devices and the Small Base Station (SBS) due to different complexities.
Results show greater energy saving performance of these approaches over existing meth-
ods. In [113], a DRL approach is proposed for optimizing energy consumption in 6G



Electronics 2021, 10, 2786 18 of 28

networks. This model takes mobility into account and accelerates block verification. The
reward function considers the total consumed energy for transmission and caching. In this
paper, also, a security study is conducted, with the model providing security and privacy
protection, while maintaining low-energy consumption. The proposed algorithms achieves
86% of successful content caching requests against 76% of a conventional greedy algorithm
and 5% of a random content caching approach.

In [114], the authors propose two DRL-based algorithms for energy harvesting: one
hybrid-decision-based actor–critic learning (Hybrid-AC) algorithm and one multi-device
hybrid-AC (MD-Hybrid-AC) algorithm for dynamic computation offloading scenarios.
Hybrid-AC applies an improvement in the actor–critic architecture. In this approach, the
actor outputs offloading ratio and local computation capacity and the critic evaluates these
continuous outputs with discrete server selection. MD-Hybrid-AC applies centralized
training with decentralized execution in the scenarios. The model constructs a centralized
critic for output server selections, and considers the continuous action policies of all
devices for actor. Simulation results show that the proposed algorithms have a significant
performance improvement compared with conventional and can maintain good balance
between time and energy consumption.

In [65], a Deep Q-Network (DQN) based algorithm for energy consumption is pro-
posed. Furthermore, the authors develop a RL algorithm for minimization of prediction
error, in order to address a battery’s energy prediction challenge. Finally, a two-layer RL
network approach is developed to solve the joint access control and battery prediction
issue. In this approach the first RL layer deals with the battery’s energy prediction and the
second, depending on the output of the first layer, produces the access policy of the system.
Simulation results show that the three proposed RL algorithms can achieve better perfor-
mances compared with existing approaches in terms of optimizing energy consumption,
sum rate and minimizing the prediction loss.

In [115], a multi-agent DRL-based framework was proposed for power control and
maximization of throughput in energy-harvesting super IoT systems. Furthermore, a
DNN based for distributed online power control is developed to study the policies in the
system. Simulation results show the efficiency of the proposed power control policies,
outperforming conventional optimal approaches like Markov decision process, and also
achieving throughput close to optimal.

4.3.5. Handover

In [116], the authors propose an offline RL algorithm to optimize Handover decisions.
The model is able to decrease excess Handover up to 70% by studying the prolonged
user’s connectivity. This model can also achieve higher than conventional Handover
reduction approaches. In [117], a DRL framework is proposed for handover optimizing
and timing in mm-wave systems. The model uses camera images for predicting future
data rate of mm-wave links and ensuring that proactive Handover is performed before
the presence of obstacles leads to decreasing system’s data rate. The proposed approach
achieves better performance results than conventional model and is also able to predict
the degradations of date rate 500 ms before the occur. In [118], a distributed RL model for
Handover optimization in mm-wave systems is proposed, with results showing reduction
in signal overhead.

4.3.6. V2V

In [119], a DRL algorithm is adopted to map the correlation between observation
and optimal resource allocation in V2V systems. The proposed model satisfies the latency
constraints on V2V links and is able to minimize any interference in the V2V system.
In [120], a RL-based approach for sum rate optimization in V2V systems is being introduced.
The model is a reinforcement distributed Resource Allocation (RA) algorithm, modeled as a
multi-agent system. Furthermore, a double deep Q-learning algorithm is applied to jointly
train the agents and maximize the sum-rate. Simulation results show that the proposed
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RL-based algorithms achieve close to optimal performances, while ensuring limited latency
and accurate packet delivery in the V2V link.

4.3.7. UAV

In [121], the authors propose a two-stage DRL algorithm for joint content placement
and trajectory design. The two stages of the proposed scheme include offline content
placement and online user tracking. In the first stage, the authors maximize users hit rate
while constraining cache capacity. In the second stage, a Double Deep Q-Network (DDQN)
is developed for online tracking mobile users, while maintaining energy constrains. Simu-
lation results show that the proposed algorithm can easily adapt to dynamic conditions,
predict trajectory and provide enhanced achievable throughput.

