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Abstract: The significant advantage of deep neural networks is that the upper layer can capture
the high-level features of data based on the information acquired from the lower layer by stacking
layers deeply. Since it is challenging to interpret what knowledge the neural network has learned,
various studies for explaining neural networks have emerged to overcome this problem. However,
these studies generate the local explanation of a single instance rather than providing a generalized
global interpretation of the neural network model itself. To overcome such drawbacks of the previous
approaches, we propose the global interpretation method for the deep neural network through
features of the model. We first analyzed the relationship between the input and hidden layers to
represent the high-level features of the model, then interpreted the decision-making process of neural
networks through high-level features. In addition, we applied network pruning techniques to make
concise explanations and analyzed the effect of layer complexity on interpretability. We present
experiments on the proposed approach using three different datasets and show that our approach
could generate global explanations on deep neural network models with high accuracy and fidelity.

Keywords: neural network; explainable artificial intelligence (XAI); interpretability

1. Introduction

Unlike conventional machine learning techniques, which perform well while trained
with hand-designed features extracted by humans, deep neural network models show
decent performance even using low-level data directly because units in the upper layer can
represent high-level features by information acquired from the lower layer [1]. Based on
the characteristic that neural networks map low-level features to high-level features during
the training process, transfer learning has been proposed to reduce the training cost of
neural networks [2]. The basic idea of transfer learning is to import the network parameters
from a trained model with a similar data domain. This method makes it possible to skip the
process of training high-level features from low-level data and build a new neural network
from high-level features suitable for the desired application.

However, it was not easy to guarantee that the neural network acquired sufficient
knowledge about the domain during the training process. Contrary to expectations, deep
neural networks only have a shallow understanding of a specific task and thus have a
limited capacity to transfer knowledge [3]. Determining whether a neural network has
captured sufficient high-level features from the data domain is essential to avoid adapting
transfer learning to model with unsuitable data.

Various explainable artificial intelligence (XAI) studies explain the decision-making
process of neural network models in the human-understandable form to solve the dif-
ficulty of intuitively understanding acquired knowledge of the model [4–6]. Classical
approaches have provided explanations in logical rules from combinations of input units
that activate output units. These approaches could provide adequate explanations with
structured data but produced explanations that were difficult for humans to understand for
unstructured data, such as images. Modern approaches, such as CAM [7], LIME [8], and
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attention-based explanation [9], provide a local explanation for unstructured data. How-
ever, these approaches only generate an explanation for a single instance and only indicate
the area the neural network focuses on rather than represent the acquired knowledge of
the trained model.

To generate a global explanation for deep neural networks trained with an unstruc-
tured dataset, we propose a feature-based rule explanation (FEB-RE) method to visualize
high-level features and provide a logical explanation for humans. We first determine the
correlation between the input units and high-level feature units and then, based on that,
generate a visualized activation map for the feature units. Next, we generate explanations
via decompositional approaches to high-level feature units with generate an if-then rule,
where the premise is visualized feature units.

In addition, we identify the adverse effect of the complexity of the network structure
on the interpretability of the explanation. We also introduce neural network pruning
techniques with a simple heuristic to remove duplicated and complementary units to
minimize adverse effects caused by the structural complexity.

The experimental results demonstrate that FEB-RE generates explanations that are not
significantly different from the original neural network. We also prove that the heuristic
method used for network pruning effectively reduces the network size and makes the
generated explanation concise and comprehensible. To the best of our knowledge, this
paper is the first attempt to generate a global explanation based on high-level features of
the neural network.

Our main contributions can be summarized as follows: (i) We introduce a methodology
for visualizing high-level features of trained fully connected neural networks. (ii) We
present a global neural network interpretation technique based on high-level features.
(iii) We propose a simple heuristic pruning technique that can remove duplicated and
complementary units of neural networks.

The remainder of the paper is organized as follows. In Section 2, we review the XAI
techniques for describing neural networks. Section 3 introduces the techniques used in the
FEB-RE method in detail. Next, Section 4 describes the experiment settings and evaluation
metrics, and Section 5 explains the experimental results demonstrating the FEB-RE. Finally,
we conclude the paper and discuss future work in Section 6.

2. Related Works
2.1. Rule Extraction from Neural Networks

The study of extracting rules from neural networks trained with structured data is
mainly classified into three approaches: Pedagogical, decompositional, and eclectic [4,10].

Pedagogical approaches extract rules from the neural network by analyzing the rela-
tionship or building interpretable models as a surrogate model with the input and output
values of the neural network. These methods are often called black-box methods because
they extract rules without knowing the internal structure of the neural network. For exam-
ple, binarized input-output rule extraction [11] builds a truth table from the neural network
input and output values and generates a ruleset. Validity-interval analysis [12] extracts
the rule by assigning a random input value to the neural network and finding a stable
section where the output value does not change while slightly changing the input value.
Pedagogical approaches have the advantage of extracting rules at a low cost and using
various interpretable models. However, these have been criticized for not interpreting
neural networks but indirectly analyzing them through alternative models.

