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Abstract: Emotion detection has become a growing field of study, especially seeing its broad applica-
tion potential. Research usually focuses on emotion classification, but performance tends to be rather
low, especially when dealing with more advanced emotion categories that are tailored to specific tasks
and domains. Therefore, we propose the use of the dimensional emotion representations valence,
arousal and dominance (VAD), in an emotion regression task. Firstly, we hypothesize that they can
improve performance of the classification task, and secondly, they might be used as a pivot mecha-
nism to map towards any given emotion framework, which allows tailoring emotion frameworks to
specific applications. In this paper, we examine three cross-framework transfer methodologies: multi-
task learning, in which VAD regression and classification are learned simultaneously; meta-learning,
where VAD regression and emotion classification are learned separately and predictions are jointly
used as input for a meta-learner; and a pivot mechanism, which converts the predictions of the VAD
model to emotion classes. We show that dimensional representations can indeed boost performance
for emotion classification, especially in the meta-learning setting (up to 7% macro F1-score compared
to regular emotion classification). The pivot method was not able to compete with the base model,
but further inspection suggests that it could be efficient, provided that the VAD regression model is
further improved.

Keywords: emotion detection; multi-task learning; transfer learning; emotion frameworks

1. Introduction

Since the year 2000, sentiment analysis is one of the most well-studied research do-
mains in natural language processing (NLP), not in the least because of its broad application
potential. Companies and organisations use it to learn more about (potential) customers or
clients [1] or to gauge their online reputation [2]. Traditionally, sentiment analysis focused
on the study of polarity with the goal of classifying textual instances as either positive or
negative [1]. However, from a company perspective, it can be more interesting to pinpoint
exactly what customers are talking about: for example, if they mention a product in an
online review, they can be very specific as to which aspects they liked (e.g., quality and
design) and/or disliked (e.g., user-friendliness). This had led to the emergence of aspect-
based sentiment analysis, which focuses on the detection of sentiment expressions on the
aspect or feature level [3].

In more recent years, the field advanced from analysing polarity to detecting more fine-
grained emotions [4]. The goal in emotion analysis is to analyse specific emotional states
such as anger, joy and sadness or emotional dimensions like valence and arousal. By studying
emotions, companies get more hands-on insights into which customer responses require an
immediate action. For example, understanding when a customer is clearly angry or sad is
more insightful than the label negative in the framework of customer response management
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or when thinking about employing chatbots for customer support. Moreover, the emotions
of interest might vary regarding the application or domain.

When dealing with emotion analysis for specific applications, this leads to an im-
portant methodological issue, namely the choice of emotion framework. Many studies
focus on the classification of textual utterances into basic emotion categories following
the frameworks of Ekman (anger, disgust, fear, joy, sadness and surprise) [5] and Plutchik
(anger, anticipation, disgust, fear, joy, sadness, surprise and trust) [6]. However, multiple
researchers have emphasized the need of studying emotions not only in terms of basic
emotion categories, but based on emotional dimensions like valence, arousal and dominance
(VAD) as well [7,8].

In earlier work, we have already criticized the apparent arbitrariness with which an
emotion framework is chosen for studies in NLP [9]. Mostly, a data-driven motivation
or experimentally grounded choice is lacking. However, some researchers see benefits in
tailoring the emotion label set to the task at hand. In the case of crisis communication,
for example, it would be appropriate to employ the crisis-related emotion framework of
Jin et al. [10], as proposed by Hoste et al. [11].

Although the emotional nuances in different label sets could be useful, tailoring these
sets to specific applications or domains might introduce different challenges: (a) resources
will need to be created for every specific application and domain, (b) emotion detection
resources will be scattered over different frameworks, and (c) emotion detection systems
will not be generalizable.

Cross-framework transfer learning methods could mitigate these challenges. Fine-
tuning pre-trained models, multi-task learning or label space mapping methods can con-
siderably decrease the amount of required training data, as this allows for the transfer of
knowledge across divergent emotion frameworks.

A straight-forward approach to shift between frameworks is to map discrete categories
into a three-dimensional space, which corresponds to Mehrabian and Russell’s claim that
all affective states can be represented by the dimensions valence, arousal and dominance [12].
This mapping to and from the VAD space can be regarded as a pivot mechanism. Regardless
of the specific mapping technique (e.g., linear regression, kNN or lexicon-based mappings),
this idea opens possibilities. Given an accurate mapping technique and a well-performing
emotion analysis system that predicts values for valence, arousal and dominance, the predicted
VAD values can be converted to any categorical emotion label set. Emotion frameworks can
then easily be tailored to specific tasks and domains, broadening their scope of application
in e.g., customer service management or conversational agents.

