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Abstract: The traditional way to address the problem of sentiment classification is based on machine
learning techniques; however, these models are not able to grasp all the richness of the text that
comes from different social media, personal web pages, blogs, etc., ignoring the semantic of the
text. Knowledge graphs give a way to extract structured knowledge from images and texts in order
to facilitate their semantic analysis. This work proposes a new hybrid approach for Sentiment
Analysis based on Knowledge Graphs and Deep Learning techniques to identify the sentiment
polarity (positive or negative) in short documents, such as posts on Twitter. In this proposal,
tweets are represented as graphs; then, graph similarity metrics and a Deep Learning classification
algorithm are applied to produce sentiment predictions. This approach facilitates the traceability and
interpretability of the classification results, thanks to the integration of the Local Interpretable Model-
agnostic Explanations (LIME) model at the end of the pipeline. LIME allows raising trust in predictive
models, since the model is not a black box anymore. Uncovering the black box allows understanding
and interpreting how the network could distinguish between sentiment polarities. Each phase of
the proposed approach conformed by pre-processing, graph construction, dimensionality reduction,
graph similarity, sentiment prediction, and interpretability steps is described. The proposal is
compared with character n-gram embeddings-based Deep Learning models to perform Sentiment
Analysis. Results show that the proposal is able to outperforms classical n-gram models, with a recall
up to 89% and F1-score of 88%.

Keywords: sentiment analysis; knowledge graph; Long-Short Term Memory (LSTM); model
interpretability

1. Introduction

Users of social networks make use of such platforms to express opinions as well as
emotions on any topic. Twitter, one of the most used, is a social network and a microblog-
ging service that allows users to write small pieces of text or messages known as tweets,
through which users can interact with each other and express their ideas. In this context,
Sentiment Analysis models have demonstrated efficiency in predicting feelings in texts and
to determine users’ perception of aspects of everyday life [1]. The information extracted
by Sentiment Analysis can be used as knowledge for further analysis. In general, the idea
is to predict the results or trends of a particular topic based on sentiment [2], for example
in contexts of product preferences in the market [3,4], film preferences [5], or political
opinions [6].

However, on Twitter, predicting sentiment is a challenging problem for various reasons
such as the lack of context and the use of language that may deviate from the well-formed
language that constitutes most of the corpora on which the models for textual analysis
are usually trained. Nowadays, there exists increasing interest in improving Sentiment
Analysis techniques in order to reach more accurate, traceable, and explainable results,
as well as better performance in real-time applications [7–9].
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Several computational techniques can be applied to solve the problem of predict-
ing sentiment [10–13]. they vary from linear models to Deep Learning [14], and some
researchers even use Linked-Data [15]. Artificial Intelligence (AI) techniques have demon-
strated their wide applicability in different engineering fields and sciences, such as in elec-
trical engineering [16], civil engineering [17], petroleum engineering [18], health care [19],
and cybernetics [20,21]. Thus, machine learning, as part of AI, represents an appropriate
option to perform sentiment analysis. The use of Machine Learning allows defining a
classifier that learns to differentiate positive and negative sentiments and then determines
the polarity of new texts; as a lexicon-based (also known as rule-based) approach, it allows
deriving the sentiment from the individual words used [22].

Nonetheless, most existing approaches lack the capacity to provide users with an
explanation of the scores or the classification resulting from the sentiment analysis process.
A solution to this problem can be provided by recurring to Knowledge Graphs. Knowledge
Graphs provide a way to extract structured knowledge from images and texts to facili-
tate the semantic analysis. The knowledge of context provides additional information
on the subject to be studied, which in turn offers the ability to cover a complete view of
its semantics, applicable in many areas, including health, computer networks, and oth-
ers [23–25]. In this study, the use of Knowledge Graphs supports the analysis of sentiment
polarities, based on similarity measurements between the text’s graph and pre-determined
polarity graphs.

Interpretability and explainability are two separate concepts that help to understand
the behavior of a model. Interpretability is the accuracy of a model associating a cause to
an effect; explainability, on the other hand, is related to the relevance of the parameters in a
predictive model [26,27]. Interpretability of models has been applied to recognize better
models thanks to having a better understanding in their predictions [28,29].

Understanding models and their results is an indication of high-quality science. Nowa-
days, some tools can build accurate and sophisticated explanations of Machine Learning
models that enable human understanding of predictions. Over the years, researchers
have developed different types of interpretability techniques and are still developing
more modern systems to facilitate the understanding of models [30,31]. Generally, these
interpretability models are classified into the following:

• Intrinsic or post hoc: Intrinsic methods mean simple models that can be interpreted by
humans, for example, decision trees or linear models. Nonetheless, the more complex
the model is, the more difficult it becomes to interpret it. Post hoc interpretations are
those that occur after the model is trained and are not connected to its internal design.

• Model-specific or model agnostic: these are interpretability methods applied to a
specific model. All intrinsic methods are model-agnostic, as are post hoc methods, as
they do not have access to model structure and weights.

• Local or global: These concepts are related to the scope of the interpretation. Global
considers the entire model, while local means focusing on individual predictions.

