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Abstract: No-reference video quality assessment (NR-VQA) has piqued the scientific community’s
interest throughout the last few decades, owing to its importance in human-centered interfaces. The
goal of NR-VQA is to predict the perceptual quality of digital videos without any information about
their distortion-free counterparts. Over the past few decades, NR-VQA has become a very popular
research topic due to the spread of multimedia content and video databases. For successful video
quality evaluation, creating an effective video representation from the original video is a crucial
step. In this paper, we propose a powerful feature vector for NR-VQA inspired by Benford’s law.
Specifically, it is demonstrated that first-digit distributions extracted from different transform domains
of the video volume data are quality-aware features and can be effectively mapped onto perceptual
quality scores. Extensive experiments were carried out on two large, authentically distorted VQA
benchmark databases.

Keywords: no-reference video quality assessment; Benford’s law; feature extraction

1. Introduction

As digital media takes a more central part in our daily lives, research on video quality
assessment (VQA) becomes more and more important. For instance, about 70% of the
overall Internet bandwidth is occupied by digital video streaming [1]. Moreover, it is
predicted that the occupied bandwidth will increase to between 80% and 90% by 2022 [2].
As a consequence, the precise estimation of video quality is of vital importance for video
streaming and sharing. In addition, VQA is also crucial in video restoration, reproduction,
enhancement, and compression. Hence, the scientific community has devoted much
attention and effort to this research field, continuously developing and devising algorithms,
methods, and metrics that are able to estimate digital videos’ perceptual quality.

The most accurate way to assess video quality is to collect subjective opinions from
human observers in a laboratory environment involving experts. This process is called
subjective video quality assessment, which is rather time consuming and expensive. How-
ever, the scores collected in subjective user studies can be applied as ground-truth data for
objective video quality assessment. Namely, objective video quality assessment deals with
the construction of algorithms that accurately estimate the perceptual quality of a given
video sequence. Depending on the availability of the reference, distortion-free videos,
objective VQA methods can be grouped into three classes: full-reference (FR), reduced-
reference (RR), and no-reference (NR) ones. As the names indicate, FR-VQA algorithms
have full information about the reference videos, while NR-VQA ones do not have access
to the reference videos. Moreover, RR-VQA methods can be considered as a transition
between FR-VQA and NR-VQA algorithms. Namely, they have partial information about
the reference videos, for example in the form of sets of extracted features.

In this paper, we propose a novel NR-VQA algorithm utilizing Benford’s law. Frank
Benford, a physicist with General Electric, collected over 20,000 numbers in 1938 from
extremely various sources, such as Readers’ Digest articles, atomic weights, population
sizes, drainage rates of rivers, and physical constants [3,4]. It was demonstrated that
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the distribution of the first digits follows an algorithmic rule. Moreover, the observation
works on a distribution of numbers if that distribution spans over a few orders of mag-
nitude. Benford’s law states that the leading d (d ∈ {1, ..., 9}) in a natural dataset occurs
with probability:

P(d) = log10(d + 1)− log10(d) = log10

(
d + 1

d

)
= log10

(
1 +

1
d

)
. (1)

Figure 1 depicts the distribution of leading digits in natural datasets predicted by
Benford’s law. Benford’s law has been proven as an efficient tool in digital analysis
technology [5,6]. Namely, the first-digit distribution (FDD) in accounting data of companies
and unmanipulated macroeconomic data are expected to follow Benford’s law [7–9]. First,
Jolion [10] investigated Benford’s law in the context of digital images. The FDD pixel
values do not follow Benford’s law, since pixel values are in the interval of [0, 255] and do
not span over a few magnitudes. However, the FDD of gradient magnitudes matches well
with Benford’s law prediction. Similarly, Perez-Gonzalez et al. [11,12] pointed out that
the discrete cosine transform (DCT) coefficients of a digital image follow Benford’s law.
Fu et al. [13] demonstrated that the FDD of DCT coefficients can be used for the detection of
distorted JPEG images. Similarly, Andriotis et al. [14] utilized the FDD of DCT coefficients,
but they used it for image steganalysis to ascertain whether a digital image contains a
hidden message or not. In our previous study [15], we demonstrated that FDDs extracted
from different domains (wavelet, DCT, shearlet, singular values) are quality-aware features
and they can be used for no-reference image quality assessment.

Figure 1. Illustration of Benford’s law.

1.1. Contributions

The main contributions of this paper are the following. In our previous works [15,16],
the usage of FDD feature vectors was thoroughly investigated in the context of no-reference
image quality assessment. Specifically, it was proven that FDDs of different 2D transform
domains are quality-aware features and can be mapped effectively onto image quality
scores. In contrast, we explored the applicability of video-level FDD-based feature vec-
tors for NR-VQA in this study. We demonstrate that quality-aware FDD feature vectors
can be extracted from the video volume data considering different 3D transform do-
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mains (spatial, wavelet, discrete cosine transform, discrete Fourier transform, higher-order
singular-values). It is demonstrated that fusing FDD-based and perceptual features results
in a powerful video representation for NR-VQA.

1.2. Structure

The rest of the paper is organized as follows. An overview is provided about NR-VQA
in Section 2. Subsequently, Section 3 contains a detailed description of the proposed method
based on Benford’s law. Section 4 presents the experimental results and analysis on publicly
available VQA databases. Finally, this study is concluded in Section 5.

2. Related Work

As already mentioned, VQA can be classified into two groups: subjective and objective.
Specifically, subjective VQA deals with measuring perceptual video quality involving hu-
man observers either in a laboratory environment or in a crowdsourcing experiment [17,18],
while objective VQA attempts to devise mathematical algorithms that are able to estimate
video signals’ human perceptual quality. In the literature, one can find many recommenda-
tions for choosing video sequences, system settings, and test methodologies for subjective
VQA. These are defined in the documents of the International Telecommunication Union,
such as ITU-R BT.500 [19], ITU-T P.913 [20], or ITU-T P.910 [21]. The average judgment
of the human observers is expressed as the mean opinion score (MOS), which can range
from 1–5 or 0–100, for example. Moreover, a higher MOS indicates higher visual quality.
As a result of subjective VQA experiments, many VQA databases are publicly available
for researchers, such as KoNViD-1k [22] or the LIVE Video Quality Challenge (VQC) [23]
database. An overview of publicly available benchmark VQA databases can be found
in [24–26].

