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Abstract: The demand for large-scale analysis and research of data on trauma from modern warfare
is increasing day by day, but the amount of existing data is not sufficient to meet such demand. In
this study, an integrated modeling approach incorporating a war trauma severity scoring algorithm
(WTSS) and deep neural networks (DNN) is proposed. First, the proposed WTSS, which uses
multiple non-linear regression based on the characteristics of war trauma data and the medical
evaluation by an expert panel, performed a standardized assessment of an injury and predicts its
trauma consequences. Second, to generate virtual injury, based on the probability of occurrence,
the injured parts, injury types, and complications were randomly sampled and combined, and then
WTSS was used to assess the consequences of the virtual injury. Third, to evaluate the accuracy of the
predicted injury consequences, we built a DNN classifier and then trained it with the generated data
and tested it with real data. Finally, we used the Delphi method to filter out unreasonable injuries and
improve data rationality. The experimental results verified that the proposed approach surpassed
the traditional artificial generation methods, achieved a prediction accuracy of 84.43%, and realized
large-scale and credible war trauma data augmentation.

Keywords: artificial intelligence; data augmentation; war trauma severity score; deep neural network

1. Introduction

War trauma data are the core elements of wargaming, military medical service training,
and medical decision-making [1]. With the continuous development of modern warfare, the
analysis and research of physical war trauma data have become more and more important.
However, the amount of existing data is not sufficient to support large-scale analysis and
evaluation, and the confidential nature of war trauma data makes them hard to collect and
obtain from public channels. Therefore, efficient and credible data augmentation of war
trauma data has become a research work with great practical significance. To the best of
our knowledge, research on this topic has been limited. In the currently used method, the
additional physical trauma data are still artificially generated by well-trained experts or
doctors based on their professional knowledge and experience. However, this method is
not only inefficient, time-consuming, and labor cost-intensive, but also inherently biased
due to its dependence on personal subjective cognition, which is difficult to overcome. In
addition, different experts have no unified standard for assessing injury consequences.
Furthermore, the amount of artificially generated war trauma data is too small to meet the
actual needs. Therefore, we developed a standardized evaluation algorithm to improve the
quality of assessment of injury consequences and find an automatic, efficient, and credible
approach for small-sample augmentation of war trauma data.

More than half a century since the concept of artificial intelligence (AI) was first
formally proposed at the Dartmouth Conference [2], the Al technology has empowered
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amazing developments in many fields. Meanwhile, the external environment and chal-
lenges faced by the development of Al have also undergone profound changes [3]. These
changes are especially prominent in certain fields, such as big data, virtual reality, super-
computing, and mobile payment. Therefore, under the trend that the overall environment
is getting closer to big data, deep learning (DL), which is based on machine learning, has
become the core element of the application of Al [4] and has led to satisfactory applica-
tion results in many fields, such as cloud computing [5], image identification [6], sports
training [7], and AlphaGo [8]. Recently, Al technologies such as DL started to be gradually
applied in the field of medical research, including in promoting disease management [9],
computer-aided diagnosis [10], biomedical information processing [11], medical image
recognition [12], and disease prediction [13]. Especially in disease prediction, Al has been
recognized as one of the key elements of an accurate and robust prediction system [14].
For example, deep neural networks (DNNS), which are Al tools, are now used to assist
physicians and for automatic diagnosis. Specific application cases include early detection
of cardiovascular disease [15], cancer diagnosis [16], survival prediction [17], and injury
severity assessment [18].

Compared with machine-learning methodologies and shallow neural networks, DL,
which is now the core of the AI method, overcomes the research drawbacks of limited
samples and low generalizability by training large-scale annotated sample data to au-
tomatically extract complex sample features and fully optimize the model parameters
layer by layer. Thus, DL can carry out a more essential characterization of the data and
demonstrates a superior feature-learning ability [19]. In other words, with the existing
technology level, the larger the scale and the higher the quality of the annotated data are,
the better the performance of the model will be. Therefore, DL can effectively solve many
complex problems in the medical field [20,21]. In the prediction and diagnosis of some
diseases, the accuracy and efficiency of predictive DL models have surpassed those of
professional doctors and experts [22] and have thus made outstanding contributions to the
development of the medical field.