Conversely, decompositional approaches extract rules from every neural network
unit, concatenating them to generate rules for the entire neural network model; these are
also known as white-box approaches. KnowledgeTron (KT) [13] determines the set of
connections activated by each perceptron through a breadth-first search and converts the
set as an if-then rule in a disjunctive normal form, generating a ruleset for the entire neural
network by rewriting rules from the output layer to the input layer. The ordered-attribute
search (OAS) [14] is similar to the KT, but this algorithm extracts rules after sorting the
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weights of the perceptron in descending order; thus, it is possible to prune unnecessary
rules and quickly search the necessary rules. The continuous/discrete rule extractor via
decision tree induction (CRED) [15] converts each perceptron into a decision tree based
on the C4.5 algorithm with the training data then extracts the if-then rule from the tree.
The biggest strength of decompositional approaches is that they generate rules through
the process equivalent to how neural networks work. However, these approaches are
challenging to use with neural networks with deep layers due to their shortcomings.

First, decompositional approaches place limitations on the activation function because
asymmetry activation functions, such as the rectified linear unit (ReLU) function, are hard
to convert into a binary rule or fuzzy logic since the range is different for each perceptron. In
addition, the rule uncertainty, which is an error generated while converting the perceptron
into a rule, increases as the layer deepens, resulting in a significant error in the rule for
the entire neural network [16]. Most of all, the cost of decompositional approaches is
the biggest problem since it is exponential [10]. Therefore applying the decompositional
approach to the deep neural network [16–18] exhibits results with limited layers and unit
size, and even under these conditions, failure often occurs due to the cost.

The eclectic approach is difficult to define clearly, but it takes advantage of the peda-
gogical and decompositional approaches. For example, the fast extraction of rules from
neural networks (FERNN) [19] algorithm samples some of the training data and analyzes
the activation value of the hidden unit based on sampled values, creating a C4.5 decision
tree to generate the rules. The RX [20] creates a cluster based on the value of the hidden
unit and creates a rule between the cluster and output. Then, it searches the input unit that
activates the hidden unit and merges the two rulesets.

2.2. Neural Networks Explanation

Various techniques have been introduced to explain deep neural networks trained on
unstructured image datasets [5,6,21]. Since it is difficult to cover all studies, we are briefly
cover significant studies.

Layer-wise relevance propagation [22] is a technique to find units with high relevance
that affects the classification result for each layer when a data instance is given and finally
provides a visualized explanation by finding the relevance of the input units and clas-
sification result. CAM [7] represents where the neural network focuses by generating a
heatmap based on the influence of each unit of the fully connected layer on classification
with a given image instance. LIME [8] generates an explanation based on the classification
result of random sampling instances adjacent to a given single instance. Xu, Kelvin, et al.
presented the first attention-based technique that shows the features that are noticed in the
process of classifying a given instance [9].

These are explanation techniques for neural networks that have trained images
datasets but only provide local explanations. Since local explanation only explains for a
specific instance, it cannot properly explain other instances. In addition, the local explana-
tion only describes the classification process after input a given data instance to the neural
network, not the knowledge learned by the neural network. Therefore a global explanation
method to image dataset is necessary to figure out what knowledge the neural network
has trained from the data domain, not the classification process of a given instance.

3. Feature-Based Rule Explanation

This paper proposes a FEB-RE method to explain the image dataset using an eclectic
approach. The overall operation process is presented in Figure 1. The presented method
consists of the following steps:

1. Training a fully connected neural network using datasets.
2. Defining one of the hidden layers to analyze the high-level features as a high-level

feature layer. We assume that each hidden unit of the high-level feature layer has
learned one high-level feature. After that obtaining the input units (low-level features)
that activate the high-level feature unit.
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3. Applying network pruning to the high-level feature layer. If there are unnecessary
units in the layer, it becomes an obstacle to generating a concise explanation of the
network and also increases the computation cost.

4. Obtaining a ruleset to activate the output layer using the pruned high-level features
based on the decompositional approach. The generated explanation reveals how
the entire neural network works by if-then rulesets through visualized high-level
features.

Figure 1. Feature-based rule explanation (FEB-RE) applicable structure of the fully connected neural
net-work and overall explanation generated approaches used in each layer.

The FEB-RE method presented in this paper has several advantages over the existing
neural network explanation methods.

First, we only give a slight limitation to the activation functions. Since rules must
be generated in all neural network units, the existing decompositional approaches, such
as [13,14,16,23], must limit the activation function, making it difficult to cope with the
vanishing gradient problem [24]. However, FEB-RE restricts a sigmoid function only
for the high-level feature layer, thus other layers can choose activation functions freely.
Therefore, proposed method is less affected by the vanishing gradient problem. In addition,
because FEB-RE performs decompositional analysis only on limited layers, it can also
handle problems caused by the uncertainty of the rules.

Second, FEB-RE can generate an explanation for the neural network with a feasible
computational cost. FEB-RE does not apply a decompositional approach to all layers but
considers the network size and arbitrarily adjust layers to be analyzed decompositionally,
so cost constraints are less affected. Moreover, applying network pruning to subtract the
redundant units minimizes the computational cost that may unnecessarily occur.

Third, FEB-RE does not interpret the neural network using the input unit directly;
instead, it interprets it based on the high-level features learned by the neural network. When
a neural network is analyzed using pedagogical approaches for unstructured datasets, the
generated explanation is too complex for humans to understand, or a specific feature takes
a large part in the explanation. Algorithms, such as CAM [7] or LIME [8], do not explain
what the neural network has learned but only show where it focuses while classifying
datasets. On the other hand, FEB-RE first analyzes and visualizes the high-level features of
the trained neural network at the input unit level then generates an explanation for the
entire network based on high-level features; therefore, FEB-RE can provide explanation for
image data with logical form by visualizing high-level features.