Table 8. RL models in 6G optimization and caching problems.

Paper ML Approach Application Problem Description

[96] NAAC Spectrum allocation Uses information from user’s neighbors and
improves sum rate in D2D uses cases

[97] GAN-DDQN Spectrum allocation per network
slice

Uses a deep Q-learning based approach to optimize
spectrum allocation

[98] Q-learning Resource allocation

Miimizes outage probability of information by
assigning the channel resources, while satisfying
average power constraint at the energy harvesting
node

[99] Q-learning Channel selection Achieves higher detection probability and accuracy,
reduces scanning overhead and access delay

[100] Deep Q-learning Energy consumption

In cooperative communications, model selects
optimal relay from different nodes without needing
network model, reducing consumption with lower
convergence time

[101] Deep Q-learning Dynamic power allocation
Each transmitter exploits its neighbors to collect CSI
and QoS information and then adapt its needed
transmit power

[102] RL-CAT, RL-pCAT Data rate Achives data rate improvements both in uplink and
downlink directions

[103] DRL-based approach Resource management Makes intelligent decisions on UE communications
and minimizes system’s power consumption

[105] Actor-critic Resource allocation, joint
user control

Reduces data rate assigned to each IoT network and
IoT device,chooses whether transmission will be in
space or terrestrial network.

[106] SAQ-learning,
BLA-MAQ algorithm

Resource allocation, offloading
decision

Uses historical experience and achieves optimal
accuracy in various network scenarios

[107] MDP-based algorithm Caching Leads to resource allocation optimization with low
complexity in cache-aided MEC networks

[108] Deep actor-critic Caching Used for centralized and decentralized uses cases,
optimizing cache hit rate and transmission delay

[109] MAMAB Caching Learns online the caching strategy in both stationary
and non-starionary environments

4.3.8. Security

In [122], a DRL is proposed to maximize throughput, and security metrics against
jamming attacks, in 6G network. Simulation results show that the proposed approach
is robust against jamming and can achieve throughput enhancement, compared with
conventional policies. In [123], the authors use a Markov model to deal with several ad-
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vanced jamming attacks. When dealing with attacks such as swept jamming and dynamic
jamming, the authors model a multi-agent reinforcement learning (MARL) algorithm for
effective defense. The simulation results show that the algorithm can effectively avoid
these advanced jamming attacks, thanks to collaboratively sharing the spectrum to its
agents. In [104], a novel DRL-based algorithm is proposed to ensure secure beamforming
approach against eavesdroppers in dynamic IRS-aided environments. The model uses
post-decision state (PDS) and prioritized experience replay (PER) approaches to boost the
learning efficiency and secrecy performance of the system. The proposed novel approach
can significantly improve the system secrecy rate and QoS (thus optimal beamforming is
required) in IRS-aided secure communication systems.

4.3.9. Visible Light Comunication

In [124], the authors propose a DQN based multi-agent multi-user algorithm for
hybrid networks for power allocation. These networks are composed of radio frequency
(RF) and visible light communication (VLC) access points (APs). The users are capable of
multi-hopping, which can link RF and VLC systems in terms of bandwidth requirements.
In the proposed DQN algorithm, each AP is considered an agent and so the transmit
power needed for users is optimized by an online power allocation strategy. Simulation
results demonstrate faster median convergence time training (90 shorter than typical Q-
Learning based algorithm) and convergence rate is 96.1% (whereas conventional QL-based
algorithm’s convergence rate in 72.3%). In [125], a multi-agent Q-learning algorithms is
proposed for power allocation strategy in RF/VLC systems. In these systems, in order to
ensure QoS satisfaction, the transmit power at the Aps needs to be optimized. Simulation
results demonstrate the effectiveness of the proposed Q-learning based strategy in terms of
accuracy and performance.

4.3.10. Fault/Anomaly Management

In [126], a deep Q-learning approach is proposed for fault detection and diagnosis in
6G networks. Simulation results show that the algorithm can use less features and achieve
higher accuracy, up to 96.7%

Table 9 holds a brief summary of the RL models used in various 6G problems.