Moreover, previous experiments for Dutch emotion detection revealed that the classi-
fication of emotional categories (anger, fear, joy, love and sadness) is very challenging, while
more promising results were found for VAD regression [13]. Transferring information from
the regression task to improve performance on the classification task would therefore be an
interesting line of research.

This study investigates the potential of dimensional representations and revolves
around two research questions: (a) can dimensional representations serve as an aid in the
prediction of emotion categories and (b) can dimensional representations contribute in
tailoring label sets to specific tasks and domains?

Our research focuses on Dutch emotion detection and will make use of the EmotioNL
dataset [13]. We examine three cross-framework transfer methodologies, namely multi-
task learning, meta-learning and the aforementioned pivot mechanism. In the multi-task
setting, the VAD regression task and classification task are learned simultaneously. In the
meta-learner approach, two systems are trained separately, one for VAD regression and
one for emotion classification. We will investigate whether a multi-task learner or a meta-
learner that exploits both sources of information is favorable compared to a system that
only uses one source. These models will be compared to a system relying on a pivot
method, using solely dimensional representations. The code is publicly available at

https://github.com/LunaDeBruyne/Mixing-Matching-Emotion-Frameworks
https://github.com/LunaDeBruyne/Mixing-Matching-Emotion-Frameworks
https://github.com/LunaDeBruyne/Mixing-Matching-Emotion-Frameworks


Electronics 2021, 10, 2643 3 of 18

https://github.com/LunaDeBruyne/Mixing-Matching-Emotion-Frameworks (accessed
on 30 September 2021).

We thus contribute to the field of emotion analysis in NLP by leveraging dimensional
representations to increase the performance of emotion classification and by proposing a
method to tailor label sets to specific applications.

The remainder of this paper is organised as follows: in Section 2, related work on the
combination of categorical and dimensional frameworks in emotion detection is discussed.
Section 3 describes the materials and methods of our study and gives an overview of the
used data (Section 3.1) and a description of the experimental setup (Section 3.2). Results are
reported in Section 4 and further discussed in Section 5. This paper ends with a conclusion
in Section 6.

2. Related Work

Our previous work on Dutch emotion detection focused on the prediction of the classes
joy, love, anger, fear, sadness or neutral and the emotional dimensions valence, arousal and
dominance in Dutch Twitter messages and captions from reality TV-shows [13]. We found
that the classification results were low (54% accuracy for tweets and 48% for captions).
However, the results for emotional dimensions were more promising (0.64 Pearson’s
r for both domains). This observation, together with the issue of having specialised
categorical labels for specific tasks/domains, reinforces the urgency to focus more on
dimensional models and investigate their potential of aiding emotion classification by
means of transfer learning.

Multi-task learning settings have proven successful in many tasks related to emotion
and sentiment analysis [14,15]. Although there are not many studies that perform transfer
learning with multiple emotion frameworks, there are various studies that employ multi-
task learning by jointly training emotion detection with sentiment analysis [16,17] or other
related tasks [18]. All of these studies suggest that multi-task frameworks outperform
single-task experiments and thus motivate the idea to train emotion classification and
VAD regression jointly, especially as VAD probably contains more valuable emotional
information than sentiment (which only contains the first dimension: valence).

Various studies have also investigated how to deal with disparate label spaces. Mostly,
this involves a mapping between categorical and dimensional frameworks, e.g., in the work
of Stevenson et al. [19] and Buechel and Hahn [20,21]. In these studies, scores for valence,
arousal and dominance were used to predict intensity values for the basic emotion categories
happiness, anger, sadness, fear and disgust, and vice versa. To this end, linear regression [19],
a kNN model [20] and a multi-task feed-forward network [21] were used. Especially this
last method provided promising results, where a Pearson correlation of 0.877 was obtained
for mapping dimensions to categories and 0.853 for the other direction.

A straightforward approach is to map discrete categories directly into the VAD space,
which corresponds to Mehrabian and Russell’s claim that all affective states can be repre-
sented by the dimensions valence, arousal and dominance [12]. Figure 1 shows the positions of
Ekman’s basic emotions in the VAD space, based on the scores of these terms in Mehrabian
and Russell [12]. Calvo and Mac Kim employ this idea and apply it directly to the task
of emotion detection [22]. They obtain lexicon scores for emotion words related to the
categories anger/disgust, fear, joy and sadness by looking them up in the Affective Norms for
English Words (ANEW) [23], and map the center of each of these categories in the VAD
space. Then, they calculate VAD scores for sentences (again using the ANEW lexicon),
which are placed in the emotional space as well. By computing cosine similarity between
the sentence and the previously mapped emotion categories, the emotional category of the
sentence can be determined. This lexicon-based mapping approach has as an advantage
that no annotated categories are needed, in contrast to the previously discussed approaches
which do require annotated categories to learn a mapping.

https://github.com/LunaDeBruyne/Mixing-Matching-Emotion-Frameworks
https://github.com/LunaDeBruyne/Mixing-Matching-Emotion-Frameworks
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Figure 1. Mapping of Ekman’s six into the VAD-space, figure based on the scores for the English
Ekman terms of Mehrabian and Russell [12].