In the literature, objective NR-VQA algorithms are classified into bitstream-based,
pixel-based, and hybrid models [27]. Bitstream-based algorithms extract features di-
rectly from encoded video sequences to predict perceptual video quality. For example,
Argyropoulos et al. [28] presented an algorithm for the prediction of continuous estimates
of the visibility of packet losses. Moreover, the authors demonstrated that visible losses
have a significant impact on video quality degradation. Keimel et al. [29] devised a
H.264/AVC bitstream algorithm. Namely, multiple features were extracted from the en-
coded video sequences, such as slice type, bits per slice, average quantization parameter
per slice, average, minimum and maximum motion vector length per slice, and average and
maximum motion vector error per slice. These features were mapped onto perceptual qual-
ity scores using partial least squares regression. Similarly, Chen and Wu [30] identified a set
of features, such as concealment error, motion vector concealment error, pixel-level trans-
mission distortion, etc., and conclude from them the perceptual video quality. The approach
of Pandremmenou et al. [31] is also similar to the method of Argyropoulos et al. [28], but
they defined a wider range of features. Specifically, a feature vector of length 46 was
mapped onto perceptual quality scores using the least absolute shrinkage and selection
operator regression. In contrast to bitstream-based methods, pixel-based algorithms utilize
the raw video signal solely as the input. For example, Saad et al. [32] extracted features
using the 3D-DCT. Then, a linear kernel support vector regressor (SVR) was trained to pre-
dict the visual quality of videos. Similarly, Zhu et al. [33] presented a DCT-based NR-VQA
model. Specifically, frame-level DCT coefficient-based features (peakiness, smoothness,
sharpness, etc.) were temporally pooled to compile video-level feature vectors. Next, the
video-level feature vectors were mapped onto perceptual quality scores using a shallow
neural network. In contrast, Dendi et al. [34] constructed a video representation using the
mean subtracted and contrast normalized (MSCN) coefficients of certain spatiotemporal
statistics of a natural video. More specifically, an asymmetric generalized Gaussian dis-
tribution was fit onto the MSCN coefficients of a natural video and its Gabor bandpass
filtered counterpart. The parameters of asymmetric generalized Gaussian distributions
were considered as quality-aware features and mapped onto perceptual quality scores
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with the help of an SVR. Ebenezer et al. [35] proposed a video representation that contains
information about both the spatial and temporal information. Namely, the authors defined
space–time chips as quality-aware features, which are cuts from the original video data
in specific directions obtained from local motion flow. Subsequently, asymmetric gener-
alized Gaussian distributions were fit to the bandpass histograms of space–time chips.
Finally, the parameters of asymmetric generalized Gaussian distributions were mapped
onto perceptual quality scores by a trained SVR.

Recently, deep-learning techniques have been proven very successful in image-based
object detection [36], semantic segmentation [37], image generation [38], etc. Researchers
also have introduced deep-learning-based NR-VQA methods. For instance, Li et al. [39]
extracted quality-aware visual features from video blocks using a 3D shearlet transform.
These features were fed into convolutional neural networks to predict perceptual video
quality. Ahn and Lee [40] combined deep and hand-crafted features for NR-VQA. Specif-
ically, a pretrained convolutional neural network was applied to extract features from
video frames, while temporal features were modeled by hand-crafted features. Li et al. [41]
introduced a mixed dataset training strategy. Namely, the authors’ network was trained on
mixed data and addressed by two different loss functions, i.e., monotonicity-induced and
linearity-induced losses.

3. Proposed Method

The high-level overview of the introduced NR-VQA algorithm is depicted in Figure 2.
As can be seen from this figure, video-level feature vectors are extracted from the training
video sequences to train a machine-learning model, which is later utilized in the testing
stage to estimate the perceptual quality of unseen videos. In this paper, a novel set of FDD
and perceptual quality-aware features are presented for NR-VQA. Section 3.1 describes
the proposed FDD-based features, while the applied perceptual features are described in
Section 3.2.

Figure 2. High-level overview of the proposed method. Video-level feature vectors are extracted
from the training videos to train a machine-learning model, which is later utilized in the testing
phase to predict the quality of previously unseen videos. In this study, we propose the fusion of the
Benford-law-inspired first-digit distribution and perceptual features.

3.1. FDD-Based Features

FDD features are extracted from the spatial, 3D wavelet, 3D Fourier, and 3D discrete
cosine transform domains of a video sequence. Moreover, the FDD of higher-order singular-
values of a video sequence is also considered as a quality-aware feature.

FDDs are extracted in the spatial domain of video sequences using 3D directional
gradients. To find the directional gradients of a 3D grayscale video sequence of size
N1 × N2 × N3, the 3D extension of the Sobel edge detector [42] (illustrated in Figure 3) was
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applied in this paper. Moreover, the size of the applied 3D Sobel operator for each direction
was 3× 3× 3. The convolution operators in the x, y, and z directions are given as:

Sx(:, :,−1) =

−1 0 1
−3 0 3
−1 0 1

, Sx(:, :, 0) =

−3 0 3
−6 0 6
−3 0 3

, Sx(:, :, 1) =

−1 0 1
−3 0 3
−1 0 1

, (2)

Sy(:, :,−1) =

−1 −3 −1
0 0 0
1 3 1

, Sy(:, :, 0) =

−3 −6 −3
0 0 0
3 6 3

, Sy(:, :, 1) =

−1 −3 −1
0 0 0
1 3 1

, (3)

Sz(:, :,−1) =

−1 −3 −1
−3 −6 −3
−1 −3 −1

, Sz(:, :, 0) =

0 0 0
0 0 0
0 0 0

, Sz(:, :, 1) =

1 3 1
3 6 3
1 3 1

. (4)

If we define V as the grayscale video sequence of size N1 × N2 × N3, and Gx, Gy, and
Gz are three arrays, which at each point consist of the x, y, and z directional derivative
approximations, the computations are as follows:

Gx = Sx ∗V, Gy = Sy ∗V, and Gz = Sz ∗V, (5)

where ∗ stands for the 3D convolution operator. In Figure 3, the 3D Sobel operators and
filtering are depicted where the x, y, and z axes correspond to the crossline, inline, and
time axes of a grayscale video sequence, respectively. In the spatial domain, three FDDs
are obtained from Gx, Gy, and Gz.