3.1. Neural Network Structure

The FEB-RE can apply can be applied to the fully connected neural network with
a classification task to generate an explanation. Training Dataset D is defined as D =
{(x1, y1), (x2, y2), · · · , (xl , yl)}, where x is input instance, and y is output instance. Input in-
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stance x is m-dimensional vectors with normalization, so x ∈ Nm and N = {x | 0 ≤ x ≤ 1}.
output instance y is one-hot vector with k dimension, so y ∈ Ck and C = {0, 1}.

The structure of the fully connected neural network is depicted in Figure 1. Neural
network consists of an input layer I, hidden layers, and an output layer O like a general
fully connected neural network. One of the hidden layers that we want to analyze is
designated as a high-level feature layer H. Since input layer I is composed of m units,
I = {i1, i2, ..., im}, where i means input unit. Similarly, if there are n feature units h in
high-level feature layer, H can be defined as H = {h1, h2, ..., hn}. The output layer O should
be composed of k units as same as the output data, so O = {o1, o2, ..., ok}, where o means
output unit.

Any activation functions, such as ReLU, leaky ReLU, or ELU, can be applied to other
hidden layers, but the high-level feature layer is limited to only using the sigmoid activation
functions. Restricting the activation function of the high-level feature layer limits the range
of values while visualizing the feature activation map and generating explanations by the
decompositional method.

To minimize the uncertainty of the rule that occurs in the neural network interpretation
process, we apply hidden unit clarification [16] as a regularization term with the high-level
feature layer and hidden layers higher than the high-level feature layer as follows:

Lossh = Loss + c ∑
j

min
{

1− hj, hj
}

. (1)

With hidden unit clarification, we can train the neural network weights so that the
activation values approximate the maximum or minimum values of the activation function.

3.2. High-Level Feature Visualization via an Activation Map

We represent high-level features by visualizing input unit combinations that activate
feature units of high-level feature layers, making it possible to overcome the limitation
of previous studies that did not indicate knowledge the neural network acquired. To
determine the input unit effects on the activation of the feature unit, we used a modification
of the Pearson correlation coefficient [25]. The range of the input units and feature units is
limited through normalization of the input data and the limitation of activation function;
thus, there is no problem using the Pearson correlation coefficient.

The correlation between the single high-level feature h and the single input unit i, ρh,i,
can be expressed as follow:

ρh,i =
∑l

j(h(xj)− h(x))(i(xj)− i(x))√
∑l

j(h(xj)− h(x))
√

∑l
j(i(xj)− i(x))

, (2)

where h(xj) means the activation value of the high-level feature when the jth training
instance comes in, i(xj) means the value corresponding to the input unit among the
training instances (i.e., the jth value of vector x). In addition, h(x) = ∑l

j h(xj)/l, and

i(x) = ∑l
j i(xj)/l, each represent the expected values of h and i with dataset D. According

to the Cauchy-Schwarz inequality, ρh,i has a value between +1 and −1. As the value of ρh,i
is closer to +1, it means that input unit i has a effect on activating h, and conversely, as the
value of ρh,i is closer to −1, it means that i has an effect on deactivating h.

However, we need to extend the above formula since we need to find all input units
that activate the feature unit. Therefore, we need to find the correlation ρh,I between
the single feature unit h and all input units I for all feature units in H as obtained in
Equations (3) and (4):

ρh,I =
{

ρh,i1 , ρh,i2 , · · · , ρh,im
}

, (3)

ρH,I =
{

ρh1,I , ρh2,I , · · · , ρhn ,I
}

. (4)
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Figure 2 is a visualized activation map of the features obtained by correlating hidden
units and input units. If input units are involved in activating the hidden unit, the units are
visualized as red. Conversely, if the input unit deactivates the hidden unit, it is visualized
as blue, and if there is no correlation, the unit is visualized as yellow. The proposed
method enables observing the shape of each high-level feature, not just the focus area of
the neural network.

Figure 2. Visualized activation map of feature units and the pruning process of a neural network
trained on MNIST data. Visualized feature units are red if the input units influence the feature to be
active; otherwise, they are blue. (a) Visualized high-level features of an unpruned neural network.
(b) Pruning duplicated high-level features in (a), but with some features complementary to each
other. After removing complementary features, the most optimized features are in (c).

3.3. Pruning Redundant Units

Selecting the optimal hidden unit size is one of the issues in using neural networks.
Recently, with the development of technology, rather than finding the number of hidden
units suitable for the data domain, the size of the hidden unit is set generously. While to
train a neural network with lower error, unnecessary hidden units are not a substantial
problem, but such unnecessary units could cause difficulty during interpreting neural
networks.

Studies like [20,26] have used the technique to prune the inactivated unit to handle
these problems. However, we applied two other network pruning techniques using simple
heuristics: Duplicated unit pruning and complementary unit pruning. We did not prune
inactivated units because both OAS and CRED methods, which we used as decompositional
modules, are hardly affected by less influential units, and inactivated units are merged into
a single unit while pruning duplicated units.

