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Abstract: The Internet of Robotic Things (IoRT) has emerged as a promising computing paradigm
integrating the cloud/fog/edge computing continuum in the Internet of Things (IoT) to optimize the
operations of intelligent robotic agents in factories. A single robot agent at the edge of the network
can comprise hundreds of sensors and actuators; thus, the tasks performed by multiple agents can
be computationally expensive, which are often possible by offloading the computing tasks to the
distant computing resources in the cloud or fog computing layers. In this context, it is of paramount
importance to assimilate the performance impact of different system components and parameters in
an IoRT infrastructure to provide IoRT system designers with tools to assess the performance of their
manufacturing projects at different stages of development. Therefore, we propose in this article a
performance evaluation methodology based on the D/M/c/K/FCFS queuing network pattern and
present a queuing-network-based performance model for the performance assessment of compatible
IoRT systems associated with the edge, fog, and cloud computing paradigms. To find the factors that
expose the highest impact on the system performance in practical scenarios, a sensitivity analysis
using the Design of Experiments (DoE) was performed on the proposed performance model. On the
outputs obtained by the DoE, comprehensive performance analyses were conducted to assimilate
the impact of different routing strategies and the variation in the capacity of the system components.
The analysis results indicated that the proposed model enables the evaluation of how different
configurations of the components of the IoRT architecture impact the system performance through
different performance metrics of interest including the (i) mean response time, (ii) utilization of
components, (iii) number of messages, and (iv) drop rate. This study can help improve the operation
and management of IoRT infrastructures associated with the cloud/fog/edge computing continuum
in practice.

Keywords: cloud/fog/edge computing; Internet of Robotic Things; queuing network; design of
experiments; performance evaluation

1. Introduction

The Internet of Robotic Things (IoRT) is an emerging computing paradigm for robotic
systems in factories, which is expected to revolutionize the whole manufacturing indus-
try [1,2]. In particular, the IoRT adopts the advanced computing capabilities and features
of the fog and cloud computing paradigms, such as (i) virtualization technologies, (ii)
layered services, and (iii) the agile provisioning capabilities of local/remote computing
resources, while integrating into the Internet of Things (IoT) infrastructure associated with
its enabling technologies (e.g., sensors and actuators embedded in smart devices) to make
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the design and implementation of new applications more flexible for the robotic manu-
facturing systems [3]. The IoRT is also considered as the evolution of cloud robotics [4],
by integrating the IoT to leverage and expand the use of robots in industry. Indeed, big
tech enterprises have poured huge investments into the technological revolution of both
robotics and the IoT. According to Gartner’s report, 20 billion devices would be affected by
the IoT by 2020, and the IoT business would reach USD 300 billion. The IoT is considered
one of the top five trends in recent years [5].

1.1. IoRT Performance Evaluation

However, one of the challenges of the IoRT is to allow the offloading of computation-
ally intensive tasks from IoT devices embedded in robots to the outer fog/cloud systems.
In turn, the decision about offloading requires a rigorous and unified architecture that can
handle complex issues. In particular, a single robot can comprise hundreds of sensors and
actuators. The robots require a high degree of communication and processing to perform
or even simulate tasks. Meanwhile, real-time constraints are often required to complete
the tasks in these scenarios. For the betterment of the performance in operations and
management, the IoRT systems should perform different tasks, considering the limitation
of available computing resources and the predictability of congestion or failures. Given
that these resources are distributed across individual robots or the robots that collaborate
in a network, from geographically local or distant data centers, i.e., the fog and cloud, it
is apparently a challenging problem to (i) allocate adequate resources and (ii) configure
the capacity of specific resources to perform tasks with a desired mean response time.
Therefore, there is a critical need to develop a performance evaluation methodology and
models to assimilate the performance and impact of system components/parameters on
the performance of such intense and busy data transactions in IoRT infrastructures for
autonomous factories.