Besides mapping between emotion frameworks, a similar line of research deals with
the unification of disparate label spaces in emotion and sentiment resources. Examples
of merging sentiment lexica are [24–26] for emotion lexica and [27] for emotion datasets.
Techniques exist out of Bayesian models [24], variational autoencoders [25,26] and rule-
based combination techniques [27] to map lexica or datasets with different labels into the
same space.

3. Materials and Methods

In this section, we describe the data and experimental setup to thoroughly investigate
the potential of dimensional representations in (a) improving emotion classification, and (b)
tailoring the label set to specific tasks and domains by mapping emotional dimensions
to categories.

3.1. Data

For this study, the EmotioNL dataset is used [13]. This dataset consists of Dutch data
in two domains: Twitter posts (Tweets subcorpus) and utterances from reality TV-shows
(Captions subcorpus). The Tweets subcorpus consists of 1000 tweets that all contain at
least one out of a list of 72 emojis. The Captions subcorpus consists of 1000 utterances
from transcriptions of three emotionally loaded Flemish reality TV-shows (Blind getrouwd;
Bloed, zweet en luxeproblemen; and Ooit vrij), more or less equally distributed over the shows
(335 instances from Blind getrouwd, 331 from Bloed, zweet en luxeproblemen and 334 from
Ooit vrij).

All data were annotated with both categorical labels and dimensions. For the cate-
gorical annotation, the instances were labeled with one out of six labels: joy, love, anger,
fear, sadness, or neutral. The dimensional annotations are real-valued scores from 0 to 1 for
the dimensions valence, arousal and dominance. An annotated example of one instance per
domain is shown in Table 1.
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Table 1. Text examples from the Tweets and Captions subcorpora with their assigned categorical and
dimensional label (V = valence, A = arousal, D = dominance).

Corpus Text Example Categorical
Dimensional

V A D

Tweets

Vanmorgen vroeg opgestaan en de zon
schijnt al lekker volop Vandaag er even

op uit en genieten van de zon.
Fijne dag allemaal

joy 0.819 0.578 0.523

EN: Woke up early this morning and the
sun is already shining brightly Going
out today to enjoy the sun. Have a nice

day everyone

Captions Gij komt hier altijd met van die stomme
flauwekul, gij. Kheb da nie nodig. anger 0.071 0.713 0.649

EN: You always come here with that stupid
bullshit. I don’t need that.

3.2. Experimental Setup

To answer the first research question, we will look at two ways to leverage dimensional
representations in aiding emotion classification, namely multi-task learning and a stacking-
based meta-learning method. The second question, namely whether dimensions can be
mapped to categories to tailor label sets to specific applications, will be investigated by
means of a pivot method, where we employ predictions from a dimensional model to
predict emotion classes. Each of these models together with a baseline model are described
in closer detail in the following sections.

3.2.1. Base Model: RobBERT

We will employ the Dutch transformer model RobBERT [28], the Dutch version of the
robustly optimized RoBERTa [29], which is trained on 39 GB of common crawl data [30].
It consists of 12 self-attention layers with 12 heads, and has 117 M trainable parameters.
Previous experiments showed that this model achieves the best performance for emotion
detection [13] in comparison to the BERT-based BERTje model [31].

We implement the model using HuggingFace’s Transformers library [32]. The fine-
tuning process uses AdamW optimizer [33] and the ReduceLROnPlateau learning rate
scheduler with learning rate 5e − 5. The loss function is Binary Cross Entropy for the
classification task and Mean Squared Error loss for regression. We set dropout to 0.2 and
use GELU as activation function in the implementation of [34]. The maximum sequence
length is 64 tokens. The model is trained for 5 epochs for classification and 10 for regression
with a batch size of 64 on an Nvidia Tesla V100 GPU. As we are dealing with small datasets
(1000 instances per domain and task), the model is evaluated using 10-fold cross-validation.

3.2.2. Multi-Task Learning

In this setting, the classification (categories) and regression (dimensions) models are
trained simultaneously (see Figure 2). We use the same architecture and hyperparameters
as in the base model. The RobBERT feature encoder allows for hard parameter sharing
where the learning of features for the emotion classes and VAD prediction happens simul-
taneously, but has separate task-specific output layers. The losses (Binary Cross Entropy
for emotion classification and Mean Squared Error loss for VAD) are averaged according
to pre-defined weights. We test three different ratios: one where VAD and classification
are weighed equally (both 0.5), one where classification outweighs VAD (0.75 for classi-
fication and 0.25 for VAD) and one where VAD has the largest weight (0.75 for VAD and
0.25 for classification).
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Figure 2. Schematic representation of the multi-task learning architecture.