In this context, a new hybrid approach is proposed that considers the words of the text
connected to their definition. A brief description of this approach was presented in [32];
in this work, the proposed approach is detailed and extended by integrating a strategy to
reach the interpretability of the results to understand how the model creates predictions.
The problem of predicting sentiment in short pieces of texts, such as posts on Twitter,
is addressed by treating the words of a tweet as entities that potentially are connected
with other entities through the expansion of its Knowledge Graph representation. Thus,
tweets are represented using graphs; then, graph similarity metrics (tweets’ graphs vs.
polarities’ graphs) and a Deep Learning classification algorithm are applied to produce
sentiment predictions. To approach the interpretability of results, the Local Interpretable
Model-agnostic Explanations (LIME) model [33] is integrated at the end of classification
pipeline. LIME allows interpreting prediction results, gives understanding on how the
model produces predictions and allows raising trust on predictive models, since the model
is not a black box anymore. LIME is a software that explains why a data point was classified
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in a certain way or to a specific class (https://christophm.github.io/interpretable-ml-book/
accessed on 29 April 2021).

Thus, LIME helps to understand how the model makes decisions by changing input
samples and understanding how the outcomes or predictions change. LIME is used in
this proposal as an extra step in Sentiment Analysis. After the model is trained and the
Knowledge Graphs are defined, it is tested how the trained model is actually generating
predictions; therefore, the interpretability results are only applied to the prediction model
based on Knowledge Graphs. Each phase of the proposed approach, confirmed by pre-
processing, graph construction, dimensionality reduction, graph similarity, sentiment
prediction, and interpretability steps, is described. To demonstrate the efficiency of using
Knowledge Graphs for Sentiment Analysis, the proposal is compared with state-of-the-art
techniques (character n-gram embeddings based on Deep Learning models). Results show
that this proposal is able to outperform classical n-gram models, reaching a recall up to 89%
and an F1-score of 88%. These results demonstrate that the use of Knowledge Graphs opens
the opportunity to explore the use of semantics in the task of Sentiment Analysis, as well
as facilitating the traceability and interpretability of the classification results. Moreover,
the construction of Knowledge Graphs is not affected by the size of the text or the use
of dialects.

The description of this work is organized as follows. Section 2 describes related work
on Sentiment Analysis, Deep Learning, and the use of tools such as LIME to interpret
results. Section 3 introduces concepts that are used in the rest of the paper. Section 4 is
the core of this article, since it contains the proposed model, combining Deep Learning
techniques, Knowledge Graphs, and Sentiment Analysis. Then, Section 5 shows the results
obtained from experiments. Finally, Section 6 contains final thoughts and the potential
future work.

2. Related Work

Sentiment Analysis on social media has become a trending topic in recent decades [34].
Classical approaches for Sentiment Analysis on social media are based on linear techniques.
The study described in [35] presents a performance analysis of several tools (AlchemyAPI,
Lymbix, ML Analyzer, among others) based on linear techniques for predicting sentiment,
including Support Vector Machines (SVM), Decision Trees, and the Random Forest model.
Authors combine different media sources (Twitter, reviews, and news) to build the datasets.
In experiments, the best tools achieved an accuracy of 84% with Random Forest models. The
study concludes that the accuracy tends to decrease with longer texts (this might be since the
model is unable to capture long-distance dependencies between words and is also unable
to detect other sentiments—i.e., neutral sentiment), and the combination of the tools with a
meta-classifier can enhance the accuracy of the predictions.

Some other traditional approaches supported by machine learning techniques are
based on language features. Pang and Lee [36] investigate the performance of various
machine learning techniques, such as Naive Bayes, Maximum Entropy, and SVM in the
domain of opinions on movies. From their analysis, they obtain 82.9% accuracy in their
model, using SVM with unigrams. Normally, the features used for a sentiment classifier
are extracted by Natural Language Processing (NLP). These NLP techniques are mainly
based on the use of n-grams; however, the use of bag-of-words is also popular for this task.
Many studies show relevant results using the bag-of-words as a text representation for
object categorization [37–43].

Researchers have exploited NLP topics and used them to implement Deep Learning
models based on neural networks that have more than three layers. In general, in these
studies, predicting sentiment is a task that is performed by Deep Learning models. These
models include Convolutional Neural Networks (CNN) [44,45], Recursive Neural Net-
works (RNN) [46], Deep Neural Networks (DNN) [47], Recursive Neural Deep Model
(RNDM) [48], and an attention-based bidirectional CNN-RNN Deep Model [49]. Some re-
searchers combine models in their study, and then these models are named Hybrid Neural

https://christophm.github.io/interpretable-ml-book/
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Networks, for example, the Hierarchical Bidirectional Recurrent Neural Network (HBRNN)
[50]. Table 1 shows some relevant and recent works based on Deep Learning techniques
in terms of performance. As shown in Table 1, results in different studies demonstrate how
good the Deep Learning techniques perform with different datasets. In particular, models
based on RNN have obtained results above 80% of accuracy.

Table 1. Deep Learning techniques and results.