Figure 3. Illustration of 3D Sobel filtering. The x, y, and z axes correspond to the crossline, inline,
and time axes of a grayscale video sequence, respectively.

Discrete wavelet transform (DWT) was devised to correct the resolution problems
of the short-time discrete Fourier transform [43]. It has a huge number of applications in
engineering and computer science, since it is able to represent signals in a redundant form.
The 3D DWT is depicted in Figure 4. As one can see from this figure, the volume data (in
our case, a grayscale video sequence) are decomposed into eight sub-bands in the case of
single-level processing. These can be grouped into three distinct classes: an approximation
sub-band (LLL), spectral variation sub-bands (LLH, LHH, HLH), and spatial variation
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sub-bands (LHL, HLL, HHL). Moreover, Daubechies mother wavelets were utilized in our
implementation. Quality-aware FDD features were extracted from the spectral variation
and the spatial variation sub-bands.

Figure 4. Illustration of the 3D DWT.

The 3D DCT is an extension of the DCT to the three-dimensional space and defined as:

Xk1,k2,k3 =
N1−1

∑
n1=0

N2−1

∑
n2=0

N3−1

∑
n3=0

Vn1,n2,n3 cos
[ π

N1

(
n1 +

1
2
)
k1
]

cos
[ π

N2

(
n2 +

1
2
)
k2
]

cos
[ π

N3

(
n3 +

1
2
)
k3
]
, for ki = 0, 1, 2, ..., Ni−1, i = 1, 2, 3

(6)

where Xk1,k2,k3 are the 3D DCT coefficients and Vn1,n2,n3 denote the n1th, n2th, and n3th pixel
value of the grayscale video sequence V. The FDDs of 3D DCT coefficients are considered
as quality-aware features.

Besides 3D DCT coefficients, 3D discrete Fourier transform (DFT) coefficients of
grayscale video sequences were also used to extract an FDD feature vector for video
representation. The DFT of a grayscale video sequence V (three-dimensional array of size
N1 × N2 × N3) is defined as:

Yk1,k2,k3 =
N1−1

∑
n1=0

ωk1,n1
m1

N2−1

∑
n2=0

ωk2,n2
m2

N3−1

∑
n3=0

ωk3,n3
m3 Vn1,n2,n3 , (7)

where Yk1,k2,k3 stand for the DFT coefficients, Vn1,n2,n3 denote the n1th, n2th, and n3th pixel

value of the grayscale video sequence V, ωmk = e−
2πi
mk (mk = 1, 2, 3) are the complex roots of

unity, and i is the imaginary unit. In our implementation, DFT coefficients were determined
by the fast Fourier transform [44]. In our study, the FFD of DFT coefficients were used as
quality-aware features.

Higher-order singular-value decomposition (HOSVD) can be considered as one gen-
eralization of matrix singular-value decomposition [45]. Namely, a tensor’s HOSVD
corresponds to a specific orthogonal Tucker decomposition [46,47]. Every tensor V of size
N1 × N2 × N3 can be written as:

V =
N1

∑
n1=1

N2

∑
n2=1

N3

∑
n3=1

σn1,n2,n3(u
(1)
n1 ◦ u(2)

n2 ◦ u(3)
n3 ), (8)



Electronics 2021, 10, 2768 7 of 20

where ◦ stands for the outer product operation and:

U(1) = [u(1)
1 , u(1)

2 , ..., u(1)
N1

], (9)

U(2) = [u(2)
1 , u(2)

2 , ..., u(2)
N2

], (10)

U(3) = [u(3)
1 , u(3)

2 , ..., u(3)
N3

], (11)

are three unitary matrices of sizes N1 × N1, N2 × N2, N3 × N3, respectively. The FDD of
singular values (σn1,n2,n3 ’s) was used as the quality-aware feature.

In Tables 1–7, the mean FDDs of X directional gradient magnitudes, Y directional gra-
dient magnitudes, HLL wavelet coefficients, HHL wavelet coefficients, 3D DFT coefficients,
3D DCT coefficients, and higher-order singular-values are summarized with respect to five
equal MOS intervals of KoNViD-1k [22]. In KoNViD-1k [22], the lowest possible video
quality is represented by MOS = 1.0, while MOS = 5.0 stands for the highest possible
video quality. It can be observed that the FDDs of videos with a higher quality fit better
the prediction of Benford’s law. Moreover, the distance between the actual FDD and the
Benford law prediction is also lower in the case of high-quality videos. The distance is
given using the symmetric Kullback–Leibler (sKL) divergence.

Table 1. Mean FDD of X directional gradient magnitudes in KoNViD-1k [22] with respect to different
MOS intervals. In KoNViD-1k [22], the lowest possible video quality is represented by MOS = 1.0,
while MOS = 5.0 stands for the highest possible video quality. In the last column, the symmetric
Kullback–Leibler (sKL) divergences between the actual FDD and the Benford law distribution
are given.