First, to remove duplicated units activated by the same or similar input units among
the feature units, we calculated the similarity between hidden units to find which units
were duplicated. The similarity between the two hidden units ha and hb for the training
data D can be obtained using Equation (5):

S(a, b; D, h) = 1− ∑l
i‖ha(xi)− hb(xi)‖

l
. (5)

For each data input x of the dataset D, the similarity of the hidden unit activation
values was obtained by calculating the euclidean distance ‖ha(xi)− hb(xi)‖ between the
two hidden unit activation values. High-level feature layer use sigmoid function as acti-
vation function, so 0 < h(x) < 1, and therefore the condition 0 < ‖ha(xi)− hb(xi)‖ < 1
is satisfied. However, the distance between ha and hb is close to 0 as the difference of
activation values is small, while the similarity S should have a value close to 0 when the



Electronics 2021, 10, 2687 7 of 20

difference is big. Therefore, similarity can be obtained by simply subtracting distance from
1, and also satisfies 0 < S < 1.

Duplicated units were selected from feature units that exceed the specified threshold
value τr after calculating the similarity between all feature units. After obtaining groups
of feature units whose similarity exceeds τr, the input weights of the new feature units
were assigned by averaging the input weights of the feature units belonging to the same
duplicated group. Similarly, after summing all the connection weight values to the next
layer and assigning them to a new unit, duplicated units were removed, and a new unit
was connected to the neural network.

During the neural network training process, we found a tendency to learn not only
duplicated but also complementary units, which are activated with the same inputs while
the result of activation is the opposite. These complementary units also must be removed
because overlapping features appear when analyzing the neural network, making interpre-
tation difficult.

To overcome this problem, we applied an additional pruning technique to remove
complementary units. The approach is similar to that used when pruning duplicated units.
Figure 3 illustrates the heatmap of similarity and visualized feature units after removing
duplicated feature units. The heatmap reveals that H2 and H15, H3 and H6, and H4 and
H17 have low similarity. In these feature units, the input units have opposite effects on
activation. Therefore, it is reasonable to prune complementary units based on similarity.

Figure 3. Heatmap of the similarity between feature units and visualized high-level features after
pruning duplicated units in the neural network trained with the notMNIST dataset. Feature units
with low similarity have a complementary relationship.

To prune the complementary units, we calculate the similarity between the feature
units and define the feature units whose similarity does not exceed τs as a complementary
relation. After that, pruning starts with the complementary units with the lowest similarity.
We do not average the input weights this time but only use input weights from one unit
because we found that the weights are not trained to be opposite even in the complementary
relationship—still, the weight values to the next layer summed after reversing the weights
of one unit.

Figure 2 presents the overall process of neural network pruning. This example reveals
the process of changing the high-level features of the neural network trained to classify
0, 1, and 5 on the MNIST dataset through pruning. The visualized high-level features
of the trained neural network with 20 high-level feature units are presented in Figure
2a, where H0, H1, H5, H7, H9 are duplicated feature units, and H3, H8, H14, and H16 are
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another duplicated feature units. The results in Figure 2b are derived after the duplicated
network pruning process. When comparing Figure 2a,b, most overlapping feature units are
merged into one feature, leaving only six feature units. Moreover, H0 and H5 or H1 and H3
appear to be similar features, but there is a difference in the area correlated with the low-
level feature, and the area with a higher correlation value also has a difference. However,
high-level features H0 and H1, H2 and H4, and H3 and H5 are still complementary. Finally,
the result of removing these complementary feature units is in Figure 2c, leaving only
three units.

3.4. Feature-Based Rule Explanation via the Decompositional Module

We used decompositional methods as an explanation-generating module to gener-
ate explanations for the entire neural network using high-level feature units. Any rule
extraction method introduced in Section 2.1 can be used as an explanation-generating
module. However, because the rule generation process that concatenates the analyzed
results of each unit is similar to the nature of a neural network, we used decompositional
methods only.

Consequentially, we used the OAS method [14], which searches for rule combinations
that activate the perceptron, and the CRED method [15], which generates a rule with a C4.5
tree based on the data. The KT method [13] and Tsukimoto’s algorithm [23] were not used
because they are identical to OAS, and the M-of-N method [27] was excluded because this
approach was not suitable for pruned neural network models.

4. Experiments
4.1. Datasets

To demonstrate the performance of FEB-RE, we experimented based on image datasets.
As FEB-RE can only be applied to fully connected neural networks, there is a limitation in
the image dataset that can be used due to the neural network performance. We used the
numerical image dataset MNIST [28], the alphabet image dataset notMNIST [29], and the
clothing image dataset Fashion-MNIST [30] for the experiments.

The image process for a fully connected neural network is different from that of
humans; thus, results may not be clear for humans with full datasets. Therefore, we
prepare additional partial datasets to demonstrate that interpretable explanations with
high-level features can be generated with FEB-RE. The full dataset uses the entire dataset,
and the partial dataset represents a dataset extracted by selecting four categories that
present feature differences of the whole dataset. We selected 0, 1, 5, and 8 for NMIST; B, D,
F, and I for notMNIST; and top, pants, shoes, and bag for Fashion-MNIST. The details of
the three datasets used in the experiment are in Table 1.

Table 1. Datasets for experiment.

Dataset Train Instance Test Instance Features Categories

MNIST partial 23,937 3981 784 (28 × 28) 4
MNIST Full 60,000 10,000 784 (28 × 28) 10
notMNIST partial 5992 1498 784 (28 × 28) 4
notMNIST Full 18,724 3744 784 (28 × 28) 10
Fashion-MNIST partial 24,000 4000 784 (28 × 28) 4
Fashion-MNIST Full 60,000 10,000 784 (28 × 28) 10

4.2. Implementation Details

We used the TensorFlow 2.4.1 library to implement and train the neural network. Fully
connected neural networks with four hidden layers of the 784-400-200-100-50-10 structure
were used for the full dataset. For the partial dataset, 784-200-100-50-16-4 fully connected
neural networks with four hidden layers were used.