Work Model Dataset Result

Yanagimoto et al., 2013 [47] DNN T&C New F-score of 90.8% of accuracy

Li et al., 2014 [48] RNDM 2270 movie reviews from
websites Accuracy of 90.8%

Severyn and Moschitti,
2015 [44] CNN Semeval-2015 F-measure score sub-task A: 84.19%

and sub-task B: 64.69%

Yanmei and Yuda, 2015 [45] CNN 1000 micro-blog comments Statistical model with average of
85.4% of accuracy

Silhavy et al., 2016 [50] HBRNN 150,175 labeled reviews from
1500 hotels

HBRNN outperformed the rest of
the methods.

Arras et al., 2017 [46] RNN 11,855 single sentences from
movies review

Accuracy of 82.9% for binary
classification (positive and

negative).

Basiri et al., 2021 ABCDM Five review and Twitter
datasets Accuracy up to 92%

An emerging strategy to perform Sentiment Analysis is based on using graphs for
feature representation, which shows an enhancement in text-mining applications. Nonethe-
less, one of the main challenges with the graphs is related to their construction, which
is not direct and depends on the grammatical structure of the text. Only a few studies
have approached this strategy. In [51], authors use a co-occurrence graph that represents
relationships among terms of a document; they use centrality measures for extraction of
sentiment words that can express the sentiment of the document; then, they use these
words as features for supervised learning algorithms and obtain the polarity of the new
document. In [52], authors use graphs to represent the sequences of words in a document.
They apply graph similarity metrics and classification algorithms such as SVM to predict
sentiment. In [53], authors try to leverage a deep graph-based text representation of senti-
ment polarity by combining graphs and use them in a representation learning approach.
The study presented in [54] proposes a knowledge-based methodology for Sentiment
Analysis on social media, focusing primarily on semantics and on the content of words.
The authors combine graph theory algorithms, similarity measures, knowledge graphs,
and a disambiguation process to predict different range of feelings (joy, trust, sadness,
and anger).

Table 2 shows a comparative evaluation of these studies. Even though the approach
of graph-based techniques uses a different data structure for features and its learning
pattern is different, these techniques reach results as good as the techniques based on
Deep Learning.

Some recent works have used LIME to add interpretability to Knowledge Graphs.
In [55], the authors use LIME to build a local interpretable model to explain the predictions
generated. LIME generates an output of features that contributes the most in the prediction
of a specific class (a factual explanation). In [56], the authors apply several state-of-the-art
Machine Learning algorithms on datasets and show how LIME can help to understand
such Machine Learning methods. In particular, authors evaluate the performance of four
classification algorithms on a dataset used to predict rain. Authors conclude that LIME
helps to increase model interpretability.
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The main contribution of this work is related to Knowledge Graphs, whose main
advantage is that their construction is not affected by the size of the text or the use of
dialects and can be visually inspected. Results of previous studies suggest that the use of
Deep Learning for the task of sentiment prediction, produces accurate models. Therefore,
combining Knowledge Graphs with Deep Neural Networks allows obtaining a powerful
model to be obtained that is able to produce accurate, traceable, and explainable results in
predicting sentiment labels. Additionally, LIME introduces interpretation of the proposed
model, helping to understand how the model is predicting values based on the input
vectors. The benefits of incorporating this last part is that it provides a better intuition of
model predictions and its behavior.

Table 2. Graph-based techniques for sentiment classification and results.

Work Model Dataset Result

Castillo et al., 2015 [51] Co-occurrence graphs SemEval 2015 76% for positive and 68.04% for
neutral classes

Violos et al., 2016 [52] Word-graph model
based Twitter dataset 75.07% of accuracy.

Bijari et al., 2019 [53]
Sentence-level
graph-based IMDB dataset 88.31% for negative and

text representation IMDB dataset 86.60% for positive classes

Vizcarra et al., 2021 [54] Knowledge based graphs Amazon reviews [57]

67.0% of precision for joy
79% of precision for trust

75% of precision for sadness
98% of precision for anger

3. Knowledge Graphs and Neural Nets Models: Preliminaries

This section introduces the concept of Knowledge Graph (KG) and the predictive
models based on neural networks that are implemented in this study, specifically Long-
Short-Term Memory (LSTM) and Bidirectional Long-Short-Term Memory (Bi-LSTM).

3.1. Knowledge Graphs

Knowledge Graphs (KG) are inspired in interlinking data, modeling unstructured
information in a meaningful way. A KG is also known as a Knowledge Base (technology
that stores complex unstructured or structured information/data), and it is defined as a
network in which the nodes indicate entities and the edges indicate their relation. DBpedia
(http://aksw.org/Projects/DBpedia.html accessed on 7 May 2021), YAGO (https://yago-
knowledge.org/ accessed on 7 May 2021), and SUMO (http://www.adampease.org/OP/
index.html accessed on 8 May 2021) are three examples of huge KG that have been released
on the past decade, since they have become an outstanding resource for NLP applications,
such as Question-Answering (QA) [58,59]. Formally, the essence of KG is triples, and its
general form is explained in Definition 1.

Definition 1. Knowledge Graph (KG) A knowledge graph, denoted as KG, is a triple KG =
(E, R, F), where E = {e1, e2, ..., en} is a set of entities, R = {r1, r2, ..., rn} represents a set of binary
relations, and F ⊇ ExRxE represents the relationships between entities (fact triple set).