2. Related Work

Currently, there are two main methods of data augmentation: oversampling and
generative adversarial network (GAN). The principle of oversampling is as follows: if the
samples of different classes are imbalanced, the training data can be expanded by copying
the training samples of the minority class or adding noises to create new ones [23]. To solve
the imbalanced dataset learning problem, in 2002, Bowyer et al. [24] created a synthetic
minority oversampling technique (SMOTE), which generated synthetic minority class
samples. In 2005, Han et al. [25] proposed a borderline SMOTE algorithm, which considered
the minority instances near the borderline and the neighboring instances. The following
year, David et al. [26] proposed a cluster SMOTE; Bai et al. [27] proposed an adaptive
synthetic sampling approach (ADASYN) for imbalanced learning in 2008; Barua et al. [28]
suggested a MWMOTE in 2014; Douzas et al. [29] proposed a SOMO method in 2017.
Most of these methods focused on imbalanced learning by adding oversampling examples
to the imbalanced datasets. However, physical war trauma data are not imbalanced but
insufficient in every class. Therefore, the abovementioned oversampling techniques are
not suitable for the augmentation of physical war trauma data.

A GAN is a data augmentation model based on DL, which can be used to learn the
potential distribution of complex data, generate large-scale and high-quality synthetic sam-
ples, effectively solve the problem of insufficient data due to factors such as difficulty and
cost of sample acquisition [30]. Thus, the GAN has become one of the most promising data
augmentation approaches in recent years. A GAN is intrinsically a generation model [31]
that does not depend on a priori hypotheses but on the internal confrontation between
the data and the model itself to achieve unsupervised learning. To solve the inadequate
problem of real data, a GAN can generate synthetic samples of the existing data with the
same distribution [32]. A GAN’s structure consists of two feedforward neural networks:
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a generator G and a discriminator D. In the learning process, G continuously generates
new synthetic samples while D discriminates between the synthetic samples and the real
samples as accurately as possible, then gives feedback. In this way, the GAN has created
a game similar to “counterfeit currency identification” in which both sides of the game
continue to improve their abilities through confrontation.

However, the samples processed by a GAN are mainly two-dimensional data such as
pictures and voice signals. A GAN generates virtual images by rotating, scaling, cropping,
and changing the brightness, contrast, hue, saturation and adding random noise to image
data. However, the GAN is not a good choice for augmenting physical war trauma data.

In the medical field, the application of medical scoring is increasingly maturing,
especially in medical treatment, early diagnosis, trauma assessment, and other aspects to
the point that it now plays an important auxiliary role. For example, Gabriele Canzi et al.
introduced the comprehensive facial injury (CFI) score for comprehensively evaluating
severity of facial injuries [33]. Hasanka Ratnayake et al. used a laboratory-derived early
warning score to predict in-hospital mortality and admission to the intensive care unit
(ICU) [34]. Konlawij Trongtrakul et al. created the acute kidney injury (AKI) risk prediction
score for early prediction of the condition among critically ill surgical patients [35].

The trauma score is a common type of medical score that predicts severity of an injury.
It uses scientific scoring to quantitatively or semi-quantitatively assess injury severity and
its consequences to the injured [36]. The scoring standard was developed by a panel of
experts in the field who will continue to improve and optimize it based on feedback from
the application of the trauma score as well as from related research progress. Recently,
several improved injury severity score (ISS) methods have been proposed. Cristiane et al.
created a novel trauma and injury severity score (TRISS) for survival prediction [37]; Yang
et al. used a revised injury severity score (RISS) to evaluate the severity of injuries of
patients hospitalized due to an accident [38]; Shi et al. developed a weighted injury severity
score (WISS) to improve adult trauma mortality prediction [39]. For example, RISS divides
the human body into six public parts: the head, the face, the chest, the abdomen, the limbs,
and the body surface. Then, it squares the standard ISS for each of the most serious injuries
of the three most serious body parts of the patient and puts them together. As for the
second most serious injuries, only their ISS values are put together. If there are more than
four injured parts, the standard injury severity score of the most serious injuries of the
fourth part is added. The RISS equation is as follows:

RISS = (A2 4 Ay) + (B2 +By) + (C3+Co) + D (1)

where A1, By, and C; mean the most serious injuries of the three most serious body parts;
A, By, and C; mean the second most serious injuries of the three most serious body parts;
D means the standard injury severity score of the most serious injuries of the fourth part.