In FEB-RE, the high-level feature layer can be selected from any hidden layer, so we
selected the highest hidden layer as the high-level feature layer in the experiment. All
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hidden layers except the high-level feature layer used the ReLU activation function. The
high-level feature layer used the sigmoid activation function, and the output layer used
the softmax function for classification.

We used cross-entropy as a loss function to obtain the classification loss. Additionally,
we used the hidden unit clarification [16] as a regularization term of the high-level feature
layer while applying the clarification constant c = 0.5. We used the Adam optimizer [31]
with the default parameters for the learning rate l = 0.001, β1 = 0.9, β2 = 0.999, and
decay = 0. The batch size was set to 32 and trained for up to 20 epochs. At this time,
we separated 10% of the training data as validation data and applied an early stopping
technique based on validation loss.

Table 2 presents the training accuracy and test accuracy of each full dataset according
to the changes in the pruning threshold parameter τr. It shows that the number of high-level
features and accuracy according to the τr have a trade-off relationship. While τr = 0.95,
there was little change in training and test accuracy, but it did not significantly reduce the
network features. The number of high-level features remarkably decreased when τr = 0.9.
After that, there is only a slight change in the accuracy and number of high-level features,
and then the accuracy decreases sharply when the τr = 0.75. We set τr to 0.9 since we want
to prune features with higher similarity while appropriately reducing the high-level feature
unit. We set the complementary unit pruning threshold τs as 0.1, which is the symmetric
value of τr. After pruning the redundant units in the retraining process, we trained the
neural network for only one epoch with the training dataset with a batch size of 32.

Table 2. Comparison of training and test accuracy of networks according to changes in threshold parameters τr used for
pruning duplicated high-level features. Since there was no significant difference in accuracy while the threshold τr was
between 0.8 and 0.9, we used 0.9 as τr to prune features with high similarity.

Dataset MNIST Full notMNIST Full Fashion-MINST Full

Threshold
τr

# of
features 1

Training
accuracy

Test
accuracy

# of
features

Training
accuracy

Test
accuracy

# of
features

Training
accuracy

Test
accuracy

unpruned 50 99.70 97.90 50 98.10 97.36 50 93.32 88.98

0.95 34 99.69 96.81 31 97.77 97.08 38 90.5 86.91
0.9 18 97.68 95.6 18 96.77 95.86 20 86.97 83.56

0.85 15 97.46 95.17 14 96.32 94.75 17 86.26 82.87
0.8 13 97.21 94.67 12 95.35 94.4 15 84.66 81.59

0.75 10 95.74 92.35 10 93.16 91.32 12 82.02 79.29
1 of features denotes number of high-level features.

When using the OAS method, we set the threshold for activation to sigmoid 0.8 (0.2
for negation), so if the activation value of the combination was smaller than that, it was not
treated as a rule. In addition, we extracted only rules with the same length as the premise
with the first generated simplest rule because complex rules with many premises have
poor interpretability.

The CRED method generates rules based on the C4.5 tree algorithm [32]. A tree was
built based on the high-level feature unit activation value and the output unit classification
categories when we put the training data into the neural network. Decision tree pruning
based on the confidence factor was applied with a confidence level CF = 0.25 to prevent
the tree from overfitting and the generated rule from being overly complicated.

4.3. Evaluation Metrics

To quantitatively prove the performance of the explanation generated by FEB-RE, we
present the accuracy, fidelity, average coverage, and the number of the explanations based
on [16,17].

Accuracy measures how precisely given datasets are classified while using the gener-
ated explanation as a classifier. We aimed to determine how well the method explains the
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trained knowledge of the neural network, not whether it learns knowledge generously that
has not been previously encountered, so we evaluated the accuracy with the training data,
not the testing data.

Fidelity measures the differences in classification output between the original model
and generated explanation, given the same input data. In other words, it measures how
well the generated explanations approximate the original neural network. Fidelity is also
measured using the training data.

Accuracy and fidelity are closely related indicators. If the neural network model has
high accuracy and the generated explanation has high fidelity, the explanation has high
accuracy. However, in some cases, such as generating a concise and general explanation
from the neural network that is not generalized due to overfitting, a situation may occur
where the accuracy of the explanation is high, but the fidelity is low.

Coverage and the number of explanations are evaluation metrics indicating the ex-
planation quality. Coverage indicates the percentage of data that a single explanation
can represent, and average coverage is an evaluation metric that divides the coverage
of each explanation by the total number of explanations. High coverage means that one
explanation can cover many data, and high average coverage and accuracy with a small
number of explanations indicate that a small number of explanations can sufficiently cover
most data.

However, because the original coverage metric was a formula calculated for the rule
generated from models trained with a structured dataset, it can count which data are
covered by the rule. In contrast, FEB-RE generates an explanation for unstructured image
data, and we must modify the formula for calculating the existing coverage as follows:

coverage =
∑l ∑m‖xm−Exp(m)‖

m
l

, (6)

where Exp represents flattened image vector generate by explanation. Since the explanation
of FEB-RE is expressed by the IF-THEN rule that assumes high-level features as a premise
in DNF, it is possible to generate a representative image of conclusion. Exp(m) is mth value
of generated explanation and xm means mth value of input vector x. Therefore, the modified
coverage indicates the average of all distances between the representative image vector of
the explanation and the input data vector.