Since the KG stores real-world information in RDF-style triplets (http://www.w3
.org/TR/rdf11-concepts/ accessed on 8 July 2021), such as (head, relation, tail), it can
be employed to support the representation of knowledge in different applications. For
example, in the medical industry, it can provide a clear visual representation of diseases
as mentioned in [23]; in e-commerce, it maps clients’ purchase intentions with sets of
candidate products as mentioned in [60]. The construction of KG is based on its entities

http://aksw.org/Projects/DBpedia.html
https://yago-knowledge.org/
https://yago-knowledge.org/
http://www.adampease.org/OP/index.html
http://www.adampease.org/OP/index.html
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
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(also known as nodes) and their interrelation with other objects, organized in the form of a
graph. Each entity is able to share its knowledge with other entities.

In Figure 1, two nodes represent different entities. There is a connection between
these two nodes that represents their relationship. The first node (Node A) is known as the
subject, the second node (Node B) is known as the object, and their relationship is known
as the predicate. This representation is the minimal KG that can exist. It is also known as a
semantic triple (codification of a statement in a set of three entities). Figure 2 shows an
example of a KG representing the following triples: (“Da Vinci”, “is a”, “Person”), (“Da
Vinci”, “painted”, “Mona Lisa”), (“Mona Lisa”, “is located in”, “Louvre”).

Figure 1. Basic graph with two entities and its relationship.

Figure 2. Extended graph with two entities and its relationship.

3.2. Long-Short-Term Memory (LSTM)

The motivation for using neural networks in this work, in particular LSTM, is due to
its proven efficiency in Sentiment Analysis. Although RNNs have proved to be successful
in several tasks, it is well-known that it suffers from a significant drawback, namely
the vanishing-gradient problem [61], making it difficult for the network to learn long-
distance dependencies. The use of memory units in the network helps to overcome this
drawback. These memory units decide what the network should remember and what it
should forget. These units are part of the LSTM networks.

The most important concept of LSTM is the cell state. The cell state is the mecha-
nism to transfer information throughout the network [62], the cell state is the memory
of the network, which allows it to remember or forget information. This information is
added or removed by three gates, namely the input, output, and forget gates, defined by
Equations (1)–(3)), respectively. These gates use a sigmoid activation function (represented
by g) [63,64]. Below are the equations that represent the gates. Upper-case variables represent
matrices, while lower-case variables represent vectors. The matrices Uq and Wq contain the
weights of the recurrent connections and the input, q index could be either the input gate (i),
the output gate (o) or the forget gate ( f ):

• The input gate (which tells what new information will be stored in a cell) is defined as:

it = g(Wixt + Uiht−1 + bi) (1)
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• The output gate (which provides the activation function with the final output of the
LSTM block at a timestamp t) is defined as:

ot = g(Woxt + Uoht−1 + bo) (2)

• The forget gate (which tells what information should be forgotten) is defined as:

ft = g(W f xt + U f ht−1 + b f ) (3)

The initial values are c0 = 0 and h0 = 0. The variables are:

1. xt ∈ Rd: represents a vector of dimension d to the LSTM unit.
2. ft ∈ (0, 1)h: activation vector of the forget gates.
3. it ∈ (0, 1)h: activation vector of input gates.

This mechanism is represented in Figure 3. The cell can keep a piece of information
for long-term periods of time and the gradient descent is not affected, and this makes
it possible to learn long dependencies on phrases. This is the main reason for choosing
LSTM networks. This network can be trained in a supervised environment mixed with
back-propagation algorithms.

Figure 3. LSTM’s cell gates and mechanism.

For the case of Bi-LSTM, it applies the same mechanism as in LSTM, but in this
network the input is fed through the neural network from the beginning to the end and
then again from the end to the beginning; this bi-directionality is what gives it the name
Bi-LSTM. It is expected that this neural network learns faster than LSTM.

4. Sentiment Analysis Based on KG: The Proposal

The proposed method is inspired by other works that are related to the representation
of text as graphs [52]. The combination of Knowledge Graphs and Deep Learning tech-
niques represents a different approach from the traditional n-gram representation with
the aim of better understanding of the sentiment, which is related to the representation of
text as graphs. KG and vector representation of text lead the Sentiment Analysis task in
tweets. Figure 4 illustrates every step taken in the proposal. The details of these steps are
explained below.
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Figure 4. Pipeline that represents the proposal’s steps.

The proposed approach starts with the construction of a dataset, that could be done in
different ways, for example, by querying an API or by accessing a public dataset. In this
case, the dataset is well-known and it has been used in previous studies. This dataset
should contain text information and a label. Following to the dataset extraction, the data
need to be pre-processed; the pre-processing step includes filtering unwanted values in
the text, lower-casing it, filtering stop words, etc. Then, the graph construction consists
of using KG (see Definition 1) to create the polarity classes for positive and negative
sentiment and the representation for the tweets in KG form. Each tweet and the sentiment
polarities (positive and negative) are represented as a KG. They are built from a subset of
the training set—i.e., one part of the training set is taken to produce the KG representing
sentiment polarities (one for positive, one for negative) and the other produces KG for
every tweet. Then, the dimensions of these graphs is reduced by applying the mutual
information criteria, reducing in this way the number of edges of the graphs. Afterward,
the distance metrics between the graphs of the tweets and the polarities are evaluated,
to obtain similarity measurements. The similarity comparison between the sentiment
polarities and the individual KG produces vectors used to train a classifier model, in this
case an LSTM network and a Bi-LSTM network. On the test set, each new tweet to be
classified is transformed into a KG and then its similarity to the polarity graphs is measured.
Deep Learning models combined with the explicit semantics of texts represented by KG
and the similarity metrics facilitate the traceability and explainability of the classification
results since these graphs can be visually inspected, while the accuracy of the results is
ensured. As an aggregated step, the proposal provides interpretability based on LIME.
Once the model is trained, it is important to try to understand how it makes predictions
and what features are the most important. The details of these steps are presented in the
following sections.