Table 9. RL models in 6G various problems.

Paper ML Approach Application Problem Description

[110] RL-based on auction
model Channel allocation Based on a carrier sensing multiple access (CSMA)

implementation, performs well for LTE scenarios

[111] MDP Channel allocation Allocates channels in densely deployed WLANs,
leading to throughput enhancement

[112] Q-learning, Deep
Q-learning Energy consumption

Used in cooperative networks on user devices and
SBS, respectively, achieving great energy saving
results

[113] DRL Energy consumption, security
Accelerates block verification, where the reward
function considers energy for trasnmission and
caching, while providing privacy protection

[114] Hybrid-AC,
MD-Hybrid-AC Dynamic computation offloading

Theactor outputs offloading ratio and local
computation capacity and the critic evaluates these
continuous outputs with discrete server selection

[65] DQN, two-layered Rl
algorithm

Energy consumption, joint access
control

Minimizes prediction error and predict a battery’s
energy consumption, while producing access policy

[115] Multi-agent RL, DNN Power control Maximizes throughput in energy-harvesting super
IoT systems, while studying PC policies
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Table 9. Cont.

Paper ML Approach Application Problem Description

[116] Offline RL model Handover Optimizes handover decisions by studying
prolonged user’s connectivity

[117] DRL Handover, timing
Uses camera images for predicting future data rate
of mm-wave links and ensuring that proactive
Handover is performed

[118] Distributed RL model Handover Minimizes Handover inn mm-wave systems,
reducing signal overhead

[119] Novel RL model Resource allocation Satisfies latency constraints on V2V links and is able
to minimize any interference in the V2V system

[120]
Distributed Resource
allocation model,
Double DQN

Resource allocation, Sum rate
Modeled as multi-agent system, while jointly
training agents maximizing sum-rate and reducing
latency

[121] Two-stage DRL Jointcontent placement, trajectory
design

Maximize users hit rate while constraining cache
capacity, tracks online mobile users while
maintaining energy constrains

[122] DRL Security Robust against jamming attacks, achieves
throughput enhancement

[123] MARL Securiry
Deals with advanced jamming attacks (swept
jamming and dynamic jamming) by collaboratively
sharing the spectrum to its agents

[104] Novel RL model Security
Uses PDS and PER approaches to boost learning
efficiency and secrecy performance in dynamic
IRS-aided environments

[124] Multi-agent multi-
user DQN Power allocation

Capable of multi-hoping in VLC/RF systems and
addressing each AP as agent, boosting convergence
rate and achieving optimal power allocation

[125] Multi-agent
Q-learning Power allocation

Optimizes transmit power at Aps, ensuring QoS
satisfaction and optimal power allocation in
VLC/RF systems

[126] Deep Q-learning Fault detection Detects diagnoses faults, using less features and
achieving great accuracy

5. Open Issues

ML application can offer new research directions and solutions in wireless communi-
cation systems and also support the realization of 6G wireless communication networks
and services. Although significant research has emerged on the field of ML in wireless
communication systems, there are still many challenges and open issues to be resolved:

• Time Convergence: A careful investigation of the relatively long convergence time of
ML methods, as well as the factors that influence the convergence, is needed. Opti-
mizing the time convergence is critical, as long ML time convergence can undermine
the performance in highly dynamic wireless networks [127].

• Resource allocation: AI-enabled networks also impact e-health applications. For
instance, advancing outside-of-clinic operations by using wearable sensor requires
harmonizing network resource allocation across several technologies, and ML can be
helpful for such harmonization [127].

• QoS and QoE: A network encompassing a large and diverse set of users will have very
dynamic operation, as users may have very different QoS and QoE requirements. For
example, users require high throughput and low delay in video stream applications,
in the expense of security, but when it comes to payment software, the users demand
high security, even in the expense of throughput. In this direction, a design of a
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cross-layer, action based ML protocol for different applications is a critical issue, as to
meet various requirement while balancing network resources [128].