1 2 3 4 5 6 7 8 9 sKL

4.2 ≤ MOS ≤ 5 0.309 0.183 0.121 0.096 0.093 0.059 0.052 0.046 0.041 0.004
3.4 ≤ MOS < 4.2 0.313 0.180 0.121 0.099 0.089 0.059 0.050 0.046 0.043 0.004
2.6 ≤ MOS < 3.4 0.316 0.180 0.121 0.099 0.090 0.058 0.049 0.045 0.043 0.004
1.8 ≤ MOS < 2.6 0.322 0.177 0.118 0.098 0.096 0.056 0.046 0.043 0.043 0.008
1 ≤ MOS < 1.8 0.331 0.173 0.114 0.098 0.102 0.054 0.043 0.042 0.044 0.014

Benford’s law 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 0

Table 2. Mean FDD of Y directional gradient magnitudes in KoNViD-1k [22] with respect to different
MOS intervals. In KoNViD-1k [22], the lowest possible video quality is represented by MOS = 1.0,
while MOS = 5.0 stands for the highest possible video quality. In the last column, the symmetric
Kullback–Leibler (sKL) divergences between the actual FDD and the Benford law distribution
are given.

1 2 3 4 5 6 7 8 9 sKL

4.2 ≤ MOS ≤ 5 0.308 0.184 0.119 0.096 0.096 0.059 0.052 0.046 0.041 0.005
3.4 ≤ MOS < 4.2 0.308 0.186 0.120 0.098 0.092 0.059 0.050 0.045 0.042 0.005
2.6 ≤ MOS < 3.4 0.313 0.183 0.120 0.098 0.093 0.058 0.048 0.044 0.042 0.006
1.8 ≤ MOS < 2.6 0.322 0.178 0.116 0.097 0.101 0.055 0.046 0.042 0.042 0.011
1 ≤ MOS < 1.8 0.328 0.173 0.113 0.098 0.108 0.053 0.044 0.041 0.043 0.016

Benford’s law 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 0
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Table 3. Mean FDD of HLL wavelet coefficients in KoNViD-1k [22] with respect to different MOS
intervals. In KoNViD-1k [22], the lowest possible video quality is represented by MOS = 1.0, while
MOS = 5.0 stands for the highest possible video quality. In the last column, the symmetric Kullback–
Leibler (sKL) divergences between the actual FDD and the Benford law distribution are given.

1 2 3 4 5 6 7 8 9 sKL

4.2 ≤ MOS ≤ 5 0.294 0.187 0.152 0.077 0.040 0.044 0.142 0.033 0.032 0.097
3.4 ≤ MOS < 4.2 0.306 0.156 0.186 0.068 0.045 0.046 0.139 0.029 0.026 0.114
2.6 ≤ MOS < 3.4 0.306 0.154 0.193 0.066 0.039 0.045 0.146 0.027 0.024 0.139
1.8 ≤ MOS < 2.6 0.289 0.157 0.198 0.070 0.038 0.053 0.150 0.025 0.020 0.148
1 ≤ MOS < 1.8 0.280 0.158 0.200 0.077 0.036 0.059 0.149 0.023 0.016 0.156

Benford’s law 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 0

Table 4. Mean FDD of HHL wavelet coefficients in KoNViD-1k [22] with respect to different MOS
intervals. In KoNViD-1k [22], the lowest possible video quality is represented by MOS = 1.0, while
MOS = 5.0 stands for the highest possible video quality. In the last column, the symmetric Kullback–
Leibler (sKL) divergences between the actual FDD and the Benford law distribution are given.

1 2 3 4 5 6 7 8 9 sKL

4.2 ≤ MOS ≤ 5 0.266 0.144 0.196 0.067 0.056 0.033 0.184 0.039 0.017 0.191
3.4 ≤ MOS < 4.2 0.257 0.134 0.259 0.066 0.052 0.030 0.158 0.032 0.012 0.233
2.6 ≤ MOS < 3.4 0.243 0.127 0.288 0.065 0.048 0.030 0.161 0.032 0.011 0.281
1.8 ≤ MOS < 2.6 0.244 0.112 0.312 0.051 0.048 0.027 0.157 0.040 0.009 0.327
1 ≤ MOS < 1.8 0.235 0.099 0.337 0.046 0.048 0.028 0.154 0.044 0.009 0.370

Benford’s law 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 0

Table 5. Mean FDD of 3D DFT coefficients in KoNViD-1k [22] with respect to different MOS intervals.
In KoNViD-1k [22], the lowest possible video quality is represented by MOS = 1.0, while MOS = 5.0
stands for the highest possible video quality. In the last column, the symmetric Kullback–Leibler
(sKL) divergences between the actual FDD and the Benford law distribution are given.

1 2 3 4 5 6 7 8 9 sKL

4.2 ≤ MOS ≤ 5 0.306 0.170 0.120 0.095 0.079 0.069 0.060 0.053 0.048 6.18× 10−4

3.4 ≤ MOS < 4.2 0.302 0.173 0.123 0.097 0.080 0.068 0.059 0.052 0.047 9.88× 10−5

2.6 ≤ MOS < 3.4 0.294 0.172 0.125 0.100 0.082 0.069 0.060 0.052 0.046 4.45× 10−4

1.8 ≤ MOS < 2.6 0.288 0.172 0.128 0.102 0.084 0.070 0.060 0.052 0.045 0.001
1 ≤ MOS < 1.8 0.287 0.177 0.131 0.102 0.083 0.068 0.058 0.050 0.044 0.0011

Benford’s law 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 0

Table 6. Mean FDD of 3D DCT coefficients in KoNViD-1k [22] with respect to different MOS intervals.
In KoNViD-1k [22], the lowest possible video quality is represented by MOS = 1.0, while MOS = 5.0
stands for the highest possible video quality. In the last column, the symmetric Kullback–Leibler
(sKL) divergences between the actual FDD and the Benford law distribution are given.

1 2 3 4 5 6 7 8 9 sKL

4.2 ≤ MOS ≤ 5 0.305 0.174 0.123 0.096 0.079 0.067 0.059 0.052 0.047 1.41× 10−4

3.4 ≤ MOS < 4.2 0.302 0.175 0.124 0.097 0.079 0.067 0.059 0.052 0.046 2.92× 10−5

2.6 ≤ MOS < 3.4 0.298 0.174 0.125 0.098 0.081 0.068 0.059 0.052 0.046 1.03× 10−4

1.8 ≤ MOS < 2.6 0.295 0.174 0.126 0.099 0.081 0.069 0.059 0.052 0.046 2.42× 10−4

1 ≤ MOS < 1.8 0.294 0.176 0.128 0.100 0.081 0.068 0.058 0.051 0.045 2.77× 10−4

Benford’s law 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 0
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Table 7. Mean FDD of higher-order singular values in KoNViD-1k [22] with respect to different
MOS intervals. In KoNViD-1k [22], the lowest possible video quality is represented by MOS = 1.0,
while MOS = 5.0 stands for the highest possible video quality. In the last column, the symmetric
Kullback–Leibler (sKL) divergences between the actual FDD and the Benford law distribution
are given.