4.1. Dataset

The dataset used for the implementation of the proposed approach is Sentiment140
(http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip accessed on 2 July 2019),
which contains 1,600,000 tweets in English, labeled positive, negative, and neutral, as well as
meta-data describing each tweet. For the purposes of Sentiment Analysis, only the content
of the tweet text along with its tag is required. However, the neutral tag is not considered
in this work; therefore, the tweets considered are the ones that contain sentiment.

The dataset was divided into two pieces, one for training the model and the other for
testing it. The first 80% of the dataset was for training and the other 20% for testing. The

http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
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process of transforming the tweets into small KG also took place for this last 20%, and the
measurement of the similarities with the same metrics is explained in Section 4.5. Finally,
the predictive model runs with these new similarities as input to compute the F1 score of
the model and its efficiency.

4.2. Pre-Processing

The pre-processing of the raw text involves removal of characters that do not help to
detect Sentiment, such as HTML characters, elements that contain the special character “@”,
URL, and hashtags; transformation to lower case, since the analysis is sensitive to case letters;
expansion of English contraction, such as don’t, won’t; elimination of long words; elimination
of tweets that contain words longer than 45 characters; elimination of stop words, such as the, a,
this. Nonetheless, it does not include the lemmatization, since the interest resides on the
inflected form of the words, and not on their normal form.

4.3. Graph Construction

The automatic construction of KG demands finding a way to recognize the entities
and their relationships. The following steps describe the KG construction process:

1. Sentence segmentation: Split the text (a tweet, in this case) into sentences. Therefore,
a sentence has one object and one subject.

2. Entities extraction: An entity is a Noun or a Noun Phrase (NP). sentencePart of
Speech (PoS) tags help in this case to extract a single-word entity from a sentence.
For example, in the sentence “Rafael won the first prize”, the PoS tags classify “Rafael”
as a Nominal Subject (nsubj), and “prize” as a Direct Object (dobj); both of them
are syntactic dependency tags that contain the information needed for the formation
of the KG entities. For most of the sentences, the use of PoS tags alone is almost
enough. Nonetheless, for some sentences, the entities span multiple words; therefore,
the syntactic dependency tags are not sufficient. For example, in the sentence “The
42-year-old won the prize”, “old” is classified as the nsubj; nonetheless, “42-year-
old” would be preferable to extract instead. The “42-year” is classified as adjectival
modifier (amod)—i.e., it is a modifier of “old”. Something similar happens with the
dobj. In this case, there are no modifiers but there are compound words (collections
of words that form a new term with a different meaning); for example, “ICP global
tournament” instead of the word “prize”. The PoS tags only retrieve “tournament”
as the dobj; however, the extraction of compound words is critical. These words
are “ICP” and “global”. Hence, the subjects and objects along with its punctuation
marks, modifiers, and also compound words are essential for the extraction. Therefore,
parsing the dependency tree of the sentence contributes to this task. To accomplish
this, the modifier of the subject is extracted (amod in the dependency tree).

For example, for the sentence “The young programmer recently won the ICPC
global tournament”, its parse tree can give information about the PoS tags, defining the
determiners, verbs, modifiers, and subjects and grouping them in verb phrases (VP) and
noun phrases (NP) sub-trees, as shown in Figure 5. In this example, the entity “young
programmer” is identified as a subject and “ICPC global tournament” as the object of the
sentence. Therefore, for these cases, it is needed to include modifiers and adverbs in the
entities of the KG.
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Figure 5. Tree parser representation of the sentence: “The young programmer recently won the ICPC global tournament”.

3. Relationships extraction: To extract the relations between nodes, it is convenient to
assume that it refers to the main verb of the sentence. Therefore, the main verb repre-
sents the relationship between two entities. In the sentence in Figure 5, the predicate
is “won”, which is also tagged as “ROOT” or main verb.

4. Building the knowledge graph: In order to build the KG, it is necessary to work
with a network in which the nodes are the entities, and the edges between the nodes
represent the relations between the entities. It needs to be a directed graph, which
means that the relation between two nodes is unidirectional.

Figure 6 shows a KG representation of the parser tree presented in Figure 5. The enti-
ties of this small KG are given by “young programmer” and “ICPC global tournament”,
and the relation between the entities is the main verb, in this case the verb “won”. In this
way, a sentence is enough for constructing a KG. The two polarity KG are constructed from
positive tagged tweet sets and another negative tagged set, respectively, taken from the
training dataset. Then, with the other part of the training dataset, a KG is generated for
each tweet.