Taken together, various novel scientific scoring methods have gradually become doc-
tors” helping hands in evaluating patients’ injuries. Medical scoring belongs to the category
of predictive science. Because different scoring mechanisms have different limitations,
it is impossible to achieve 100% accuracy in prediction. However, with the continuous
advancements in medicine and with the revision, expansion, and improvement of the
scoring mechanisms by researchers in the related domains, medical scoring approaches are
expected to become more scientific, practical, and in line with objective reality [40].

On the other hand, the DL technology combined with knowledge from different
disciplines for interdisciplinary field research is an emerging trend. For example, Yang
et al. enhanced PIR-based multiperson localization by combining DL with the domain
knowledge [41], and Ding et al. combined the domain knowledge and DL for domain
adaptation in machine translation [42]. Therefore, combining DL with the domain knowl-
edge of medical experts according to the characteristics of war trauma data is key to the
successful application of DL to the augmentation of war trauma data.

Based on the above research, to solve the data augmentation problems with small-
sample war trauma data by studying the GAN’s idea and the medical trauma scoring
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method, this article proposes an approach that combines a WTSS with a DNN [43]. The
WTSS-DNN integrated model simulates the generative model in thought, including sample
generation and discrimination. The injuries are generated through random sampling and
evaluated with WTSS, and then marked with an injury consequence label; this is the
sample generation link. The assessment of the prediction accuracy of the DNN classifier
is combined with the discrimination of unreasonable injuries by the expert panel; this
is the discrimination link. After the accuracy and plausibility of the synthetic samples
have been judged, the expert panel provides feedback, based on which, on the one hand,
the characteristics of the synthetic samples are further investigated while the necessary
optimization and adjustments to the WTSS algorithm are made; and on the other hand, the
unreasonable synthetic samples are filtered out to improve data rationality. Eventually, the
accuracy and plausibility of the augmented data are expected to stabilize and be optimized
to generate credible samples.

This data augmentation approach is the first attempt to combine war trauma assess-
ment in the medical field with DL in the Al field. The WTSS-DNN integrated model can
automatically generate large-scale and credible virtual war trauma data, making it possible
to carry out related data-based military research, which has great practical significance. In
addition, this approach not only helps to solve the war trauma data augmentation problem,
but the WTSS algorithm we have proposed also provides a practical auxiliary tool for
quickly evaluating soldiers’ injuries and formulating treatment strategies.

3. Materials and Methods

In this section, we first explain the overall process of the research, then introduce the
WTSS algorithm in detail. Next, we introduce the structure of our DNN classifier, and then
determine the multiclassification metrics used in the algorithm to evaluate the performance
of the classifier. Finally, the method of judging the plausibility of the generated synthetic
samples is introduced.

3.1. Workflow of the Study

To solve the data augmentation problem and the supervised learning problem, an
integrated modeling approach that incorporates the war trauma severity scoring algorithm
(WTSS) and a DNN model was proposed. This approach’s workflow is summarized as
follows (Figure 1).

1.  Based on the known probability distributions, the injured parts, injury types, and
complications were randomly sampled and then combined to form a complete war
trauma injury condition. Next, we used the WTSS algorithm to calculate the severity
score and evaluate the consequences, after which the injury consequence label was
marked.

2. After the data preprocessing, to test the accuracy of the injury consequence prediction,
we trained a DNN classifier with the generated data and tested it with real data.

3. Through the Delphi method, the expert panel reached a consensus on unreasonable
multiple injuries based on the domain knowledge [44] and then filtered out the
unreasonable synthetic samples after the data generation.

4. After the predicted accuracy was evaluated and the unreasonable synthetic samples
were filtered out, credible virtual war trauma data were finally output.