1 2 3 4 5 6 7 8 9 sKL

4.2 ≤ MOS ≤ 5 0.303 0.175 0.124 0.096 0.079 0.067 0.058 0.052 0.046 2.75× 10−5

3.4 ≤ MOS < 4.2 0.300 0.174 0.125 0.097 0.080 0.068 0.059 0.052 0.046 3.76× 10−5

2.6 ≤ MOS < 3.4 0.297 0.174 0.125 0.098 0.081 0.068 0.059 0.052 0.046 1.02× 10−4

1.8 ≤ MOS < 2.6 0.295 0.175 0.125 0.098 0.081 0.068 0.058 0.051 0.045 2.07× 10−4

1 ≤ MOS < 1.8 0.295 0.177 0.128 0.099 0.081 0.068 0.058 0.051 0.045 2.05× 10−4

Benford’s law 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 0

3.2. Perceptual Features

In our model, several perceptual features were also incorporated, which are consistent
with human quality judgments [48]. Moreover, a subset of the presented perceptual features
was also applied for no-reference image quality assessment in our previous work [16]:

1. Blur: This is the shape and area in an image that cannot be seen clearly because
no distinct outline is present or an object is moving fast. Artifacts generated by
blur usually result in the loss of details. Hereby, the amount of blur in an image
heavily influences humans’ quality perception. Due its low computational costs, we
adopted the approach of Crété-Roffet et al. [49] to quantify the amount of blur in an
image, which is based on the comparison between variations of adjacent pixels after
low-pass filtering;

2. Colorfulness: There are more studies that suggest colorfulness as an important factor
for human visual quality perception [48,50,51]. In our study, Hasler and Suesstrunk’s
model [52] was applied to measure colorfulness. Let’ us denote with R, G, and B the
red, green, and blue channels of an RGB image, respectively. Two matrices are derived
for the color channels: rg = R− G and yb = 1

2 (R + G)− B. Next, colorfulness (CF)
is defined as:

CF =
√

σ2
rg + σ2

yb +
3

10

√
µ2

rg + µ2
yb, (12)

where σ2 and µ stand for the variance and mean of their respective matrices. A
video sequence’s colorfulness is considered as the average value of individual
frames’ colorfulness;

3. Contrast: Perceptual image quality is strongly influenced by contrast, since humans’
ability to distinguish objects from each other in an image heavily depends on it [53].
In [16], Matkovic et al.’s [54] global contrast factor (GCF) model was applied to
quantify image contrast. However, GCF’s computational cost is large, which makes it
not feasible to measure a video sequence’s contrast. That is why we adopted here the
root-mean-squared (RMS) contrast for measuring the contrast of a video frame. RMS
contrast is defined as the standard deviation of the pixel intensities [55]:

CRMS =

√√√√ 1
M · N

N−1

∑
i=0

M−1

∑
j=0

(Ii,j − Ī)2, (13)

where Ii,j stands for the ith, jth pixel intensity of a 2D grayscale image I with size
M× N. A video sequence’s contrast is considered as the average value of the video
frames’ contrast;

4. Dark channel feature: He et al. [56] investigated the properties of fog-free natural
images. It was found that dark pixels are those pixels whose intensity values are close
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to zero at least in one color channel within an image patch [57]. Based on this, a dark
channel is defined as:

Idark(x) = min
y∈Ω(x)

( min
c∈{R,G,B}

Ic(y)), (14)

where Ic(y) denotes the intensity of a color channel (R, G, or B) and Ω(x) is an image
patch centered on x. Based on the above definition, the dark channel feature (DCF)
of an image is given as:

DCF =
1
||S|| ∑i∈S

Idark(i)
∑c∈{R,G,B} Ic(i)

, (15)

where S stands for the area of the input image. A video sequence’s DCF is considered
as the average value of the individual video frames’ DCF;

5. Entropy: The entropy of a digital image is a feature that gives information about the
average content in an image. The concept of the entropy of a signal in general is very
old. Namely, it comes from Shannon’s theory of communication [58]. The entropy of
a 2D grayscale image is given as:

EI = −∑
n

p(n) · log2 p(n), (16)

where p(n) stands for the empirical distribution of grayscale values in image I. The
entropy of a video sequence is defined as the average of the video frames’ entropy;

6. Mean of phase congruency: Phase congruency (PC) characterizes a digital image in
the frequency domain. Phase congruency is given by the following equation:

PC1(x) =
|E(x)|

∑n An(x)
, (17)

where E(x) corresponds to the energy of signal x and can be given as:

E(x) = |X(jω)|2 (18)

where X(jω) is the Fourier transform of signal x and An(x) denotes the nth Fourier
amplitude of signal x. To incorporate noise compensation, Kovesi [59] modified the
above definition of PC by adding weights for the frequency spread:

PC2(x) = ∑n W(x)bAn(x)∆φn(x)− Tc
∑n An(x) + ε

, (19)

where W(x) is the weight function of the frequency spread, b·c stands for the floor
function, T is an estimation of the noise level, and ε is a small constant to avoid
division by zero. Moreover, φn(x) denotes the nth Fourier component at x and can be
expressed as:

∆φn(x) = cos(φn(x)− φn(x))− |sin(φn(x)− φn(x))|, (20)

where φn(x) is the average phase at x. For a video sequence, the video frames’ mean
PC values are averaged to obtain a perceptual feature;

7. Spatial information: The gradient magnitude maps of each video frame were deter-
mined with the help of a Sobel filter, and the standard deviations of each Sobel map
were taken. The spatial information (SI) of a video sequence is the average of the
Sobel maps’ standard deviations;

8. Temporal information: This characterizes the amount of temporal changes in a given
video sequence [21]. In this study, the temporal information (TI) of a video sequence
was considered as the mean of the pixelwise frame differences’ standard deviations;
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9. Natural image quality evaluator (NIQE): The NIQE [60] measures the distance be-
tween the natural scene statistics-based features extracted from an image and certain
ideal features. In the case of the NIQE, the features are modeled as multidimensional
Gaussian distributions. Specifically, the value given by the NIQE can be considered
as the degree of deviation from naturalness of a digital image. In this study, the
naturalness of a video sequence is characterized by the average of the video frames’
NIQE values.