Figure 6. Knowledge Graph representation of the sentence: “The young programmer recently won
the ICPC global tournament”.

4.4. Dimensionality Reduction

Typical Machine Learning methodologies imply feature selection or dimensionality
reduction in order to improve metrics, such as accuracy or the mean squared error [65]. In
this work, the mutual information criteria for graphs is used. This criterion is applied after
the creation of the KG for the sentiment classes and tweets in the training process. Dimen-
sionality reduction discards edges so the graphs become smaller; therefore, computational
resources are optimized.

The edge filter with the containment similarity metric is used. The mutual informa-
tion criterion between the term (t) (edge) and category (c) (sentiment class) is defined in
Equation (4) [66], where A is the number of times that t exists in the graph of sentiment
polarities and in the graphs of the tweets of the second part of the training process; B is the
number of times that t does not exist in the graph of sentiment polarities but exists in the
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graphs of the tweets of the second part of the training process; C is the number of times the
second part of the training process expresses the sentiment of c and does not contain t; N is
the total number of documents in the second part of the training process.

PI(t, c) ≈ log
(

A× N
(A + C)× (A + B)

)
(4)

Finally, the average factor, Iavg(t, c), defines the contribution of the edge to the senti-
ment graphs. For every edge, Equation (5) computes the global mutual information, where
Pr(Si) is the percentage of tweets from the second part of the training process that express
the sentiment Si. Naturally, if this contribution for a certain edge is smaller than a certain
threshold (chosen accordingly to the problem or criteria of the researcher), then the edge is
discard.

Iavg(t, c) = ∑
i∈(+,−)

Pr(Si)× PI(t, c) (5)

Tweets have a limitation in length; thus, they are short pieces of text. Therefore, it is
necessary to use a classification model able to deal with this characteristic and also deal
with the long dependencies in the words in a tweet (i.e., dependencies of words that are
not strictly adjacent words or morphemes). In this sense, this work is based on LSTM and
Bi-LSTM networks, that are able to manage these text conditions [67].

4.5. Graph Similarities

The similarity between the graph that represents the tweet and the polarity graphs
expresses how the tweet is related to one polarity or to another. This indicates that if the
graph of a tweet is more similar to the positive polarity graph, this tweet is considered as
expressing a positive sentiment (as shown in Figure 7). Each similarity distance means
the percentage of correlation between the new graph and the polarity graphs. If a tweet is
more related to a positive polarity, and therefore its correlation is higher to this polarity,
then a positive label is assigned to this tweet. Otherwise, a negative label is assigned.

Figure 7. Similarity measurements.

To calculate the similarity of a tweet KG, the following graph similarity metrics are
relevant:

1. Containment similarity measurement: This is a graph similarity measurement that ex-
presses the percentage of common edges between the graphs, taking the size of the
smaller graph as the factor of this measurement. Given KGt as the knowledge graph of
a new document or tweet, and KGs as the knowledge graph of a polarity, Equation (6)
calculates the containment similarity measurement between these two graphs, where
µ represents a function that calculates the amount of common edges between the two
graphs passed as parameters.

Mcont = containment(KGt, KGs) =
∑e∈KGt µ(e, KGs)

min(|KGt|, |KGs|)
(6)
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2. Maximum common sub-graph similarity measurement: Given two graphs, KG1 and KG2,
the maximum common sub-graph of them, is a sub-graph of both graphs, such that
there is no other sub-graph of KG1 and KG2 with more nodes [68]. The measurement
of maximum common sub-graph is based on the sizes of common sub-graph between
the two graphs. Detecting the maximum common sub-graph between two graphs
with labeled nodes is a linear problem. Equation (7) is used to calculate the maximum
common sub-graph between KGt and KGs, where MCSN is a function that returns
the number of nodes that are contained in the maximum common sub-graph of these
graphs.

Mmsn = max_subgraph_nodes(KGt, KGs) =
MCSN(KGt, KGs)

min(|KGt|, |KGs|)
(7)

3. Maximum common sub-graph number of edges: It takes into account the number of
common edges that are contained in the maximum common sub-graph instead of
the nodes in common. This is reflected in Equation (8), where the Maximum Com-
mon Subgraph of Edges (MCSE) is the number of edges contained in the maximum
common sub-graph.

Mmsde = max_subgraph_edges(KGt, KGs) =
MCSE(KGt, KGs)

min(|KGt|, |KGs|)
(8)

The MCSE(KGt, KGs) is defined as the quantity of edges contained in the maximum
common sub-graph and maintain the same direction in both KGt and KGs. It is also possible
to measure the similarity using the edges but not taking into account if the direction
is maintained; this is measured in Equation (9), where MCSUE(Gt, Gs) represents the
Maximum Common Subgraph of Undirected Edges (i.e., total number of edges contained
in the maximum common sub-graph regardless of their direction).

Mmsue = max_subgraph_uedges(KGt, KGs) =
MCSUE(KGt, KGs)

min(|KGt|, |KGs|)
(9)

Thus, the vector used to train a classifier have eight similarity metrics (four for each
polarity), and it has the following format:

[Mcont+, Mmsn+, Mmsde+, Mmsue+, Mcont−, Mmsn−, Mmsde−, Mmsue−] (10)

The motivation of using these metrics is that they offer a numerical representation of
the graphs and also reduce the data structure repetitions [69].