Additionally, to determine the performance of network pruning, we compared the
number of feature units, training accuracy, testing accuracy, and number of explanations
for each unpruned network, network-pruned duplicated units, network-pruned duplicated
and complementary units, and the retrained network after pruning.

5. Results
5.1. Effects of Pruning Network

Table 3 lists the results for the number of feature units, training accuracy, testing accu-
racy, and number of explanations for each unpruned network, network-pruned duplicated
units, network-pruned duplicated and complementary units, and the retrained network
after pruning on the three full datasets. During the network pruning experiment, only OAS
was used as the decompositional module for generating explanations.
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Table 3. Comparison of network pruning performance on MNIST, notMNIST, and Fashion-
MNIST full datasets. The pruned and retrained neural network has only a slight performance
difference compared to the unpruned neural network. However, the number of explanations is
significantly reduced.

Dataset Model # of High-
Level Features

Training
Accuracy

Test
Accuracy

# of
Exps

MNIST
Full

unpruned 50 99.70 97.90 -
pruned duplicate 18 97.68 95.60 335
pruned
complement 16 92.18 90.68 78

pruned+retrained 16 99.72 97.75 70

notMNIST
Full

unpruned 50 98.10 97.36 -
pruned duplicate 18 96.77 95.86 737
pruned
complement 15 91.18 90.65 103

pruned+retrained 15 97.65 96.26 75

Fashion-
MNIST
Full

unpruned 50 93.32 88.98 -
pruned duplicate 20 86.97 83.56 3368
pruned
complement 16 80.91 79.14 223

pruned+retrained 16 92.77 88.27 165

During pruning of the duplicated high-level features in all three datasets, the layer
size was reduced by more than 60%, and the model performance loss is slight without
a retraining process. However, removing the complementary high-level features causes
a significant loss of performance. This phenomenon is presumed to occur because the
weights cannot be trained oppositely, even if the high-level feature layer causes opposite
activations. However, after retraining the pruned neural network with only one epoch,
a negligible difference exists in the training and testing accuracy between the unpruned
network and the final result.

While no significant change exists in the accuracy, the number of explanations reduced
significantly after the network pruning process. The number of high-level features in the
unpruned network is enormous, so the number of explanations could not be obtained with
the limited memory and time. As pruning progresses, the number of generated explana-
tions is reduced by 4 to 17 times because the combination of weights in the perceptron is
exponential. The retraining process exhibits a slight decrease in the number of explanations,
despite no change in the unit size, which reduces the combination produced by training
the values of the weights more polarized to 0 or 1.

In Figure 4, we take the notMNIST partial dataset as an example to display the high-
level features and explanations that change according to the pruning progress. Figure 4a
illustrates the high-level features of the unpruned network, and there are many identi-
cal high-level features. For example, H0, H6, and H9 are similar, as are H2, H5, and H15.
Figure 4b presents one of the explanations generated in the unpruned network and consti-
tutes one explanation with 10 premise terms. Similar to high-level features, overlapping
premise terms exist, like H6, ¬H7, and H9 in the explanation, and such terms make an
explanation complicated to interpret.
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Figure 4. (a) Feature units of an unpruned neural network. (b) Example of an explanation generated
using unpruned features, which have many duplicated features. (c) Pruning results for duplicated
feature units. (d) Explanation generated from the feature in (c), which still has duplicate premises
due to complementary features. (e) Pruning results for complementary features where five features
remain. (f) Final generated explanation.

Figure 4c visualizes the high-level features generated in the network that removed
duplicated features, and the number of high-level features reduced from 16 to seven.
However, some features are in a complementary relationship, such as H2 and H3, or H4
and H5. Figure 4d is an example of the network explanation with removed duplicated
features, and the length of the premise term is reduced and simplified to five. However,
overlapping terms, such as H2 and ¬H3, still exist due to the complementary term.

Finally, the number of high-level features is reduced to five in Figure 4e, which pruned
the complementary features. Figure 4f reveals that the final generated explanation has only
three premise terms and high interpretability without overlapping terms.

5.2. Quantitative Analysis of Explanation

Table 4 compares the accuracy, fidelity, average coverage, and number of explanations
for all datasets. Original indicates the performance of the neural network model, which
is the base model for comparison with the generated explanation. After the pruning and
retraining processes, we used OAS and CRED as the decompositional modules to generate
rules from the feature units and generated explanations.

In most cases, generated explanations based on the CRED module perform best in all
evaluation metrics, with even higher accuracy than the original neural network. Unlike
CRED, experiments with the OAS module have slightly lower accuracy than the original
neural network in all cases. While the accuracy decreased, explanations with the OAS
module also provide a sufficiently high-quality explanation. The accuracy of the generated
explanations with CRED module is higher than that of the original neural network because
it produced the generalized explanations.
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Table 4. Comparison of accuracy, fidelity, coverage, and number of explanations generated by
proposed feature-based rule explanation(FEB-RE) with the OAS and CRED modules for all datasets.
The FEB-RE with CRED module generates high accuracy and high-quality explanations with a small
number of explanation.