3.2. Random Injury Generation

In the injury generation process, we first randomly sampled the injured part according
to the probability of occurrence; then, we randomly selected the possible injury types
according to the injured part; finally, we randomly sampled whether it is accompanied by
complications; if there were complications, we randomly selected the possible complica-
tions.
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Figure 1. Workflow of the WTSS-DNN integrated approach.

3.3. WTSS Algorithm

After injuries were randomly generated, the focus of the research was on how to
conduct standardized and accurate injury assessments. To solve this problem, we con-
ducted multiple rounds of discussions and communication with the expert panel and
finally decided to carry out a standardized quantitative assessment of various injuries by
proposing a war trauma severity scoring algorithm.

Via in-depth summary of the various existing trauma scoring algorithms and based on
the idea of multiple nonlinear regression and the key factors that affect severity of an injury
(injured part, injury type, complications, and whether there are multiple injuries), after
several rounds of testing and optimization, the equation for WTSS was finally determined

as follows: ]

F(P,X,C)=a+)_ PX;+C ()
i=0

where F represents the severity score; P; represents the weight coefficient of injury severity
for each of the seven body parts; X; shows whether the corresponding body part was
injured (if not injured, the corresponding X; value equals 0; otherwise, it equals the injury
severity standard score for the corresponding body part); C; shows whether the injury was
accompanied by complications (if there were no complications, C; equals 0; otherwise, it
equals the corresponding severity score); the bias a is the correction value for multiple
injuries (if there were multiple injuries, a equals —20; otherwise, it equals 0).

Next, we calculated F according to the predictive factors P;, X;, C;, and 4, then selected
the corresponding score interval according to the magnitude of F. Finally, we labeled
the synthetic samples with the consequences of the injury. The pseudocode of WTSS is
provided in Algorithm 1.
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Algorithm 1. War trauma severity score (WTSS).

Input: Weight coefficient of injury parts: P; = {Py, Py, ..., Pg}.
Injury type score: X; = {Xy, X1, ..., X4}
Complication score: C; = {Cy, Cq, ..., Cg}.
Correction value for multiple injuries: 2 = —20.
Output: Severity score: F(P, X, C).
1:n=0
2: fori=0to6do
if P; £ 0 and X; # 0 then
4 F(P, X, C) += P;*X;
5 n+=1
6: end if
7
8
9

if C; # 0 then
F(P, X, C) +=C;
end if
10: end for
11: if n > 1 then
12: F(P,X,C)+=a
13: end if
14: return F(P, X, C)

The WTSS algorithm is a nonlinear model which ignores complicated details of the
injury and uses a good correlation between the injuries’ consequences and the severity of
the injured parts and the injury types [45]. The weight coefficients of injuries in different
body parts are shown in Table 1, and the example of the standard severity score for injury
types and complications are shown in Figures 2 and 3. The score intervals for the injury
consequences are listed in Table 2.

Table 1. Weight coefficients of each body part.

Body Part Weight Coefficient
Head 8
Face 8
Neck 8
Chest / back 7
Abdomen 6.5
Pelvis / hip 6.5
Limbs 5

In a situation wherein different injury types or complications have the same standard
injury severity score in a certain injured part, we coded them to distinguish. Taking the
abdomen as an example, the coding method is shown in Figure 4.