1.2. Literature Review

Previous studies have contributed great progress to the introduction and adoption of
the IoRT along with its computing infrastructures in various applications, which indicates
the potentials of IoRT infrastructures in Industry 4.0. Andò et al. presented the first
attempt at pattern authoring in the IoRT context, specifically for ambient assisted living
scenarios in [6]. The authors pointed out the significance of adopting the cloud-based IoT
framework for robotic systems and, thus, the necessity of identifying and defining patterns
due to the presence of humans along with their interactions with robots. Reference [7]
demonstrated the use of IoT devices to help control a YuMi® robot and collect sensor data
through a TCP/IP connection. The work presented a practical example of the IoRT in
which a robot can be controlled and all IoT devices and sensors can be accessed to collect
data through an Internet connection. On the other hand, Reference [8] proposed an IoT-
aided robotics platform equipped with an augmented online approach that helps identify
kidnapping events in an indoor mobile robotic operation. The works [2,9] presented
comprehensive reviews on the recent developments and adoption trends of the IoRT in
various smart and critical domains such as in the Internet of Medical Things (IoMT),
manufacturing, surveillance, and so on, in which the integration of the IoT and robotic
agents is the backbone for the development of new-generation devices in Industry 4.0. In
particular, in the work [10], Ghazal et al. proposed an edge/fog/cloud architecture for the
detection of thermal anomalies in aluminum factories, in which mobile IoT edge nodes
were carried on autonomous robots, companion drones were involved as fog nodes, and
a cloud backend was used for advanced artificial-intelligence-based analyses of thermal
anomalies. The previous studies signify the need for the integration of the cloud/fog/edge
IoT architecture and robotic systems to harmonize and strengthen the operations and data
communication among robot agents in a complete robotic infrastructure to bring about
a high level of productivity and applicability in both industrial and academic domains.
Although many works demonstrated different applications of the IoRT in practice, few
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previous studies in the literature have addressed the challenging problems related to
performance and the impact of system components/parameters on the performance indices
of the cloud/fog/edge computing backbone in IoRT infrastructures. A reference multilayer
architectural model for the IoRT was proposed in [3] and analyzed in [11]. Models for the
perception and control of robots in physical space and their applications were proposed
in [12–15]. However, few studies explored the adoption of queuing networks for IoRT
modeling and planning. Queuing models have been applied to the IoRT successfully
for memory management accessed by sensors and actuators [16] and delivery services
operated by robots [17]. However, such models based on queuing theory nor the models
above considered the IoRT computing architecture as a whole. In other words, existing
works do not address congestion management between layers and load balancing issues.

1.3. Our Approach

In this work, we propose a queuing network model to assimilate the performance of a
computing infrastructure for the IoRT. Queue models offer a theoretical and experimental
framework for performance analysis and planning of computer systems [18]. The proposed
model considers the processing and transmission of data generated by robots in a multi-
layer computing architecture. This model enables exploring the impact of architectural
configuration alteration, considering the computing capacity of the layers: edge, fog, or
cloud. Simulations were performed with two classic load balancing algorithms including
round-robin (even distribution) and weighted round-robin strategies for the multilayer
IoRT computing infrastructure. Critical performance metrics related to the quality of ser-
vice were evaluated, specifically the (i) mean response time, (ii) utilization of computing
layers, (iii) number of messages, and (iv) rate of dropped tasks. This study extends current
progress in previous works by performing a comprehensive sensitivity analysis based on
the Design of Experiments (DoE) to find the factors that expose the highest impact on the
system performance, then adopting the obtained values of these factors in the performance
model in different practical scenarios for performance evaluation. From the knowledge of
the impact factors discovered in the DoE, we evaluated the performance impact of different
load balancing algorithms and the variation in the capacity of several system components
and parameters.

1.4. Contributions

To the best of our knowledge, this work presents an extension of the current progress
in the performance evaluation of IoRT infrastructure by the following key contributions:

• The proposed performance evaluation methodology and model based on queuing
theory, which allow IoRT system designers to analyze the impact of architecture
component configurations on the performance of a system before its implementation.
The model is highly capable of being adjusted by the alteration of different system
parameters such as transmission time, service time, queue size, resource capacity, and
routing strategies;

• The performed sensitivity analyses adopting the DoE to empirically identify the most
impactful factors on system performance regarding various system components in
different computing layers of the IoRT infrastructure under consideration;

• The conducted comprehensive performance evaluation to assimilate the most critical
factors to enhance the system performance, such as load balancing algorithms, along
with different computing cores per node.