Dataset Model Accuracy Fidelity Average
Coverage

# of Exps

MNIST
Partial

original NN 99.96 - - -
FEB-RE+OAS 99.65 99.67 23.13 29
FEB-RE+CRED 99.96 99.97 31.97 16

MNIST
Full

original NN 99.70 - - -
FEB-RE+OAS 98.20 98.19 8.08 70
FEB-RE+CRED 99.77 99.78 10.79 38

notMNIST
Partial

original NN 99.24 - - -
FEB-RE+OAS 98.71 98.89 24.43 28
FEB-RE+CRED 99.43 99.23 25.35 14

notMNIST
Full

original NN 98.10 - - -
FEB-RE+OAS 97.65 97.89 9.19 75
FEB-RE+CRED 99.25 97.14 8.03 42

Fashion-MNIST
Partial

original NN 99.77 - - -
FEB-RE+OAS 97.59 97.60 22.98 26
FEB-RE+CRED 99.69 99.98 24.97 14

Fashion-MNIST
Full

original NN 93.32 - - -
FEB-RE+OAS 92.77 92.92 8.86 165
FEB-RE+CRED 94.54 95.06 11.45 52

In Section 5.4, we analyze the cause of the difference in performance when using the
CRED and OAS modules in more detail.

5.3. Qualitative Analysis of Explanation

We designed the following experiment to compare FEB-RE with other XAI techniques.
We generated explanations with CAM [7], LIME [8], and LRP [22] techniques using MNIST,
notMNIST, and fashion-MNIST partial datasets. We only provide qualitative analysis of
these approaches with FEB-RE because it is difficult to compare quantitatively due to the
difference of the explanation representation.

LIME generated explanations from the same fully connected neural network model
that FEB-RE used and applied Quickshift image segmentation [33] while generating expla-
nation. CAM and LRP generated explanations from LeNet [34], and CAM especially apply
global average pooling.

Examples of the explanation generated by each technique are presented in Figure 5. In
Figure 5, the highlighted area with red means positive effect on classification, the area with
blue means negative effect, and the area with yellow does not affect the classification result.

Figure 5a,c,e show explanations generated by CAM, LIME and LRP. They provide
explanations for given instances only since these are techniques for generating local ex-
planations. CAM and LRP approaches represent the area or the shape where the neural
network is focusing. The LIME visualizes the segmentation that affects the classification
after creating a segment from the image. These explanations give us good inspiration, but
since these techniques only tell where the neural network is focusing, reasoning by humans
is essential to understand why the neural network made this decision. Looking at the ex-
planation for number 8 in Figure 5a for example, we can only guess that the crossed shape
has a significant influence on determining the number 8 because the heatmap generated by
the CAM is concentrated in the center.

Figure 5b,d,f represent samples of the explanations generated by FEB-RE. Since FEB-
RE is a global XAI technique, it can generate an explanation without any given instance and
also provide a general explanation for each class, unlike local XAI approaches. Moreover,
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while the local explanation can be applied to a specific instance, the global explanation
provided by FEB-RE does express the general decision-making process of the neural
network model. In addition, FEB-RE not only represents the heatmap of the final result but
also provides explanations in the logical form with high-level features as premises, so it is
possible to understand how each feature affects the final decision.

Figure 5. Example of explanations generated by CAM, LIME, LRP and FEB-RE with the MNIST, notMNIST and fashion-
MNIST datasets. The highlighted area with red means positive effect on classification, the area with blue means negative
effect, and the area with yellow does not affect the classification result. CAM, LIME, and LRP provide an explanation
for a specific instance since they are local explanation techniques. On the other hand, FEB-RE generates general global
explanations in logical form.

5.4. Comparison of OAS and CRED

Figure 6 compares feature-based rule explanation(FEB-RE) using the OAS and CRED
modules from the same neural network that trained the Fashion-MNIST partial dataset.
Figure 6a presents the visualized result of the high-level features of the neural network.
Among the explanations generated by each module, we selected those that share the same
features in each category. The results in Figure 6b,c indicate that explanations with the
OAS module have three to four premise terms, whereas the CRED module has one to two
premise terms. Comparing the representative activation map of the conclusion generated
by explanation reveals slight differences.
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Figure 6. Comparison of explanations generated by feature-based rule explanation(FEB-RE) with
the OAS and CRED modules with the Fashion-MNIST partial dataset. Explanations generated by
the OAS and CRED modules present similar representative activation maps. However, the CRED
module has a similar effect with shorter premise terms.

Taking a top as an example, both arms significantly influence activation, but there is a
difference in the body part. The representative activation map of the OAS module indicates
that the body part has some influence on deactivation, but in the CRED module, the body
part has little effect on activation. Considering human common sense, it is nonsense to
have a negative effect on classifying a body part for a top, so the explanation generated by
the CRED module can be considered concise and correct. In other words, the rule generated
by the OAS module uses two more unnecessary premise terms and generates an inaccurate
explanation from the human viewpoint.

It is easier to understand the experimental results in Table 4 by considering the results
of Figure 6. The reason the CRED module has high accuracy is that it generates a simple
and reasonable explanation. Because the explanation generated by the OAS module is
more complicated than the CRED module by adding a premise, even if it is the same
explanation, the number of explanations also increases. Furthermore, the average coverage
is also higher because the expansion created by the CRED module is more general than
that with the OAS module. Based on the experimental results in Table 4 and Figure 6, it
seems that the CRED module is superior to the OAS module in all aspects.