4.6. LSTM and Bi-LSTM

As a predictive model, there is an implementation of two neural networks, an LSTM
and a Bi-LSTM. These models take as input the vector constructed in the previous step
(see Section 4.5). These networks are considered as the most effective models for sen-
timent prediction, since they have demonstrated their value in the task of recognizing
sentiment [70].

Figure 8 illustrates the steps for the construction of the training set and the respective
KG. The definition of the training set (a percentage of the whole dataset) occurs first (first
step). The second step is divided into two parts. The first part is used to build the KG
that represents the sentiment classes (positive and the negative polarities); labeled tweets
(positive and negative sentiment) enables the creation of a positive and negative polarity
KG (3rd step). The second part, in the third step, represents the creation of a KG for
every tweet, following the process explained in Section 4.3. Finally, the similarity metric
between every KG representing the tweet with the KG of positive and negative polarities
is calculated, resulting in a vector of eight dimensions (four measurements against the
positive KG and four against the negative KG—see Section 4.5) and a label of a sentiment
(4th step).

Naturally, the creation of a test set follows the same steps as previously described.
The classifier’s input vectors contain the eight different similarity measurements.

The 10-fold cross validation approach is part of the training of the LSTM and Bi-
LSTM classifiers, using the same training data. In every fold, 90% of the tweets are
used for training and 10% for testing. No added data were used, and no other statistical
measurements were taken.
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Figure 8. Transformation stages of a dataset to its vector form in the Knowledge Graph Method.

After the model is trained, it is able to execute predictions on the test set. The test set
was created with the same rules as the training set; this test set is useful for measuring the
performance of the model.

4.7. Lime-Based Interpretability

Once the model is trained, the results are passed to LIME to be interpreted. LIME
explains the behavior of the classifier around the predicted instance; it perturbs the input,
changing it into its neighbors and sees how the model behaves. Then, LIME weights
the perturbed data points and compares them with the original sample. It weights these
perturbed data points by their similarity with the original sample and learns an inter-
pretable model on these weights and the associated prediction. For example, to explain the
prediction of the sentiment “I love this summer”, LIME perturbs the sentence and makes
predictions for sentences like “I love summer”, “I love”, “I summer”, which are examples
of perturbation of the original sentence/sample. The classifier is expected to learn that the
word “love” is relevant and it expresses the correct sentiment. Thus, after the model is
trained and tested, the introduction of interpretability allows us to understand how the
predictions were made and the importance of the distance metrics for the KG.

5. Results

This section contains the evaluation of the proposed LSTM and Bi-LSTM enhanced
with KG models through the metrics F1-score, precision, and recall and its comparison
with state-of-the-art techniques. Afterward, the interpretation of the results and also how
the interpretability is done through the use of LIME.

5.1. Performance Evaluation

Implementations of an LSTM (Character n-gram based LSTM) and a Bi-LSTM (Char-
acter n-gram based Bi-LSTM) classical versions are implemented as baselines, representing
state-of-the-art techniques for learning long-distance dependencies, in order to to evaluate
the LSTM enhanced with the KG version (LSTM with KG) and Bi-LSTM enhanced with
the KG model (Bi-LSTM with KG). For the traditional character n-gram embeddings ver-
sions, the original input is the sentence, and then, using max-pooling, the more important
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n-grams are extracted, combining the maximum values of each layer of the network in only
one vector to finally use a Sigmoid function to make the prediction.

For the implementation, Python 3 with the Keras library and TensorFlow, using
GoogleGPUs (https://colab.research.google.com/notebooks/intro.ipynb#recent=true ac-
cessed on 3 September 2021), were confirmed to be an extraordinary toolset. GoogleGPUs is
a free cloud-based version of a Jupyter notebook, which allows optimizations for big arrays
in Colab Notebooks. The hardware available in these notebooks is a 12GB NVIDIA Tesla
K80 GPU that can be used up to 12 h continuously. The hyperparameters for optimizations
were chosen empirically: (i) Batch size is 500, Max length of the input sequence is 280, since
280 is the maximum length of a tweet, and the embedding matrix is initialized to 0; (ii) Em-
bedding layer created within the Sequential model given by Keras; (iii) SpatialDropout1D
layer to delete 1D feature maps, promoting independence between features; and (iv) LSTM
and Bi-LSTM layer given by Keras.

These experiments show that Dimensionality Reduction helps to improve the precision
of the method, since it decreases the number of edges in the KG. Results are shown in
Table 3 in terms of F1 score, precision, and recall.

The proposed approach based on KG has a higher score with LSTM (LSTM with
KG in Table 3) than with Bi-LSTM (BI-LSTM with KG in Table 3); nonetheless, this is a
more complex and fast convergence model. Comparing both versions of the proposed
models with KG against the two classical Deep Learning models, note that the character
n-gram-based Bi-LSTM model presents the worst results. LSTM shows better results for
both KG and character n-gram-based LSTM. For both cases, F1 scores are quite similar, as
results of LSTM with KG are better than results of character n-gram-based LSTM; actually,
precision and recall values of LSTM with KG are the best among the four models, meaning
that the proposed model is able to make correct predictions and the ratio of correctly
predicted values tends to be high as well. These results show that the combination of KG
with a classifier is appropriate for detecting the feelings expressed in short texts.