1.5. Research Remarks

The following findings were obtained through the analysis results:

• The number of computing cores of VMs in fog nodes is exposed as the most decisive
factor for the system efficiency of the IoRT infrastructure adopting edge/fog/cloud
computing continuum. This means that the processing power of the machines in
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the fog/cloud computing layers is a critical factor to enhance the overall system
performance of the IoRT computing infrastructure under consideration;

• The weights for message routing and the distribution to each computing layer in
the weighted round-robin strategies should be designed under the awareness of the
specific processing capacity of virtual machines in the corresponding computing layer.
Therefore, the computing in the IoRT infrastructure is more efficient with weighted
round-robin strategies than using the simple round-robin strategy. Furthermore, the
greater number of computing cores can drastically reduce the MRT compared to the
smaller one. However, a higher weight with a low capacity selected for a specific
computing layer can lead to significant package losses of messages;

• When comparing the results by the computing layers in the three specific scenarios,
it was observed that the fog had the lowest MRT, which as smaller than the private
cloud, which in turn had a lower MRT than the public cloud. Therefore, it is important
to note that the weights of load balancing strategies among computing layers expose
a major impact on the MRT of the overall IoRT infrastructure. This result greatly
influences the allocation processes of the fog/private cloud/public cloud computing
resources to satisfy the required latency levels;

• Our analysis pointed out that a higher processing power should be assigned to the
fog computing layer whenever the data traffic increases (i.e., shorter arrival time) to
this layer, which could be the culprit of resource shortages due to utilization overload;

• The obtained results can be a practical guide for performance analysis using the
proposed model in a practical application of the IoRT.

1.6. Paper Organization

The remaining sections of this paper are organized as follows. In Section 2, the related
works are discussed. The IoRT architecture for this paper is presented in Section 4. We
describe the proposed queue model for the processing and communication analysis in
Section 5. In Section 6, the sensitivity analysis of the IoRT components that most impact the
system is performed, while the performance analysis of these factors using the proposed
queue model and the discussion of their results are presented in Section 7. The conclusions
are given in Section 8.

2. Related Work

In this section, research works related to architectural modeling and infrastructure
planning for the IoRT are presented. Starting with seminal articles in this area, the definition
of the IoRT and its architectural principles was proposed in [3] as a multilayer architecture.
This architecture focused on the communication components with the robot sensors and
the Internet layer connecting robots to the fog and cloud. Subsequently, in [11], a similar
architecture was analyzed with a focus on the optimization and security of the communi-
cation protocols. In turn, in [2], the authors identified the main application domains for
the IoRT and pointed out the applications that should support Industry 4.0 cyberspace.
Motivated by the above works, this study focuses on performance a modeling evaluation
of IoRT computing infrastructures.

Models for perception and control of robots and their applications have been widely
studied in the IoRT. Most of the efforts in this line [12–15] deal with mapping robot
movement in physical space based on Petri Net (PN) models. In [12], a framework for
the automatic generation of robots’ coordinated mission based on PN was proposed in
conjunction with an experimentation platform, while in [13], the PN was used to model
and improve the navigation of multiple robots in a competition simulating a soccer match.
A PN model for automatic robot travel planning based on movement identification via
Radio Frequency (RFID) was proposed in [14]. In the same line of research, in [15], the use
of RFID for positioning and teaching robots in the mapping of environments based on PN
was evaluated.
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Even earlier than the proposal of IoRT concepts, cloud infrastructures were already
used in robotics to extend robots’ skills for the sake of the interaction between humans
and robots associated with the respective environmental sensing, which is well known
as cloud robotics. In [19], a service based on a robot named Kubo was proposed to offer
elderly assistance for independent living, in which the robotic computing and services
rely on cloud resources to extend the robot’s capabilities for human interaction. The
robot’s main tasks were based on speech recognition and knowledge retrieved from a
knowledge database in a distant cloud for the robot’s perception of the surrounding
context and environment. However, real-time constraints were not considered for the robot
tasks due to performance issues. A framework targeting data retrieval from a cloud for
multiple robots to perform near-real-time tasks was investigated in [20]. In this work, the
authors granted robots asynchronous access to the cloud using market-based management
strategies modeled as a Stackelberg game. The above works dealt with the problem of
sharing resources in the cloud efficiently for multiple robots. Nevertheless, these works
did not explore promising architectures to satisfy real-time constraints in the consideration
of the simultaneous consumption of computing resources for real-time robot tasks.