3.2.3. Meta-Learner

The meta-learner approach is another way of leveraging the information in dimen-
sional representations as these are combined with categorical inputs. However, in this
setting, no parameters are shared between the tasks. Instead, a stacking ensemble is used
in which two base models are trained, one for VAD regression and one for emotion classifi-
cation. The predictions (or probabilities in the case of classification) are concatenated (six
values for classification and three values for VAD) and used as input for a meta-learner
algorithm, in this case a support vector machine for classification and a linear regression
model for VAD. A diagram of the proposed architecture is depicted in Figure 3.

Nested cross-validation is used for this approach: when training the base models,
for every test fold, a model is trained on eight folds and predictions are saved on the
remaining fold. This is repeated, so that, for every test fold, predictions for the other nine
folds have been made. These predictions will be used in the training phase of the meta-
learner. Afterwards, the model is trained again using regular cross-validation, in order to
save predictions for the test fold, based on training on nine folds. These predictions are
then used during the test phase of the meta-learner.

Figure 3. Schematic representation of the meta-learning architecture.
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The support vector machine is trained with default settings in the Scikit-learn li-
brary [35]: we use a linear kernel and 1.0 as regularization parameter C. Hinge loss and L2
penalty is used for classification. The balanced mode is used, meaning that class weights
are taken into account, inversely proportional to class frequencies.

3.2.4. Pivot Method

Contrary to the two previous approaches, the pivot method makes only use of the VAD
annotations instead of both the dimensional and categorical data. It starts from predicting
VAD scores through a transformer model, and these predictions are then transformed
to classes by means of a rule-based mapping (see Figure 4). Although several mapping
techniques have been investigated in related work (see Section 2), these approaches are not
eligible for a pivot method, as they all rely on data in a bi-representational format and thus
also require categorical data for a mapping to be learned. However, the idea of a pivot is
to be able to map to any possible label set, without having to rely on any annotations for
those labels.

The rule-based mapping works as follows: we look up the emotion terms from
our label set (anger, fear, joy, love and sadness) in the definition list with VAD scores of
Mehrabian and Russell [12] and scale them to a range from 0 to 1 to match the VAD
annotation framework of the dataset. The scores can be found in Table 2. Following [22],
we place both the textual instances to be classified and the vectors for the categorical
emotion terms in the three-dimensional space.

We start by drawing some general rules for anger, fear, joy and sadness, as shown in
Table 3 (at this point, love and neutral are not taken into consideration). If a class cannot
be matched based on these rules, then we calculate cosine distance between the instance
that needs to be classified and each emotion class vector (here love and neutral are included,
the last one being defined as {0.5, 0.5, 0.5}). The class which has the smallest cosine distance
to the instance is then assigned.

Figure 4. Schematic representation of the pivot method.

Table 2. Scores for valence, arousal and dominance according to the definitions of [12], scaled to a
range from 0 to 1.

V A D

Anger 0.245 0.795 0.625
Fear 0.180 0.800 0.285
Joy 0.905 0.755 0.730

Love 0.910 0.825 0.475
Sadness 0.185 0.365 0.335
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Table 3. Mapping rule used in the pivot method.

if V < 0.5 and A > 0.5 and D > 0.5 :
class← anger

elif V < 0.5 and A > 0.5 and D < 0.5 :
class← f ear

elif V > 0.5 and A > 0.5 and D < 0.5:
class← joy

elif V < 0.5 and A < 0.5 and D < 0.5:
class← sadness

else:
Find class with smallest cosine distance

3.2.5. Evaluation

Our experiments will be evaluated using three metrics: macro-averaged F1 (F1),
micro-averaged F1 (Acc.) and cost-corrected accuracy (CC-Acc.). Cost-corrected accuracy
is similar to normal accuracy, but, here, a cost matrix with specific weights is taken into
account [13]. This way, misclassifications within the correct polarity are punished less than
misclassifications in the opposite polarity (e.g., misclassifying an instance of fear as sadness
has a lower weight than misclassifying love as anger).

4. Results

We report results for the three metrics (macro F1, accuracy and cost-corrected accuracy)
for the base transformer model, the multi-task model in its three settings (equal weights,
higher weight for classification and higher weight for regression), the meta-learner and
the pivot model. The results for Tweets are shown in Table 4 for categories and Table 5 for
VAD, while results for Captions are shown in Tables 6 and 7.

Table 4. Macro F1, accuracy and cost-corrected accuracy for the different models on the classification
task in the Tweets subset.

Model F1 Acc. Cc-Acc.