As an independent scoring algorithm to determine severity of war trauma, WTSS
does not perform an extremely accurate diagnosis of a specific injury. Instead, it performs
standardized assessment and prediction of the most probable consequences of injuries from
an objective perspective to ensure accuracy of the injury consequence assessment. Addi-
tionally, WTSS is not only the core of our WITSS-DNN integrated model that contributes to
large-scale analysis and evaluation of war trauma data, but it also helps to quickly evaluate
and diagnose soldiers’ injuries on the battlefield and determine the treatment strategy. Fur-
thermore, in complex battlefield environments, the soldier’s age, physical constitution, and
other factors may cause different consequences of the same trauma. Consequently, WTSS
only objectively assesses the injury without considering the age and other physiological
indicators to meet the requirements of the ideal scoring method that is “easy to implement,
objective, and accurate” [38].
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Head Perforating injury I (8) Penetrating injury I (3.5) Fracture I (3)
Perforating injury II (11) Penetrating injury II (10) Fracture II (3)
F Perforating injury I (8) Penetrating injury I (6) Fracture I (3)
ace Perforating injury II (7) Penetrating injury II (6) Fracture II (3)
Neck Penetrating injury II (7) Soft tissue injury I (5) Soft tissue injury II (4)
Perforating injury I (7) Penetrating injury I (3)
Chest / Back Perforating iy l1{85) T Severe fracture I (7.5)
Abdomenga i oating iy L) Penetrating injury 1 (8) Tangential injury I (3)
Perforating injury 11 (7) Penetrating injury 11 (7.5) 18 jury
. . Perforating injury I (9) Penetrating injury I (8)
Pelvis /HIp b o rating injury 11 8) Penetrating injury II (7.5)
Limis Perforating injury I (7) Penetrating injury I (3)  Limb mutilationI (6.5)  Tangential injury I (3)
ML) Perforating injury II (5) Penetrating injury I (3) ~ Limb mutilationIT (6) ~ Tangential injury II (2)

Figure 2. Standard severity score for different injury types. In this Figure, I indicate that the injury is
a blast injury, II indicates that the injury is a gunshot wound.

Major bleeding caused by a penetrating injury (20) Brain hernia (10)

Head Major bleeding caused by a severe fracture (30) Increased intracranial pressure (7)
Face Shock (15) Blindness (15)
Neck Dyspnea (20) ~ Hemorrhagic shock (25)
Major bleeding caused by a penetrating injury (10) Hemorrhagic shock (25) Pneumothorax (5)
Chest/Back Major bleeding caused by a perforating injury (15) Hemothorax shock (25) ~Hemothorax (20)
Hemopneumothorax (30) Cardiac rupture (40)
Major bleeding caused by a penetrating injury (15) Shock (10)
Abdomen Hemorrhagic shock (25) Peritonitis (3)
Pelvis /Hip  Shock (15) Hemorrhagic shock (20)
Limbs Shock (15) Hemorrhagic shock (25) Major bleeding (15)
Figure 3. Standard severity score for different complications.
Table 2. Description of the score intervals.
Score Interval Consequence Label
0-25 Minor injury 1
26-50 Moderate injury 2
51-75 Serious injury 3
75+ Critical injury and death 4
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Standard Injury types Code
severity score
— 3 Tangential injury I
L 7 Perforating injury I 0101
Perforating injury II 0102

— 7.5

— 8 Penetrating injury I

Penetrating injury II

Figure 4. Example of injury coding in the abdominal area.

3.4. Deep Neural Network

Because the WTSS algorithm is a complicated nonlinear model, this article used a DNN
as a classifier model to test the accuracy of injury consequences. The DNN classifier consists
of an input layer, an output layer, and several hidden layers. It uses multilayer nonlinear
information processing, which can be widely and flexibly used to solve problems such as
classification, regression, dimensionality reduction, feature extraction, and clustering. First,
we built a suitable DNN classifier network structure according to the actual needs, and
the network structure was determined to be 22-16-16-16—4 after the experiment. Next,
to test whether such a classifier has excellent generalization ability, we trained it with
synthetic samples and tested it with real samples. To verify its performance, we used four
multiclassification metrics based on a confusion matrix: accuracy, precision, recall, and the
F1 score [46]. Among these metrics, the F; score is the harmonic average of precision and
recall. Finally, we adjusted and optimized the hyperparameters and then determined the
best learning rate and the training sample size. The confusion matrix is shown in Figure 5.

Prediction class

Real class

ny np, e ny,

Figure 5. Graph of the multiclassification confusion matrix.