Multilayer architectures that leverage communication in even more complex robot
systems spreading over wide sensing environments are the challenges in IoRT research
and development. In [1], different approaches based on graph models were proposed to
efficiently maintain connectivity among various mobile robots for a desired Quality of
Service (QoS) level. The authors evaluated their approaches considering the compromise
between communication coverage and QoS in communication. In [21], a Human Support
Robot (HSR) service based on the IoRT was proposed to monitor the behavioral disorders
of patients with dementia in which the assisted patients interacted with the fellow robots.
The HSR service explored the use of various components in the various computing layers
of the IoRT architecture from actions and data collection via sensors and wearable devices
to anomaly detection tasks coupled with cloud processing. A multilayer architecture
for robotic telesurgery was proposed in [22]. The authors employed cloud and fog tiers
managed by software-defined network controllers to provide real-time telesurgery services.
The work also presented a queuing model to evaluate the performance of the telesurgery
system architecture with a focus on the metrics of deadline hit ratios in telesurgery services.

Finally, queuing models offer a theoretical and experimental framework for the per-
formance analysis and planning of computer systems [18]. In [16], a queuing model was
proposed to analyze the efficiency of robotic systems in the collection of data in sensors
and the response via actuators. This model helped designers avoid data loss in sensors,
which is a typical IoRT problem. Similarly, a queuing model for the performance analysis
of inventory services and the delivery of materials controlled by robots was proposed
in [17]. The authors considered several autonomously guided vehicles receiving requisi-
tions, collecting materials on shelves, and then, delivering them to a central collector. Robot
jams occurred at the central collector, and an M/G/1 queue model was used to estimate
the average requisition time and service flow. In [23], an M/M/s queuing model with
impatient customers was adopted to estimate the part flow for a pick-and-place task with
a multirobot system. The authors showed by simulation that their estimation approach
improved the task completion rate of the system compared to estimations based on the
Monte Carlo strategy and the M/M/1 queuing modeling method.

The above-mentioned works revealed the capability of adopting queue models for
performance evaluation of IoRT infrastructures. However, in this literature review, none of
the proposed queuing models considered dealing with the multilevel computing architec-
ture of IoRT infrastructures as a whole. In Table 1, we present a comparison of the previous
works as discussed above to distinguish the contributions of this study.
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Table 1. A comparison of the related work.

Work Metrics Capacity
Variation

Load
Balancing

Sensors
Grouped by

Location

Represents the
Number of
Processing
Cores per
Machine

Average
Response Time

per Layer

[24]

Rating, failure rate, standby
failure rate, switching

mechanism, common cause
failures:

× × × × ×

[13] Achievement rate × × × × ×

[25] System yield 2� × × × ×

[16] Data buffer × × × × ×

[15] Mapping, tracking, motion
control × × × × ×

[14] Mobile robot movement × × × × ×

[12] MRT × × × × ×

[17] System processing capacity,
order cycle time 2� × × × ×

[23] Part flow, computation time,
task completion success rate × × × × ×

[22] Deadline hit ratio, delay, packet
loss ratio 2� × × × ×

[19] Success rate × × 2� × ×

[20] Time of response, CPU load,
bandwidth usage × × 2� × ×

This
work

Edge usage, public cloud usage,
private cloud usage, fog usage,

Msg number, disposal rate, MRT
2� 2� 2� 2� 2�

The related works that used mostly IoRT-related subjects associated with analytical
models were [12–15]. The more evaluation metrics were used, the better the comprehension
of the system’s behaviors was. This study considers even more performance metrics
including the Mean Response Time (MRT), the utilization of computing layers, the waiting
time in queues, and the discard rate. Analyzing the resource capacity to support the
generation of IoRT data is essential. Among the related works, only the works [17,25]
performed different variations of resource capacity. On the other hand, the proposed
model in this study is unique in representing several points of load balancing aiming at
the greater use of resources. The sensors grouped by location criteria refers to how the
proposed model represents different groups of sensors. The selected works in the literature
employed only a single group of sensors, which therefore could only generate a single
arrival rate, which was also not practical since there are often a huge number of robots and
their associated sensors and actuators to generate heterogeneous data. On the contrast,
the model proposed in this work allows assigning different arrival rates by location. This
unique feature aims to reflect the practical operations because these sensors can have
different critical levels depending on the location. The model in this work also has the
exclusive feature of representing the number of processing cores per machine. Both the
fog and cloud are represented with multiple Virtual Machines (VMs) with multiple cores
in each VM. The model enables varying the capacity of the number of machines and also
enables computing the average response times per layer. In this way, the calculated MRTs
enable assimilating the impact of each part on the overall system performance. This study
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provides various extensions and advantages in comparison with previous works in the
literature on the performance valuation of IoRT infrastructures.

3. Performance Evaluation Methodology

Figure 1 presents a flowchart that abstracts our methodology of the performance
evaluation of IoRT infrastructures using the queuing-network-based performance model.
The ultimate goal was to develop a queuing-network-based performance model that can
assimilate IoRT system performance for robots performing tasks in manufacturing factories
in which the computing is associated with the edge, fog, and cloud computing continuum.
Furthermore, a number of different operational scenarios were considered to evaluate the
proposed performance model. More importantly, the sensitivity analysis and performance
evaluation were conducted to determine the most impactful metrics.

Analytical Model 

Generation

Conducting Scenario 

Assessment

System 

Description

MRT
Resource 

Usage
Drop Rate

Number of 

messages in 

the system

DoE

Application 

Understanding

Definition of Metrics

Definition of Parameters

Sensitivity Analysis

Number of 

Cores

Number of 

Nodes

Service 

Charge
Queue Size

Data flow

Scenario Selection Scenario A Scenario B

Queue Model

Simulation

Adjustment?

Yes

Not

Figure 1. Analytical model development methodology.

The first step of the methodology concerns the application understanding. It is important
to comprehend how the application works, define how many components are involved,
and the system’s data flow, for example, where the data are delivered after passing through
a given component. The next step encompasses the metrics’ definition, in which various
performance metrics of interest are identified considering the model’s knowledge to diag-
nose the system performance. In this work, we adopted important performance metrics for
the end user’s perception and system administrators’ utility including the MRT, resource
utilization, number of messages in the system, and message discard rate. The definition of
parameters is the step where we set the model parameters regarding the behavior and capa-
bility of each component. These parameters were the number of cores, number of nodes,
service rate, and queue size in this work. Thus, we conducted the analytical model generation
based on queuing theory, considering the defined metrics and parameters and the expected
results. The choice of the queuing model in this approach can satisfactorily abstract the
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complexity of the IoRT architecture so that system administrators and researchers can focus
on the system’s most important components. In the template validation, the model validation
was implemented using a programming language that considers different components of
the system architecture. The results collected in the validation were compared with the
results returned by the model. The model was validated if sufficient values were found
similarly for both. Otherwise, the model parameters must be adjusted. If more adjustment
was realized after the validation step, we needed to return to the analytical model gen-
eration step. We adopted the DoE to perform sensitivity analyses considering predefined
factors and critical levels. The analyses can identify the most relevant factors for a given
metric and how the interaction between the factors and variations in their levels impacts
the system performance. Given the sensitivity analysis, some practical scenarios, i.e., the
scenario selection step, were taken into consideration for the system performance analysis. In
this way, the most important factors were analyzed with the proposed performance model.
Finally, the selected scenarios were evaluated using the queuing model through numerical
evaluation in the conducting the scenarios assessment step. In each scenario, we varied the
most important factors, and the chosen metrics were analyzed, allowing us to observe the
system configurations that expose a required satisfactory level of system performance.