The average values of the above-described perceptual features with respect to five
equal MOS intervals of KoNViD-1k [22] are given in Table 8. It can be observed that they
are roughly proportional to the quality classes. With a properly chosen regression module,
they can be good predictors of perceptual video quality.

Table 8. Mean of the perceptual features in KoNViD-1k [22] with respect to different MOS intervals.
In KoNViD-1k [22], the lowest possible video quality is represented by MOS = 1.0, while MOS = 5.0
stands for the highest possible video quality.

Blur CF Contrast DCF Entropy PC SI TI NIQE

4.2 ≤ MOS ≤ 5 0.309 0.229 0.211 0.197 7.027 0.019 83.478 0.034 3.745
3.4 ≤ MOS < 4.2 0.371 0.196 0.223 0.244 7.103 0.017 70.850 0.067 3.802
2.6 ≤ MOS < 3.4 0.423 0.193 0.226 0.223 6.800 0.013 59.306 0.081 4.163
1.8 ≤ MOS < 2.6 0.458 0.198 0.188 0.153 6.260 0.007 42.072 0.077 4.888
1 ≤ MOS < 1.8 0.451 0.213 0.158 0.098 5.577 0.007 34.056 0.081 5.356

4. Experimental Results and Analysis

In this section, our experimental results and analysis are presented. First, the applied
benchmark VQA database is described in Section 4.1. Second, the evaluation metrics are
given in Section 4.2. Third, the evaluation environment and implementation details are
specified in Section 4.3. Fourth, a parameter study related to the proposed method is
presented in Section 4.4 to reason about the design choices. Finally, a comparison to other
state-of-the-art methods is presented in Section 4.5.

4.1. Databases

In our study, the KoNViD-1k [22] and LIVE VQC [23] benchmark VQA databases were
used to carry out experiments and compare the proposed method to the state-of-the-art.

The videos of KoNViD-1k [22] were collected from the YFCC100M [61] database with
respect to six predefined attributes: blur amount, colorfulness, contrast, spatial information,
temporal information, and the natural image quality evaluator [60]. MOS values for each
video were collected through a crowdsourcing process [62]. In this crowdsourcing process,
642 crowd workers from 64 countries participated, and they produced at least 50 judgments
per video. In KoNViD-1k [22], MOS = 1.0 represents the lowest possible perceptual video
quality, while MOS = 5.0 stands for the highest possible quality. The main characteristics
of KoNViD-1k [22] are summarized in Table 9. The empirical distribution of the MOS
values in KoNViD-1k [22] is depicted in Figure 5.

Similar to KoNViD-1k [22], LIVE VQC [23] contains authentically distorted video
sequences with their corresponding perceptual quality scores. Specifically, it consists
of 585 unique videos captured by 101 different video devices (mainly by smartphones).
Moreover, the average length of the videos is 10 s. Similar to KoNViD-1k [22], the subjective
quality scores were obtained in a crowdsourcing experiment where 4776 unique observers
produced more than 205,000 opinion scores. The main characteristics of LIVE VQC [23] are
summarized in Table 9. The empirical distribution of the MOS values in LIVE VQC [23] is
depicted in Figure 6.
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Table 9. Overview of the KoNViD-1k [22] and LIVE VQC [23] publicly available VQA databases.

Attribute KoNViD-1k [22] LIVE VQC [23]

Year 2017 2018
No. of sequences 1200 585

No. of scenes 1200 585
No. of devices N/A 101
Device types DSLR smartphone

Distortion type authentic authentic
Duration ∼8 s ∼10 s

Resolution 960× 540 320× 240–1920× 1080
Frame rate 30 N/A

Format MPEG-4 N/A
Rating per video 50 200

MOS range 1.0–5.0 0.0–100.0

Figure 5. MOS distribution in KoNViD-1k [22].

Figure 6. MOS distribution in LIVE VQC [23].

4.2. Evaluation Metrics

Similar to image quality assessment, the evaluation and performance ranking of
NR-VQA algorithms rely on the measurement of the correlation between predicted and
ground-truth perceptual quality scores. To this end, Pearson’s linear correlation coefficient
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(PLCC) and Spearman’s rank-order correlation coefficient (SROCC) are widely applied in
the literature [26]. The PLCC between the ground-truth and predicted quality scores can
be defined as:

PLCC(x, y) =
∑N

i=1(xi − x̄)(yi − ȳ)√
∑N

i=1(xi − x̄)2
√

∑N
i=1(yi − ȳ)2

, (21)

where N is the length of vectors x and y, xi and yi are the ith elements of vectors x and y, and
finally, x̄ and ȳ stand for the mean of vectors x and y. According to the recommendations
of the Video Quality Expert Group [63], we adjusted the scaling and nonlinearity effect
between the predicted and ground-truth scores by an f (x) nonlinear transform, which is
given by:

f (x) =
τ1 − τ2

1 + e
− x−τ3
|τ4 |

+ τ2, (22)

where τ1, τ2, τ3, and τ4 are the fitting parameters. In contrast to the PLCC, the SROCC
characterizes the monotonic relationship between the predicted and ground-truth quality
scores and can be defined as:

SROCC(x, y) = 1−
6 ∑N

i=1 d2
i

N(N2 − 1)
, (23)

where:
di = rank(xi)− rank(yi). (24)

In this study, we report on the median values of the PLCC and SROCC after 1000
random training–testing splits.