In Figure 5, L represents the class number, 7; and n;;—the number of class C; samples
correctly predicted as class C; and incorrectly predicted as class C;, respectively; R; and P;
indicate the recall and the precision of class C;, defined in Equations (3) and (4), and the
accuracy and the F; score are defined in Equations (5) and (6).

p=—" 3)
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R = )
PR
j=1
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3.5. Discrimination of Unreasonable Injuries Based on the Delphi Method

After data generation, to improve the data plausibility of the synthetic samples, the
expert panel reached a consensus on multiple unreasonable injuries based on the domain
knowledge and provided feedback. Based on this feedback, we analyzed the law of
unreasonable injury combinations and filtered out the unreasonable synthetic samples to
improve data plausibility. Finally, we outputted the credible synthetic samples.

4. Empirical Analysis

Due to the high confidentiality and difficulty of access to war trauma data, it is gradu-
ally attracting greater attention from the army, military academies, and related hospitals.
To eliminate obstacles to related research, an efficient and credible data augmentation
approach is urgently needed in order to support large-scale war trauma data research and
war game deduction. Our proposed integrated model provides a new and feasible way to
meet the real need for large-scale and automated generation of credible war trauma data.

4.1. Data Collection

In this study, we collected and organized two types of real war trauma data at a certain
scale: data on gunshot wounds and blast injuries. We selected 338 cases (minor injury,
114 cases; moderate injury, 82 cases; serious injury, 74 cases; and critical injury and death,
68 cases) complete with the available data to form the test set. After the preprocessing
operations such as one-hot encoding, data standardization, and feature reduction, our war
trauma data had a total of 22 features.

4.2. Results Analysis

We implemented our proposed WTSS-DNN integrated model in Python 3.7.7 and
conducted experiments on a personal computer with a Windows 64-bit operating system.
After a series of tests on the DNN, the optimal values of all the hyperparameters were
determined. The classifier’s input dimension was 22, equal to the feature dimension of the
war trauma samples. The number of hidden layers of the classifier was set at 4, with each
using ReLUs as the activation function. The softmax function was used as the output layer,
and categorical cross-entropy was used as the loss function. We used TensorFlow 2.0.0 and
GPU to train our DNN classifier; the epoch was set at 1000 and the batch size was set at
256. We chose Adam as our optimization algorithm as it performed best compared to SGD
and RMSProp3 [47].

After determining the best network structure of the DNN classifier (22-16-16-16-16-4),
we conducted contrast experiments at different learning rates [48]. Specifically, we kept
the network structure and other hyperparameters unchanged, then set the values of the
learning rate to be 0.05, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, and 0.0001, respectively.
Table 3 shows accuracy, precision, recall, and the F; score at different learning rates on the



Electronics 2021, 10, 2657

10 of 15

same training set with a sample size of 10,000. The results show that the 0.001 learning rate
led to the best overall model performance and thus was selected and used.

Table 3. Comparison of the multiclassification metrics at different learning rates.

LR Accuracy Precision Recall F;1 Score
0.05 48.82 48.89 51.11 49.98
0.02 49.41 49.47 51.85 50.63
0.01 59.99 67.35 66.59 66.97
0.005 65.43 72.51 71.15 71.82
0.002 73.19 78.46 80.37 79.40
0.001 81.57 88.08 87.70 87.89
0.0005 78.33 86.33 85.74 86.03
0.0001 73.37 79.57 80.85 80.20

Next, we explored the best training sample size (7). On the one hand, low numbers of
training samples cannot fully teach sample features and meet the requirements of model
accuracy; and on the other hand, too high numbers of training samples can increase the
calculation costs and time costs and are not conducive to optimizing the hyperparameters.
Therefore, we sought to determine the best training sample size in the range of 1000-20,000
through the trial and error method [49]. In the search process, to avoid the impact of class
imbalance on the experimental results, synthetic samples of the four classes were extracted
at the same proportion to form a training set for the experiment and test. The overall
performance results of the multiclassification metrics at different training sample sizes are
shown in Table 4.