4. The Internet of Robotic Things

In this section, a typical IoRT system architecture is presented for the sake of perfor-
mance the modeling and analysis, as shown in Figure 2 [3,11]. The IoRT infrastructure is
supposed to adopt a multilayer architecture that integrates (i) the edge layer, the edge of
the robotic network of robots and smart devices located in delimited workspaces or sectors
(e.g., production lines or offices) in different places (e.g., factories or buildings, and (ii)
the fog and cloud computing layers for data processing and to provide supplementary
computing storage. The fog layer allocates processing power closer to the edge of the
network to support local computing, and it is also a decentralized architecture in which
the data and computing capabilities are distributed between the data source and a cloud.
On the other hand, the cloud layer can be further divided into (i) the private cloud in which
computing resources are for exclusive common use within a class of users or companies
and (ii) the public cloud in which the computing resources are used by subscribed users
who purchase their computing plans.

The purpose of this architecture is to process data streams originating from robot
sensors or actuators in factories while performing tasks in various application domains [2],
such as those mentioned in Section 2. In the edge layer, robots with different sensors and
actuators are connected via a wireless network through wireless access points to perform
tasks in individual or collaborative manners based on the tasks performed by the robots
in the industrial production line. This layer is further composed of an edge gateway
for data aggregation and forwarding through a router to the fog or cloud computing
layers in accordance with load balancing policies between the layers or the requirements
of computing power. In turn, the fog or cloud layers are composed of (i) a number of
computing nodes (i.e., virtual machines) for parallel processing of tasks regardless of their
source and (ii) a fog/cloud gateway for the aggregation and forwarding of computing jobs
to the fog/cloud virtual machines based on the load balancing policy adopted in their
respective tier.

Message lifecycle: The architecture in Figure 2 also indicates the lifecycle of data packets
and the accompanying operational processing behaviors for data streams generated by
robots in industrial production lines. Fundamentally, when processing capabilities in
the edge layer (i.e., in the robots themselves) are insufficient to process the edge data
periodically generated in the edge layer, it is critical to forward the data processing jobs to
the fog or cloud layers for more powerful processing capabilities. In such a sophisticated
processing pattern of messages in the IoRT infrastructure, it is critical to assimilate (i) how
the periodic interval variation for the data generated in the edge computing layer and
(ii) how a specific configuration of each component of a layer impact the performance
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of the IoRT infrastructure evaluated via metrics such as the average time response and
the throughput of tasks. In particular, data processing jobs are delivered over a wireless
network to an edge device for the data to be encapsulated and aggregated. If the edge
device is busy, data can be put in an edge queue, which will be served in order of arrival
(first come, first served (FIFO) policy). However, if the edge device queue is completely
occupied, the data will be discarded as a consequence. These alerts are then transmitted to
the fog via a fog gateway. The edge/fog/cloud gateways play a role in the data distribution
and load balancing for the public, private, and fog nodes. Load balancing is performed
so that all fog and cloud nodes receive the same amount of processing requests, which
is important to avoid overloading and queuing problems in one node while other nodes
are idle, causing data congestion. Messages are processed in fog and cloud nodes. As
with the edge device, fog and cloud nodes also have a queue capacity limit, and if that
limit is reached, the data will be discarded as a consequence. To assimilate the impact of
system parameters and components on the overall system performance, some research
questions may arise in this study, including: (i) “What is the impact of the request arrival rate
on a system’s performance metrics?”; (ii) “How does a specific resource capacity setting impact a
system’s performance metrics? “.

Gateway

Private Cloud

Gateway

Public Cloud

Gateway

Edge for Fog 

and Cloud

Acess Point

Edge

Gateway

Fog

Robot 1

Robot 2

Robot N

.. .