4.3. Evaluation Environment and Implementation Details

To evaluate the proposed and the other state-of-the-art methods, KoNViD-1k [22] and
LIVE VQC [23] were divided randomly into a training (∼80%) and a test set (∼20%). As
already mentioned, the median PLCC and SROCC values are reported in this study, which
were measured over 1000 random train–test splits. The computer configuration applied
in our experiments is summarized in Table 10. Moreover, the proposed methods were
implemented in MATLAB R2021a.

Table 10. Computer configuration applied in our experiments.

Computer model STRIX Z270H Gaming
CPU Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (8 cores)

Memory 15 GB
GPU Nvidia GeForce GTX 1080

4.4. Parameter Study

In this subsection, a parameter study is presented. Specifically, the performance of
different FDD and perceptual features was examined with different regression modules,
such as the SVR with linear and radial basis functions (RBFs), Gaussian process regression
(GPR) with a rational quadratic kernel function, binary tree regression (BTR), and random
forest regression (RFR). The results are summarized in Table 11. From these results, it can be
clearly observed that the FDD features exhibited a rather weak or mediocre correlation with
the ground-truth quality scores on KoNViD-1k [22], while considering all FDDs showed
a rather strong correlation. In addition to this, the perceptual features also exhibited a
strong correlation with the ground-truth quality scores on KoNViD-1k [22]. By fusing
the FDDs and perceptual features together, a powerful feature vector can be obtained,
which outperformed both the FDDs and perceptual features. Furthermore, GPR with a
rational quadratic kernel function was the best-performing regression module, since it
provided the highest correlation values almost in all cases. Based on these observations,
we propose two NR-VQA methods, i.e., FDD-VQA and FDD + Perceptual-VQA, which
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are compared to the state-of-the-art in the next subsection. FDD-VQA considers only the
FDD-based feature vectors, while FDD + Perceptual-VQA fuses FDDs and perceptual
features together. Both proposed methods rely on GPRs with rational quadratic kernel
functions as the regression modules.

Table 11. Performance comparison of the FDD and perceptual feature vectors on KoNViD-1k [22].
Median SROCC values were measured over 1000 random train–test splits on KoNViD-1k [22].

Feature Vector Linear SVR RBF-SVR GPR BTR RFR

FDD of X directional gradient magnitudes 0.402 0.419 0.432 0.223 0.218
FDD of Y directional gradient magnitudes 0.436 0.409 0.486 0.213 0.238
FDD of Z directional gradient magnitudes 0.394 0.359 0.386 0.206 0.183

FDD of HLL wavelet coefficients 0.320 0.302 0.347 0.152 0.171
FDD of LHL wavelet coefficients 0.279 0.382 0.412 0.201 0.202
FDD of HHL wavelet coefficients 0.425 0.493 0.503 0.323 0.328
FDD of LLH wavelet coefficients 0.338 0.387 0.414 0.220 0.237
FDD of HLH wavelet coefficients 0.347 0.394 0.421 0.237 0.250
FDD of LHH wavelet coefficients 0.316 0.412 0.428 0.229 0.246
FDD of HHH wavelet coefficients 0.449 0.479 0.498 0.323 0.304

FDD of 3D DFT coefficients 0.136 0.218 0.203 0.092 0.090
FDD of 3D DCT coefficients 0.135 0.190 0.207 0.132 0.092

FDD of higher-order singular values 0.156 0.117 0.144 0.097 0.091
Perceptual features 0.626 0.675 0.686 0.488 0.502

All FDDs 0.617 0.588 0.640 0.363 0.401
All FDDs + Perceptual 0.676 0.661 0.711 0.472 0.52

4.5. Comparison to the State-of-the-Art

In this subsection, several NR-VQA methods, such as NVIE [64], V.BLIINDS [32],
VIIDEO [65], 3D-MSCN [34], ST-Gabor [34], and 3D-MSCN + ST-Gabor [34], whose original
source codes were made publicly available by the authors, are compared to the proposed
FDD-VQA and FDD + Perceptual-VQA methods. These methods were evaluated exactly the
same way as the proposed methods (described in Section 4.2). Moreover, the performance
metrics of other state-of-the-art algorithms (FC model [66], STFC model [66], STS-SVR [67],
STS-MLP [67], ChipQA [35]) were collected from the corresponding research studies.

The results for KoNViD-1k [22] are summarized in Table 12. It is clear from this table
that the proposed NR-VQA approaches were able to provide competitive performance on
a large, challenging VQA database both in terms of the PLCC and SROCC. Specifically,
FDD-VQA, which solely relies on FDD feature vectors extracted from different domains
(spatial, wavelet, Fourier, DCT, HOSVD), was able to outperform nine methods out of the
examined eleven ones, while FDD + Perceptual-VQA outperformed all the considered
state-of-the-art algorithms by a large margin. Figure 7 illustrates the scatter plots of the
ground-truth MOS values against the predicted MOS values on the KoNViD-1k [22] test set.

The results for LIVE VQC [23] are summarized in Table 13. It can be seen that
the proposed FDD-VQA and FDD + Perceptual-VQA methods were able to reach or
outperform the state-of-the-art on LIVE VQC [23]. Specifically, FDD + Perceptual-VQA
outperformed all the other examined NR-VQA algorithms, while FDD-VQA was able to
reach the performance of the state-of-the-art.
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Table 12. Comparison of FDD-VQA and FDD + Perceptual-VQA to the state-of-the-art on KoNViD-
1k [22]. Median PLCC and SROCC values were measured over 1000 random train–test splits. The
best results are in bold, while the second best results are underlined.