• UAVs as an Intelligent Service(UaaIS): UaaIS employs UAVs to intelligently provide
fundamental services in terms of wireless communication, edge computing, and
edge caching, using advanced ML techniques. Due to the scarce resources, it is
urgent to perform energy-efficient ML model training and inference for UaaIS, a
rather challenging open issue in the field. For example, when a UAV acts as an edge
intelligence trainer, energy-efficient training strategies for all participants should be
designed, and especially for the UAVs with relatively limited energy [129].

• CSI Acquisition in IRS: The acquisition of timely and accurate CSI plays a crucial
role in IRS-enhanced wireless systems and especially in MIMO-IRS and MISO-IRS
networks. Obtaining CSI in IRS-enhanced wireless networks is a non-trivial task, that
requires a non-negligible training overhead. Additionally, in IRS-assisted NOMA
networks, users in each cluster have to share the CSI with each other. Due to the
passive characteristic of IRS, CSI acquisition and exchanging are non-trivial tasks. A
challenging issue is the employment of ML and DL approaches for exploiting CSI in
cases beyond linear correlations [130].

6. Future Trends
6.1. Model Agnostic Meta Learning (MAML)

Meta-learning is an exciting research direction in the field of ML. Model Agnostic
Meta Learning (MAML) is a gradient-based meta-learning algorithm that is able to learn
a sensitive initialization to perform fast adaptation. Compared to other meta learning
methods, MAML has much less complexity. MAML does not depend on any specific
model, and only requires the use of gradient descent algorithm to update the parameters.
So MAML can be applied to multiple learning problems, such as regression, classification
and reinforcement learning, etc. [131,132]. MAML is a field of ML that needs to be further
investigated and developed. To this end, few studies are exploring potential solutions. For
example, in [133] a MAML- based method is proposed o solve the challenge of associated
large number of samples in a wireless channel environment, in order to train a deep neural
network (DNN) with good results in terms of Normalized Mean Squarred Error (NMSE).
Furthermore, the authors in [134] propose a new decoder, namely Model Independent
Neural Decoder (MIND) based on a MAML methodology achieving satisfactory parameter
initialization in the meta-training stage and accuracy results. The authors in [135] use
state-of-the-art meta-learning schemes,namely MAML, FOMAML, REPTILE, and CAVIA,
for IoT scenarios using offline and online meta learning approach. The results show the
advantage of meta-learning in both offline and online cases as compared to conventional
ML approaches. It is an interesting and ongoing direction to developing ML methods that
can be utilized in 6G networks in future work.

6.2. Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) is a novel class of deep generative models
in which training is a minimax zero-sum game between two networks: a Generator (G)
and a Discriminator(D) [136]. These networks compete in a unified training process where
the generator uses its neural network to produce samples and the discriminator tries to
classify these samples as real or fake [137]. The game is played until Nash equilibrium
using a gradient-based optimization technique (Simultaneous Gradient Descent), i.e., G
can generate images like sampled from the true distribution, and D cannot differentiate
between the two sets of images [136]. GANs has gained a lot of attention recently for
different applications and seem to be a potential solution to various challenges. For ex-
ample, the authors in [138] employ a GAN approach to pre-train a deep-RL framework to
provide resource allocation for ultra reliable low latency communication (URLLC) in the
downlink of a 6G wireless network, with results showing near-optimal performance within
the rate-reliability-latency region, depending on the network and service requirements.
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Furthermore, the authors in [139] proposea GAN based joint trajectory and power optimiza-
tion (GAN-JTP) algorithm for a UAV trajectory prediction and power optimization, with
results being close to optimal with high convergence speed. In the context of a complex 6G
network system, the development of GANs seems crucial for the upcoming challenges.

7. Conclusions

In this review, we focused on the various enhanced capabilities that 6G has to offer,
but also to the solutions that ML has to offer to the emerging 6G wireless communication
challenges. We have summarized the state of-the-art 6G applications and the deployment of
ML algorithms in various fields and applications. The most important ML were explained
in detail, focusing on their advantages in dealing with upcoming 6G wireless communi-
cations challenges and enhancement of different systems. The interest in exploiting ML
in 6G wireless communications challenges will sky rocket in the upcoming years, as 6G
networks will soon be realized and the various challenges in the networks can be effectively
addressed using ML approaches and models. Finally, we outlined out a handful of open
problems and directions worth future research efforts.
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