RobBERT 0.347 0.539 0.692
Multi-task (0.25) 0.397 0.509 0.669
Multi-task (0.5) 0.373 0.491 0.663
Multi-task (0.75) 0.372 0.482 0.655

Meta-learner 0.420 0.554 0.710
Pivot 0.281 0.426 0.651

Table 5. Pearson’s r for the different models on the VAD regression task in the Tweets subset.

Model r

RobBERT 0.635
Multi-task (0.75) 0.528
Multi-task (0.5) 0.445

Multi-task (0.25) 0.436
Meta-learner 0.638

Table 6. Macro F1, accuracy and cost-corrected accuracy for the different models on the classification
task in the Captions subset.

Model F1 Acc. Cc-Acc.

RobBERT 0.372 0.478 0.654
Multi-task (0.25) 0.402 0.511 0.674
Multi-task (0.5) 0.408 0.504 0.663
Multi-task (0.75) 0.401 0.473 0.645

Meta-learner 0.407 0.516 0.678
Pivot 0.275 0.429 0.605
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Table 7. Pearson’s r for the different models on the VAD regression task in the Captions subset.

Model r

RobBERT 0.641
Multi-task (0.75) 0.551
Multi-task (0.5) 0.540

Multi-task (0.25) 0.520
Meta-learner 0.643

The results of the base models are rather similar in both domains. As also observed
in De Bruyne et al. [13], the performance is notably low for categories, especially regard-
ing macro F1-score (only 0.347 for Tweets and 0.372 for Captions). Note that we are
dealing with imbalanced datasets, which explains the discrepancy between macro F1
and accuracy (instances per category in Tweets subcorpus: n_anger = 188, n_fear = 51,
n_joy = 400, n_love = 44, n_sadness = 98, n_neutral = 219; Captions subcorpus: n_anger
= 198, n_fear = 96, n_joy = 340, n_love = 45, n_sadness = 186, n_neutral = 135). Scores for
dimensions seem more promising, although results are hard to compare as we are dealing
with different metrics (r = 0.635 for Tweets and 0.641 for Captions).

When we look at multi-framework settings (multi-task and metalearner), we see that
performance goes up for the categories (from 0.347 to 0.420 in the meta-learning setting
for Tweets and from 0.372 to 0.407 for Captions), while it drops or stays constant for the
dimensions (from 0.635 to 0.638 and from 0.641 to 0.643 for the meta-learner in Tweets and
Captions, respectively) . This observation confirms that categories benefit more from the
additional information of dimensions than in the opposite direction and corroborates the
assumption that the VAD model is more robust than the classification model.

The boost in performance for categories is especially clear for the meta-learner setting,
where scores improve for all evaluation metrics in both domains (increase of no less than
7% macro F1 and around 2% (cost-corrected) accuracy for Tweets and around 3% in all
metrics for Captions).

For the multi-task approach, only macro F1 increased for categories, while for Captions,
(cost-corrected) accuracy also went up in two out of three settings. When taking all metrics
into account, the largest increase was found in the setting where VAD had the largest
weight (noted in Tables 4 and 6 as Multi-task (0.25)).

For the pivot method, the primary objective was not to outperform the base model,
but to be on par with it. However, looking at the performance, we observe a steep drop
in performance for all metrics (e.g., for Tweets accuracy and Captions F1 the decrease is
almost 10%). The loss in cost-corrected accuracy is smaller. Error analysis will need to
clarify whether predictions made in the pivot approach are useful (see Section 5). However,
based on these results, it does not seem that the pivot method is an effective approach to
predict emotion categories.

5. Discussion

The results in Section 4 suggest that VAD dimensions can help in predicting emotional
categories, as the VAD regression model seems more robust than the classification model.
However, the pivot method did not seem an effective approach to predict emotion cate-
gories. In this section, we will take a look at the correlation between categories and VAD
dimensions as annotated in our dataset and perform an error analysis on the predictions of
the pivot method. Finally, we give some suggestions for future research directions.

5.1. Correlation between Categories and Dimensions

The point biserial correlation coefficient is used to measure correlation between a
continuous and a binary variable. This allows us to assess the correlation between each
emotion category (either 0 or 1, so the binary variable) and each one of the VAD dimensions
(continuous). The results are shown in Table 8 (Tweets) and Table 9 (Captions).
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Table 8. Point biserial correlation coefficient between VAD values and categories in the Tweets subset.
* indicates that p < 0.05.

V A D

Neutral 0.05 −0.29 * −0.05
Anger −0.44 * 0.08 * 0.18 *
Fear −0.16 * 0.00 −0.20 *
Joy 0.56 * 0.20 * 0.25 *

Love 0.20 * 0.06 0.02
Sadness −0.44 * −0.06 −0.46 *

Table 9. Point biserial correlation coefficient between VAD values and categories in the Captions
subset. * indicates that p < 0.05.