Table 4. Comparison of the multiclassification metrics at different sample sizes.

n Accuracy Precision Recall F; Score
1000 73.17 78.51 79.00 78.75
2000 75.15 81.67 80.96 81.31
4000 78.99 85.14 84.70 84.91
8000 80.88 87.97 86.81 87.39

12,000 84.33 90.07 88.44 89.25
16,000 82.36 89.07 89.10 89.08
20,000 80.18 87.21 88.33 87.77

The experimental results showed that the small-scale training set did not meet the
requirements for model accuracy. As the training sample size continued to increase, the
predicted accuracy gradually increased. When the training sample size was 8000, the
accuracy reached 80.88%; and when the training scale increased to 12,000, the accuracy
increased to 84.33%. However, model performance became deteriorated when the training
scale was greater than 12,000, which indicates that blindly increasing the training scale
could not guarantee a consistently higher classification accuracy. Besides, when the training
scale was increased, as the harmonic average of precision and recall, the trend of the F;
score was basically consistent with that of accuracy. Therefore, we supposed that selecting
a training sample size of 12,000 can achieve the best compromise between the training cost
and the classification performance.

Finally, our DNN classifier achieved the best overall performance with 84.33% accu-
racy, 90.07% precision, 88.44% recall, and an 89.25% F; score.

4.3. Evaluation of WI'SS Combined with a DNN

In this section, we first explored the accuracy of injury assessment of different classifier
models. Subsequently, to evaluate the respective contributions of the WTSS algorithm and
the DNN classifier in the WTSS-DNN data augmentation method, we set up an ablation
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experiment. Finally, we provided the prediction results of the DNN for real data through
the confusion matrix.

First, we compared our DNN model with three classic machine-learning classifiers:
random forest (RF) [50], XGBoost [51], and naive Bayes (NB) [52].

The RF, XGBoost, and NB models and our DNN model were trained with the same
training set and then tested with the same real samples. As shown in Figure 6, our DNN
classifier performed better than the three classic machine-learning models. The NB model
showed the weakest performance in comparison with the other classifier models because
when the number of features is large or when the correlation between the features is high,
the NB classification effect is poor. These results indicate that classic machine-learning
models cannot be effectively trained when there are few samples and verified that a DNN
classifier trained with a large amount of data has better classification performance.

0.95
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0.9 o 0.8925
0.8506 0.8507
0.85 0.8433 0.8402
0.8301 0.8208 0.835]1
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Figure 6. Performance of the different classification strategies.

Next, to evaluate the respective contributions of the WTSS algorithm and the DNN
classifier in the WTSS-DNN integrated model, we set up an ablation experiment. Specifi-
cally, we combined different injury assessment methods with different classifier models
to observe performance of various combinations. Injury assessment methods include the
WTSS algorithm and the manual assessment method (MA); classification models include
DNN, RE XGBoost, and NB. The results of the ablation experiment are shown in Table 5.

Table 5. Ablation experiment of different injury assessment methods and classifier models.

Assessment Method Classifier Model Accuracy Precision Recall F1 Score
RF 69.39 70.21 70.47 70.34
MA XGBoost 68.86 69.12 70.07 69.59
NB 53.86 55.20 53.41 54.29
DNN 71.24 72.66 70.81 71.72
RF 81.46 85.06 83.01 84.02
WTSS XGBoost 82.08 82.00 85.07 83.51
NB 64.08 68.60 63.56 65.98
DNN 84.33 90.07 88.44 89.25

From the results of the ablation experiment, we can see that the WTSS algorithm is
better than the traditional manual evaluation method, the prediction performance of the
DNN classifier is better than that of the machine-learning model, and the combination of
WTSS and the DNN performs best. Therefore, the combination of WTSS and the DNN can
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effectively solve the data augmentation problem of war trauma data and shows superiority
compared with artificial generation methods.

Finally, we provided the prediction results of the DNN for real data through the
confusion matrix.

From Table 6, we can see that the prediction accuracy for minor injuries and moderate
injuries is very high, but the prediction accuracy for critical injuries is only about 60%,
which is caused by the complexity of critical injuries.

Table 6. Confusion matrix of injury consequence identification.

Predicted
Real

Minor Injury Moderate Injury Serious Injury  Critical Injury and Death Total

Minor injury
Moderate injury
Serious injury
Critical injury and death
Total

114 0 0 0 114
73 6 0 82
7 60 7 74
10 20 38 68

117 90 86 45 338

4.4. Data Filtering

The Delphi method, also known as the “expert investigation method”, was invented
in 1946 by RAND Corporation in the United States. The Delphi method is based on the key
assumption that predictions from groups are usually more accurate than predictions from
individuals. The goal of this method is to use a structured iterative approach to obtain
consensual opinions from an expert panel [44].