Method PLCC SROCC

NVIE [64] 0.404 0.333
V.BLIINDS [32] 0.661 0.694

VIIDEO [65] 0.301 0.299
3D-MSCN [34] 0.401 0.370
ST-Gabor [34] 0.639 0.628

3D-MSCN + ST-Gabor [34] 0.653 0.640

FC Model [66] 0.492 0.472
STFC Model [66] 0.639 0.606

STS-SVR [67] 0.680 0.673
STS-MLP [67] 0.407 0.420
ChipQA [35] 0.697 0.694

FDD-VQA 0.654 0.640
FDD + Perceptual-VQA 0.716 0.711

(a) (b)
Figure 7. Scatter plots of the ground-truth MOS against the predicted MOS of the proposed methods
on the KoNViD-1k [22] test set. (a) FDD-VQA. (b) FDD + Perceptual-VQA.

Table 13. Comparison of FDD-VQA and FDD + Perceptual-VQA to the state-of-the-art on LIVE
VQC [23]. Median PLCC and SROCC values were measured over 1000 random train–test splits. The
best results are in bold, while the second best results are underlined. We denote by “-” when the data
are not available.

Method PLCC SROCC

NVIE [64] 0.447 0.459
V.BLIINDS [32] 0.690 0.703

VIIDEO [65] −0.006 −0.034
3D-MSCN [34] 0.502 0.510
ST-Gabor [34] 0.591 0.599

3D-MSCN + ST-Gabor [34] 0.675 0.677

FC Model [66] - -
STFC Model [66] - -

STS-SVR [67] - -
STS-MLP [67] - -
ChipQA [35] 0.669 0.697

FDD-VQA 0.623 0.630
FDD + Perceptual-VQA 0.694 0.705
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To prove the significance of the presented results, one-sided t-tests were carried out
on the 1000 SROCC values using a 95% confidence level. The results measured on KoNViD-
1k are summarized in Table 14. From these results, it can be seen that the performance
of FDD + Perceptual-VQA was statistically significantly better than those of the other
examined state-of-the-art methods. Similarly, the results for LIVE VQC [23] are summed up
in Table 15. It can be observed that the proposed FDD + Perceptual-VQA was statistically
better than the other considered state-of-the-art methods except for V.BLIINDS [32], where
no difference is exhibited.

Table 14. A one-sided t-test was carried among 1000 SROCC values measured on KoNViD-1k [22] using a 95% confidence
level. In this table, “1” (“−1”) denotes that the row algorithm is statistically better (worse) than the column algorithm.

NVIE V.BLIINDS VIIDEO 3D-MSCN ST-Gabor 3D-MSCN + ST-Gabor FDD + Perceptual-VQA

NVIE - −1 1 −1 −1 −1 −1
V.BLIINDS 1 - 1 1 1 1 −1

VIIDEO −1 −1 - −1 −1 −1 −1
3D-MSCN 1 −1 1 - −1 −1 −1
ST-Gabor 1 −1 1 1 - −1 −1

3D-MSCN + ST-Gabor 1 −1 1 1 1 - −1
FDD + Perceptual-VQA 1 1 1 1 1 1 -

Table 15. A one-sided t-test was carried among 1000 SROCC values measured on LIVE VQC [23] using a 95% confidence
level. In this table, “1” (“−1”) denotes that the row algorithm is statistically better (worse) than the column algorithm, and
“0” stands for no statistical difference between the algorithms.

NVIE V.BLIINDS VIIDEO 3D-MSCN ST-Gabor 3D-MSCN + ST-Gabor FDD + Perceptual-VQA

NVIE - −1 1 −1 −1 −1 −1
V.BLIINDS 1 - 1 1 1 1 0

VIIDEO −1 −1 - −1 −1 −1 −1
3D-MSCN 1 1 1 - −1 −1 −1
ST-Gabor 1 −1 1 1 - −1 −1

3D-MSCN + ST-Gabor 1 −1 1 1 1 - −1
FDD + Perceptual-VQA 1 0 1 1 1 1 -

5. Conclusions

In this paper, we proposed a novel NR-VQA algorithm based on a set of novel quality-
aware features, which relies on the FDDs of different domains (spatial, wavelet, DCT, DFT,
HOSVD) and perceptual features. Specifically, we analyzed different FDD-based feature
vectors in detail for NR-VQA. To this end, a detailed parameter study was established
with respect to different domains and regression modules. It was demonstrated that
state-of-the-art performance can be achieved in NR-VQA by considering only FDDs from
different domains. Moreover, it was pointed out that fusing FDD and perceptual feature
vectors together resulted in a powerful video representation for NR-VQA, which was able
to outperform the state-of-the-art on two large authentically distorted VQA benchmark
databases. Finally, the significance of the presented results was statistically proven with one-
sided t-tests. Future work involves a real-time implementation of FDD feature extraction
for NR-VQA on graphical processing units since many transformations and histogram
calculations can be accelerated with them.

To facilitate the reproducibility of the presented results, the source code of the pro-
posed method written in MATLAB R2021a is available at: https://github.com/Skythianos/
Benford-VQA, accessed on 11 November 2021.
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Abbreviations
The following abbreviations are used in this manuscript:

3D three-dimensional
BTR binary tree regression
C contrast
CF colorfulness
DCF dark channel feature
DCT discrete cosine transform
DFT discrete Fourier transform
DSLR digital single-lens reflex
DWT discrete wavelet transform
FDD first-digit distribution
FR full-reference
FR-VQA full-reference video quality assessment
GCF global contrast factor
GPR Gaussian process regression
HOSVD higher-order singular-value decomposition
JPEG Joint Photographic Experts Group
LIVE Laboratory for Image and Video Engineering
MOS mean opinion score
MPEG Moving Picture Experts Group
MSCN mean subtracted and contrast normalized
NIQE natural image quality evaluator
NR no-reference
NR-VQA no-reference video quality assessment
PC phase congruency
PLCC Pearson’s linear correlation coefficient
RBF radial basis function
RFR random forest regression
RMS root mean square
RR reduced-reference
RR-VQA reduced-reference video quality assessment
SI spatial information
SROCC Spearman’s rank-order correlation coefficient
SVR support vector regressor
TI temporal information
VQA video quality assessment
VQC video quality challenge
YFCC100M Yahoo Flickr Creative Commons 100 Million
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