V A D

Neutral 0.03 −0.34 * 0.08 *
Anger −0.47 * 0.34 * 0.03
Fear −0.11* 0.04 −0.31 *
Joy 0.67 * 0.09 * 0.42 *

Love 0.21 * −0.06 0.13 *
Sadness −0.39 * −0.16 * −0.45 *

In both domains, anger and sadness show a high negative correlation with valence
(Tweets subset: r = −0.44 and r = −0.44, respectively; Captions subset: r = −0.47 and
r = −0.39), while joy shows a high positive correlation with this dimension (r = 0.56 for
Tweets and r = 0.67 for Captions). For fear and love, the correlation is less obvious (Tweets:
r = −0.16 and r = 0.20; Captions: r = −0.11 and r = 0.21).

Arousal is (weakly) positively correlated with anger and joy (Tweets: r = 0.08 and
r = 0.20, respectively; Captions: r = 0.34 and r = 0.09). Sadness has a negative correlation
with this dimension in Captions (r = −0.16). Strikingly, neutral has a notable negative
correlation with arousal (r = −0.29 in Tweets and r = −0.34 in Captions). This goes a bit
against our assumption that the neutral state is the center of the VAD space, although it is
not completely counter-intuitive that neutral sentences were judged as having low arousal
instead of medium arousal.

Contrary to what some studies claim [36], the dominance dimension seems more
correlated with emotion categories than arousal. Especially with sadness, with which
dominance is negatively correlated, the correlation is rather high (r = −0.46 in Tweets and
r = −0.45 in Captions). In the Captions subset, fear and joy are rather highly correlated
with dominance as well (r = −0.31 and r = 0.42, respectively).

The dimensional and categorical annotations in our dataset are thus correlated, but not
for each dimension-category pair and certainly not always to a great extent. These ob-
servations do seem to suggest that a mapping could be learned. Indeed, various studies
have already successfully accomplished this [19–21]. However, our goal is not to learn a
mapping, because then there would still be a need for annotations in the target label set.
Instead, a mapping should be achieved without relying on any categorical annotation.
The correlations shown in Tables 8 and 9 thus seem too low to directly map VAD predictions
to categories through a rule-based approach, as was proven in the results of the presented
pivot method.

For comparison, we did try to learn a simple mapping using an SVM. This is a similar
approach as the one depicted in Figure 3, but now only the VAD predictions are used
as input for the SVM classifier. Results of this learned mapping are shown in Table 10.
Especially for the Tweets subset, results for the learned mapping are on par with the
base model, suggesting that a pivot method based on a learned mapping could actually
be operative.
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Table 10. Macro F1, accuracy and cost-corrected accuracy for the learned mapping from VAD to
categories in the Tweets and Captions subset.

Tweets Captions

Model F1 Acc. Cc-Acc. F1 Acc. Cc-Acc.

RobBERT 0.347 0.539 0.692 0.372 0.478 0.654
Learned mapping 0.345 0.532 0.697 0.271 0.457 0.591

Apart from looking at correlation coefficients, we also try to visualise the relation
between categories and dimensions in our data. We do this by plotting each annotated
instance in the three-dimensional space according to its dimensional annotation, while at
the same time visualising its categorical annotation through colours.

Figures 5 and 6 visualise the distribution of data instances in the VAD space according
to their dimensional and categorical annotations. On the valence axis, we clearly see a
distinction between the anger (blue) and joy (green) cloud. In the negative valence area,
anger is more or less separated from sadness and fear on the dominance axis, although sadness
and fear seem to overlap rather strongly. In addition, joy and love show a notable overlap.

Average vectors per emotion category are shown in Figures 7 and 8. It is striking that
these figures, although they are based on annotated real-life data (tweets and captions),
are very similar to the mapping of individual emotion terms as defined by Mehrabian [12]
(Figure 1), although the categories with higher valence or dominance are shifted a bit more
to the neutral point of the space. Again, it is clear that joy and love are very close to each
other, while the negative emotions (especially anger with respect to fear and sadness) are
better separated.

Figure 5. Distribution of instances from the Tweets subset in the VAD space, visualised according to
emotion category.

Figure 6. Distribution of instances from the Captions subset in the VAD space, visualised according
to emotion category.
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Figure 7. Average VAD vector of instances from the Tweets subset, visualised according to emo-
tion category.

Figure 8. Average VAD vector of instances from the Captions subset, visualised according to
emotion category.

Although the average VAD per category values corresponds well to the definitions
of Mehrabian [12], which are used in our mapping rule, the individual data points are
very much spread out over the VAD space. This results in quite some overlap between the
classes. Moreover, many (predicted) data points within a class will actually be closer to the
center of the VAD space than it is to the average of its class. However, this is somewhat
accounted for in our mapping rule by first checking conditions and only calculating cosine
distance when no match is found (see Table 3). Nevertheless, inferring emotion categories
purely based on VAD predictions does not seem efficient.