Figure 7 presents randomly generated sample images for each category from explanations
with the OAS and CRED modules. The sample image is different due to the representative
activation map in the process of generating it. The representative activation map was generated
using only feature units that appeared in the premises, whereas the sample image considers the
influence of feature units that did not appear in the premises. In the if-then rule, terms that do
not appear in the premise are “don‘t care” terms, so whether the term exists or not should not
affect the conclusion. Therefore, we created the sample image by randomly assigning weights
between−1 and 1 to terms that do not exist in the explanation.
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Figure 7. Randomly sampled image of the Fashion-MNIST partial dataset generated from the
explanation of the feature-based rule explanation (FEB-RE) with the OAS and CRED modules for
each category. The generated image in the explanation of the OAS module is stable, whereas the
CRED module has a significant difference between images and has incorrect images.

Significant differences exist between random sample images in the expansion of the two
modules. The sample images generated by the CRED module display significant changes,
whereas the sample images generated by the explanation of the OAS module maintain a stable
form. In Figure 7b, which is images generated by the explanation of the CRED module, the
10th, 12th, and 14th images of a top seem to be closer to pants than a top.

These results are based on the nature of the OAS and CRED modules. The OAS module
generates the explanation from the weight combination of the perceptron’s input that activates
the unit, whereas the CRED module generates the explanation based on the input values and
activation values of the unit. In particular, since the CRED module uses only the training dataset
as an input, the generated explanation is overfitted to the training dataset. In Figure 5b,c, the
CRED module generates an explanation for pants using only one premise, H2. On the other
hand, the OAS module adds two additional premises H0 and H3, which seem unnecessary.
The reason that there are no H0 and H3 in the premise of the explanation generated by the
CRED module is that there were no data affected by H0 and H3 in the training dataset for
pants, so it was not necessary to consider these premises. On the other hand, since the OAS
module generates an explanation that activates the perceptron based on the weight, the hidden
influence of high-level features can be considered regardless of the input value.

To verify the stability of the description generated by each module, we generated
200,000 randomly sampled images from explanations of each decompositional module then
obtained the fidelity with the original neural network results. The experimental results
shown in Table 5 indicated that the explanations of the OAS module had higher fidelity
for all six datasets. However, the generated explanations of the CRED module reached
different conclusions from the original network more than half of the time in the worst
cases, such as the MNIST full and Fashion-MNIST full datasets.

Because explanations generated by the OAS and CRED modules have pros and cons,
it is difficult to determine which module is better. An analysis using the OAS module is the
right choice to accurately understand the neural network decision-making process. If the
range of the data domain is not much different from the training data, it would be better to
use the CRED module to provide a more comprehensible explanation.
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Table 5. Comparison of fidelity between randomly sample images from feature-based rule explanation(FEB-RE) of each
decompositional module and original neural network. For all datasets, the explanation generated from the OAS module has
higher fidelity.

Model

Dataset

MNIST
Full

MNIST
Partial

notMNIST
Full

notMNIST
Partial

Fashion-
MNIST Full

Fashion-
MNIST Partial

FEB-RE+OAS 91.46 95.84 95.11 98.20 84.97 92.30
FEB-RE+CRED 48.79 69.64 64.59 73.99 43.72 67.86

6. Conclusions

We propose the FEB-RE method to generate an explanation for the fully connected neural
network trained with image dataset. First, we developed the activation map based on the
correlation between the input and feature units to visualize the high-level feature units of
the trained neural network in the human-recognizable form. Second, we generated the if-
then rule with feature units and explained the knowledge of the trained neural network in
the interpretable form. Third, we introduced a pruning technique to remove duplicated and
complementary units to provide a more concise and comprehensible explanation.

Experiments showed that the introduced simple heuristic pruning technique effectively
removes unnecessary high-level features while having little effect on the performance of the
neural network. Moreover, we prove that the generated explanation by the FEB-RE method can
sufficiently cover the knowledge of the original trained neural network. In addition, we show
the advantages of the proposed method through a qualitative comparison with the previously
studied XAI techniques. Moreover, we used two different methods to create explanations and
presented guidelines on the circumstances in which each method should be used.

In this study, we were able to prove that the methodology of analyzing high-level features
in the fully connected neural network and interpreting the knowledge inherent in the neural
network with high-level features is valid. This paper is the first step to interpreting neural
networks through features, and we will improve this methodology to apply to other models
like convolutional neural networks and complex image domains in future work (Appendix A).
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Abbreviations
The following abbreviations are used in this manuscript:

XAI Explainable Artificial Intelligence
DNF Disjunctive Normal Form
OAS Ordered-Attribute Search
CRED Continuous/discrete Rule Extractor via Decision tree induction
FEB-RE Feature-based Rule Explanation
ReLU Rectified Linear Unit
ELU Exponential Linear Unit

Appendix A. Explanations on Full Dataset

We present the generated explanations by FEB-RE with the neural network trained
on a full dataset in Figure A1. Figure A1a shows activation maps of high-level features of
neural networks trained with the notMNIST full dataset, and Figure A1b represents some
of the generated explanations for each class of notMNIST.

Figure A1. (a) Activation maps of the high-level features after adapt pruning techniques with the
neural network trained by notMNIST Full dataset. (b) Sample of the explanations for each class in
the notMNIST Full dataset generated by FEB-RE with OAS module.
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