Acess Point

Robot 1

Robot 2

Robot N

.. .

Acess Point

Robot 1

Robot 2

Robot N

.. .

VMs

Private Cloud

Public Cloud

Fog

VMs

VMs

Figure 2. Illustration of the architecture of an IoRT system supported by remote computing resources.

Assumptions: To simplify the modeling, some assumptions about the architecture
under consideration are provided as below:

• [a1]: Data generation was modeled for all active robots in a room connected to an
edge device that is also installed in the same room to cover the data transmission from
the robots;

• [a2]: The communication latency between sensors and high-end devices was not
considered to simplify the queuing-network-based performance model. We assumed
the establishment of noninterrupted wireless communication and high-quality data



Electronics 2021, 10, 2626 10 of 22

transactions between the robots and edge devices to minimize the negative impact of
latency in the high-end short-haul communication on the overall performance metrics;

• [a3]: The data collection of the robot was independent of each other. However, the
arrival rate of the messages was assumed to be deterministic;

• [a4]: Sophisticated load balancing strategies were not considered in the cloud/fog
layers since the forwarding mechanisms can help reduce the overload of the cloud/fog
layers. Thus, jobs arriving at the cloud/fog gateways are distributed evenly to each of
the cloud/fog nodes;

• [a5]: The message generation at the robots was supposed to statistically comply with
a deterministic distribution, while the service of processing cores at the computing
layers complied with an exponential distribution. Different distribution types of data
arrival and processing time can also be adopted to reflect the practical arrival and
processing of jobs at the edge/fog/cloud of the network.

5. Proposed Performance Model

Figure 3 illustrates a queuing-network-based performance model for the IoRT in-
frastructure under consideration. Java Modeling Tools (JMT) [26] was used to model
and evaluate the proposed scenarios. JMT is an open-source toolkit for simulating and
evaluating the performance of communication systems based on queuing theory [27].
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Figure 3. Overall queuing-network-based performance model of a typical IoRT computing infrastructure.

The flow of data is illustrated from the left side to the right side of the model, which
captures the data transmission throughout the IoRT from the sensors/actuators on each
robot at the edge to the fog and cloud computing centers. Sensors generate requests within
a predefined time interval following a particular probabilistic distribution (e.g., exponential
distribution). The model has multiple entries corresponding to different groups of robots
in individual manufacturing sectors at the edge of the IoRT infrastructure. Each sector has
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a number of robots all connected to a wireless access point in which the data generated by
the robots following an exponential distribution are aggregated and received to forward to
the upper layers for further processing and analysis. The access point can be, for example, a
router, and the computing nodes can be processing cores. A queue and multiple computing
nodes in the proposed model were used to represent each access point. The arrival rate
depends on the number of robots and the distribution of the data generation from the
robots’ sensors. Robot sectors are supposed to be placed at different areas of the same or
different manufacturing factories. Each robot sector is located at different distances from
the other layers; therefore, the delay to the computing layers needs to be taken into account
(i.e., delays from the edge to the fog, public cloud, and private cloud computing layers).
The delay components in the proposed model do not carry any specific service: it is just a
component to represent the network delay in the transmission of a request.

The fog, public cloud, and private cloud were modeled in a similar manner. An input
gateway distributes data following a specific load balancing strategy. The cloud and fog
layers have a service time related to their data processing tasks. It is noteworthy that the
cloud layer has greater computing capacity than the fog layer. It was assumed that the
arriving requests in each element of the overall system would be processed considering a
First Come, First Served (FCFS) policy. By the Kendall notation [28], a queuing network
follows the pattern D/M/c/K/FCFS. The main parameters of the stations are the queue
size, service time, and several internal servers (the computing layers considered as pro-
cessing cores). The generation rate follows a deterministic pattern (D) as the sensors were
calibrated to a fixed generation interval. On the other hand, the service time (M) of a server
often complies with exponential distributions, which usually feature continuous-time
Markovian processes. Service stations have a number (c) of servers. The last queues have
a fixed size (K) and adopt the FCFS service policy. Each access point can have a different
arrival rate. Since they are often relatively infinitesimal values, we assumed neglecting the
communication latency between sensors and access points. The Delay components (e.g.,
“Delay Edge 1”, . . . , “Delay Edge N”) encapsulate any associated time from the exit of an
access point to a gateway device. In this work, we assumed that the VMs are in charge
of specific processing tasks. However, if an appraiser needs to represent such tasks as a
storage delay, the appraiser must consider such respective times to feed the model. More
layers of remote processing can be added to the model, but we chose to represent only the
three most popular existing computing layers. A common difference between the public
and private cloud relates to the level of data security and privacy. However, we assumed
not to consider this requirement in the modeling.