5.2. Error Analysis

In order to get some more insights into the decisions of our proposed models, we
perform an error analysis on the classification predictions. We show the confusion matrices
of the base model, the best performing multi-framework model (which is the meta-learner)
and the pivot model. Then, we randomly select a number of instances and discuss their pre-
dictions.

Confusion matrices for Tweets are shown in Figures 9–11, and those of the Captions
subset are shown in Figures 12–14. Although the base model’s accuracy was higher
for the Tweets subset than for Captions, the confusion matrices show that there are less
misclassifications per class in Captions, which corresponds to its overall higher macro
F1 score (0.372 compared to 0.347). Overall, the classifiers perform poorly on the smaller
classes (fear and love).

For both subsets, the diagonal in the meta-learner’s confusion matrix is more pro-
nounced, which indicates more true positives. The most notable improvement is for fear.
Besides fear, love and sadness are the categories that benefit most from the meta-learning
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model. There is an increase of respectively 17%, 9% and 13% F1-score in the Tweets subset
and one of 8%, 4% and 6% in Captions.

The pivot method clearly falls short. In the Tweets subset, only the predictions for joy
and sadness are acceptable, while anger and fear get mixed up with sadness. In the Captions
subset, the pivot method fails to make good predictions for all negative emotions.

Figure 9. Confusion matrix base model Tweets.

Figure 10. Confusion matrix meta-learner Tweets.

Figure 11. Confusion matrix pivot model Tweets.

Figure 12. Confusion matrix base model Captions.

Figure 13. Confusion matrix meta-learner Captions.
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Figure 14. Confusion matrix pivot model Captions.

To get more insights into the misclassifications, ten instances (five from the Tweets
subcorpus and five from Captions) were randomly selected for further analysis. These are
shown in Table 11 (an English translation of the instances is given in Appendix A). In all
given instances (except instance 2), the base model gave a wrong prediction, while the
meta-learner outputted the correct class. In particular, the first example is interesting, as this
instance contains irony. At first glance, the sunglasses emoji and the words “een politicus
liegt nooit” (politicians never lie) seem to express joy, but context makes us understand
that this is in fact an angry message. Probably, the valence information present in the VAD
predictions is the reason why the polarity was flipped in the meta-learner prediction. Note
that the output of the pivot method is a negative emotion as well, albeit sadness.

Table 11. Selection of instances and their gold label and predictions by the base model (RobBERT), the meta-learner and the
pivot method.

Instance Gold RobBERT Meta-Learner Pivot VAD Gold VAD Predicted

1 @TvdVen natuurlijk niet waar een
politicus liegt nooit anger joy anger sadness 0.32, 0.29, 0.76 0.42, 0.26, 0.84

2 Da sta mij geen beetje aan eh. anger anger anger sadness 0.35, 0.41, .48 0.16, 0.68, 0.53

3
Kheb echt nog nooit zo veel zenuwen gehad.
Echt nog nooit. Das één woord dak da mee

kan omschrijven, das doodgaan.
fear sadness fear anger 0.48, 0.67, 0.61 0.06, 0.79, 0.34

4
Het is toch eerst oefenen en dan voor het

echie? Ohh deze keer niet.#afgang
#bulned #itaned

fear neutral fear anger 0.45, 0.59, 0.60 0.28, 0.56, 0.28

5
Ma wij gaan dus wel effectief aan zo’n

machien moeten zitten eh, voor alle
duidelijkheid.

fear anger fear joy 0.51, 0.50, 0.65 0.55, 0.50, 0.58

6

Ik kom heel goed overeen met mijn papa.
Die steunt mij ook altijd en is er altijd. En als
ik mij slecht voel, kan die altijd opbellen en
dan. . . dan geeft die mij weer zo ne peptalk
en euh. . . Ja das mijn nummer één fan om

het zo te zeggen. Dus das keileuk, ja.

love anger love joy 0.79, 0.56, 0.81 0.81, 0.60, 0.70

7

Kijk nou! Wtf, deze jongen heeft al zó veel
bereikt! En is vanaf vandaag pas 18 echt
een voorbeeld!DOE WAT JE LEUK VINDT!