Table 3. Results for experiments.

Model F1 − Score Precision Recall

LSTM with KG 0.884 0.880 0.890
Bi-LSTM with KG 0.757 0.690 0.840

Character n-gram based LSTM 0.849 0.840 0.860
Character n-gram based Bi-LSTM 0.852 0.851 0.856

Besides the fact that results are the state of the art for Sentiment Analysis, there are
several advantages of the proposed approach: (i) it enables easily creating a KG that can
be inspected, which is conducive to more traceable and interpretable classification results;
(ii) the explicit semantics of texts are represented by KG, which capture grammar, long-
distance dependencies, and neologism and thus are more suitable for detecting sentiment in
micro-blogging texts; and (iii) this approach represents a way of doing Sentiment Analysis
that can be used in other contexts, for example, recognizing topics based on the semantic
provided by KG and expanded with the use of Linked-Data, which are indeed complex KG.

5.2. Interpretability

This section illustrates the interpretability of two tweets, one positive and one negative.
Figure 9 shows the process of interpretability for a positive (left side) and a negative (right
side) tweet. Mi with i ∈ [1, 2, ..., 8] represents the vector with graph similarity metrics
as explained on Section 4.5. The original positive tweet is: “cook thinneed to eat it go
figure” and the original negative tweet is: “missed sam spintonight stooped work boo”.
After the cleaning process, the first tweet becomes into “cook thin need to eat it go figure”;
the similarity metrics vector of this tweet is given by the following values:

[27.0, 293.0, 287.0, 293.0, 2.0, 2.0, 41.0, 93.0].

https://colab.research.google.com/notebooks/intro.ipynb#recent=true
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Figure 9. Local explanation of a positive and negative tweet, on the left and right, respectively.

It seems obvious that the similarity to the positive class is greater than to the negative
class, since the first four similarity measurements show a greater similarity to the positive
polarity. The LIME output of this tweet shows that the model is 93% confident that this
is a positive classification, because the values of M3 (Mmsde+) and M6 (Mmsn−) increase
the tweet’s chance of being classified as good. In other words, the explanation assigns
positive weight to the containment similarity measurement between the Positive Polarity
Graph and the KG of the tweet. It also assigns positive weight to the Maximum Common
Subgraph of Undirected Edges between these two graphs, i.e., M3 and M6.

After the cleaning process, the second tweet becomes “missed sam spin tonight
stooped work boo”. The graph similarity metrics vector is given by the following values:

[12.7, 46.3, 66.3, 10.6, 98.9, 123.7, 257.0, 230.2]

The analysis of these similarity metrics is analogous to the previous one. The similarity
to the negative class is bigger than to the positive class; therefore, it is considered or
classified as negative. The LIME output of this tweet shows that the model is 75% confident
that this is a negative classification, because the values of M1 (Mcont+), M2 (Mmsn+), M4
(Mmsue+), and M8 (Mmsue−) increase the chance of the tweet being classified as negative,
while the M3 (Mmsde+) is the only one that decreases it.

6. Conclusions

This work shows that Knowledge Graphs combined with Deep Learning techniques
are able to detect sentiment in short segments of text. Knowledge Graphs can capture
structural information of a tweet and also part of its meaning. The proposed model is
based on the use of graph techniques and similarity metrics between graphs. The result of
the comparison of graphs (i.e., graph similarity measurements) is a vector, which is fed
later to the neural networks, which recognize the polarity of the sentiment. The study
of sentiment through Knowledge Graphs and Deep Learning represents an interesting
challenge that has some limitations. There could be scenarios where the data are limited
(small dataset), and this can lead to an under-fitting classifier unable to generalize a rule
for distinguishing sentiments.

The recognition of entities and their connections is crucial to the proposed approach,
the use of PoS tagging allows performing this operation. Results are comparative with
the ones encountered on literature for the same problem. The proposed methodology is
simple, and the main contribution is to show that the construction and good manipulation
of Knowledge Graphs leads to state-of-the-art results. Knowledge Graphs are suitable for
detecting sentiment in micro-blogging texts, provides more informed and traceable Deep
Learning algorithms that produce higher accuracy scores, and have the potential to be
expanded with the use of Linked-Data, thanks to the properties of the Knowledge Graphs.
Adding interpretability with LIME enables a better understanding of the importance of
similarity metrics between graphs and gives a deeper insight into what the algorithm is
doing, since it focuses on how the prediction is made.

The use of Knowledge Graphs has proven to be useful to detect semantic information;
therefore, this type of graph can be applied in other areas. As future work, it is planned
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to investigate how the Knowledge Graphs interact with other applications, such as cross-
domain polarity classification [71], since they use semantic networks and these can be
enhanced with the use of Knowledge Graphs. Another future work for the Knowledge
Graphs for Sentiment Analysis is in the area of irony detection [72], where the sentiment
helps to differentiate between an ironic and non-ironic tweet.
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