For the multiple injuries data generated, some injury combinations are unreasonable—
they are almost impossible to appear in a real war. To improve plausibility and usability of
the synthetic samples in our experiment, we decided to use the Delphi method to evaluate
unreasonable multiple injuries and filter them out. After several rounds of identification
and discussions, the expert panel reached a consensus on the unreasonable multiple injuries
based on the domain knowledge. We analyzed the experts’ feedback and then filtered out
the unreasonable synthetic samples to improve data plausibility to output credible samples.
Next, to verify whether the data plausibility improved or not, we randomly selected 300
original multiple-injury synthetic samples and 300 filtered ones, put them into three groups,
and conducted contrast experiments. Then, we counted the number of reasonable samples
before and after filtering. The experimental results are shown in Figure 7.

100 100 99 99
86
84 31

80
60
40
20
0

Group | Group Il Group Il

Original synthetic samples M Synthetic samples after filtered

Figure 7. The numbers of reasonable samples in the synthetic samples.
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The experimental results showed that data plausibility of the synthetic samples filtered
out was significantly improved in comparison with that of the original ones and came close
to 100%.

5. Discussion

For the WTSS-DNN integrated model, plausibility and effectiveness of the WTSS
algorithm play a crucial role in the performance of WTSS-DNN. Therefore, we evaluated
plausibility and effectiveness of the WTSS algorithm through the two methods described
below. First, the expert panel intervention and assistance. The parameter setting and the
scoring standard of the algorithm were determined after multiple rounds of discussions and
evaluations with the expert panel, which is highly reasonable and professional. Second, we
tested plausibility and effectiveness of the algorithm through ablation experiments. In the
ablation experiments, on the one hand, we used the DNN classifier to verify accuracy and
plausibility of the algorithm in injury assessment. The experimental results show that the
prediction accuracy rate reached 84.43%, which is a satisfactory result. On the other hand,
we compared the WTSS algorithm with the traditional manual assessment method, further
verified plausibility and superiority of the WTSS algorithm in injury assessment. Therefore,
compared with the artificially generated methods, the performance of the proposed WTSS
algorithm combined with a DNN in war trauma data augmentation is superior, can ensure
high data quality, and automatically generates large-scale war trauma data on demand.

However, the experiment also showed that the prediction accuracy of the severity of
multiple injuries was lower than that for a single injury due to the complexity of multiple
injuries. Furthermore, after determining the WTSS standards, the proposed approach no
longer relies on additional professional knowledge due to the characteristics of DL. Thus,
for nonprofessionals, the proposed approach has a low barrier to successful application.
Although we were able to generate credible virtual trauma data only for blast injuries and
gunshot wounds in this study, with the continuous real data collection, the types of war
trauma we can generate will become more abundant. Finally, the combination of DL with
medical scoring algorithms can be used for other types of injury data augmentation, such
as for surgical injuries and emergency injuries.

6. Conclusions

In this article, the WTSS algorithm combined with a DNN was presented for the aug-
mentation of war trauma data. Compared with the traditional artificial data augmentation
method, our integrated modeling approach not only improves the quality of injury con-
sequence assessment, but can also automatically generate large-scale and credible virtual
war trauma data. The generated data make it possible to carry out related data-based
military research, which has great practical significance and value. In addition, it also
provides a practical auxiliary tool for quickly evaluating soldiers’” injuries and formulating
treatment strategies, which are of crucial significance to the analysis and evaluation of
war trauma data. Finally, because this study was the first attempt to combine DL and the
trauma scoring algorithm for the augmentation of war trauma data, it still had some short-
comings, but with the continuous improvement of the WTSS algorithm, the performance
of our WTSS-DNN integrated model will become more superior. That is also the focus
and direction of our future research, to continuously improve the comprehensiveness and
applicability of our integrated modeling approach.
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