en u see, je komt er
https://t.co/6AUw29DXso (accessed on 30

September 2021)

love joy love love 0.64, 0.85, 0.46 0.88, 0.89, 0.64

8

Hard om te zien dat de dood van een jonge
man ons doet beseffen dat we zoveel meer

van het leven moeten genieten RIP
Lobanzo

sadness joy sadness sadness 0.39, 0.34, 0.41 0.07, 0.44, 0.15

9 Het komt nu gewoon efkes allemaal heel
hard binnen. sadness anger sadness fear 0.39, 0.51, 0.41 0.20, 0.30, 0.28

10
vreselijk. Zo jong sterkte voor de

nabestaande. https://t.co/3NBjWlE16D
(accessed on 30 September 2021)

sadness neutral sadness sadness 0.20, 0.49, 0.16 0.15, 0.46, 0.23

https://t.co/6AUw29DXso
https://t.co/3NBjWlE16D
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In three cases of the shown instances, the base model predicted emotions in the wrong
polarity, which were, in turn, of the correct valence (or polarity) for the meta-learner and
pivot method (instance 1, 6 and 8). Indeed, although the performance of the pivot method
was low regarding macro F1 and accuracy, the cost-corrected accuracy (which takes the
polarity into account) was reasonably good.

What is striking is that, out of the seven examples where the pivot failed to make
a correct prediction (all instances except 7, 8 and 10), four examples would have been
correctly classified based on gold VAD values. This could indicate that the main problem
with the pivot method is not the mapping rule, but incorrect predictions made by the VAD
regression model. To investigate this, the pivot experiments were repeated, but this time
using gold VAD values instead of predicted ones. As can be observed in Table 12, results
are now on par with the base classification model. This suggests that our pivot method
could be efficient, provided that the VAD regression model is further improved upon.

Table 12. Macro F1, accuracy and cost-corrected accuracy for the pivot method based on gold VAD
values in the Tweets and Captions subset.

Tweets Captions

Model F1 Acc. Cc-Acc. F1 Acc. Cc-Acc.

RobBERT 0.347 0.539 0.692 0.372 0.478 0.654
Gold pivot 0.336 0.469 0.689 0.372 0.507 0.731

5.3. Future Work

Our experiments showed that dimensional emotion representations can help in
improving the performance of emotion classification models in the EmotioNL dataset.
The pivot-based approach was not successful, although we found evidence that this method
might be beneficial when the VAD regression model is further improved.

This leads to several suggestions for future work. First of all, we suggest that these
methods are validated on other datasets and other languages than Dutch. Furthermore, we
want to improve the VAD model by testing different model architectures and investigate
its effect on the usability of the pivot method. The pivot method could then be investigated
when used for mapping to label sets different than the one described in this paper. Finally,
an interesting research direction could be to look at other modalities, e.g., facial emotion
recognition (FER). A well-known problem in FER is the poor performance in real-time
testing because of the bad quality of datasets [37]. It would be interesting to investigate
whether dimensional representations might be of help here as well.

6. Conclusions

In emotion detection studies, researchers usually opt for either categorical or dimen-
sional emotion frameworks. Our previous work on Dutch emotion detection showed that
the classification of emotional categories is a very challenging task, but that a regression
task for predicting valence, arousal and dominance achieves more promising results. In this
paper, we have therefore investigated whether transferring information from the regression
to the classification task can improve performance. Moreover, we have examined the
potential of dimensional representations to be used as a pivot mechanism, which allows
tailoring emotion frameworks to specific tasks and domains.

Our results reveal that dimensional representations can indeed boost the baseline
emotion classification’s performance, especially in a meta-learning setting. Moreover, while
categories do benefit from the additional VAD information, the opposite does not hold,
which further underlines the assumption that the VAD model is more robust than the
classification model.

The pivot method was not able to compete with the base model and revealed a
substantial drop in performance. However, further inspection revealed that the rule-based
mapping itself does perform on par with the base model when gold VAD values are used.
This suggests that the pivot method could be efficient, provided that the VAD regression
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model is further improved. This opens up possibilities to tailor emotion frameworks to
specific tasks and domains and thus broaden their application scope.
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Appendix A

Table A1. English translation of the selection of instances from Table 11.

Instance

1 @TvdVen of course not trye a politician never lies
2 I don’t like that at all.
3 I’ve never been so nervous. Really never. There is one word I can describe it with, which is dying.
4 It is first practice and then for real, right? Ohh not this time.#fail #bulned #itaned
5 However, we will really have to sit at such a machine, just to be clear.

6
I get along really well with my dad. He always supports me and he is always there. In addition, when I’m
feeling down, I can always call him and. . . and he gives me a peptalk and ehm. . . Yes he is my number one
fan so to speak. Thus that is super nice.

7 Look!Wtf, this guy has achieved already so much!En he only turned 18 today a real example!DO WHAT
YOU LIKE! and u see,you’ll get there https://t.co/6AUw29DXso (accessed on 30 September 2021)

8 Tough to see that the death of a young man makes us realise we should enjoy life so much more RIP
Lobanzo

9 It’s just really starting to hit me now.

10 terrible. Thus, young condolences to the grieving family. https://t.co/3NBjWlE16D (accessed on 30
September 2021)
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