6. Sensitivity Analysis

In this section, we investigate the factors that can impact the performance of an IoRT
infrastructure using our queuing model. This analysis aimed at assimilating how a change
in the main components of the IoRT infrastructure impact the system’s performance. In
this way, we first describe our statistical framework for sensitivity analysis, and afterwards,
we discuss our results.

6.1. Design of Experiments

In this work, we adopted the Design of Experiments (DoE) techniques for sensitivity
analysis. The DoE corresponds to a collection of statistical techniques that deepen the
knowledge about a product or process under consideration [29]. It can also be defined by a
series of tests in which a research engineer changes the set of variables or input factors to
observe and identify the reasons for the changes in the output response.

The DoE-based sensitivity analyses adopt three categories of graphs, which are usually
recommended in the literature [30,31]:

• The Pareto chart is represented by bars in descending order, and the higher the bar,
the greater the impact of a given factor (e.g., architecture component) is, representing
the influence of this factor on the analyzed measure (i.e., the dependent variable);



Electronics 2021, 10, 2626 12 of 22

• The main effects graphs use lines to represent the differences between the level of
impact for one or more factors, and the higher the slope of the line, the greater the
magnitude of the main effect is, whereas a horizontal line has no main effect, i.e., each
level affects the response in the same way;

• The interaction graphs use lines to identify the impact of interactions between factors,
i.e., the influence of a given factor on the result is impacted by the changes in another
factor’s level, and parallel lines in the graph means there is no interaction between
the factors. Otherwise, there is an interaction between the factors.

We conducted experiments for the considered IoRT architecture. Accordingly, the four
tiers and the configuration of the components in each tier were explored in the sensitivity
analysis. The MRT metric was the output response measure to be analyzed through the
DoE. The choice of the MRT was due to its direct impact on the perception of the end user.
The resource utilization level, for example, is a metric considered to be of a secondary type.

Four factors were adopted in this study: (i) load balancing algorithms, (ii) number of
nodes, (iii) number of CPU cores, and (iv) queue size. All factors have two levels. The factor
of the load balancing algorithms has the level of round-robin and the level of weighted
round-robin considering the routing from the edge to the computing tiers, public cloud,
private cloud, and fog with the weights of {1, 2, 3}, respectively. The number of nodes
refers to the number of servers (i.e., VMs) in each tier, given as 2 and 4. In turn, the number
of cores in the server is also given as 2 and 4. The queue size refers to the number of
requests in the server queue. Its two levels are 500 and 700. Table 2 summarizes the factors
and levels chosen to perform the DoE using the MRT metric. They must be combined to
define how the experiments should be performed. Table 3 shows the combinations among
all defined factors and their respective levels.

Table 2. DoE factors and levels.

Factor Level 1 Level 2

Routing Strategy Round-Robin Weighted Round-Robin
Number of Nodes 2 4
Number of Cores 2 4

Queue Size 500 700

Table 3. Factors and their respective level combinations.

Load Balancing Algorithms Number
of Cores

Number
of Nodes

Queue
Size MRT

Round-Robin 2 4 700 9,208,937
Round-Robin 2 2 700 6,561,712

Weighted Round-Robin 4 4 700 5,870,973
Round-Robin 4 4 500 9,201,967

Weighted Round-Robin 4 2 500 39,584,223
Weighted Round-Robin 4 4 500 5,969,696
Weighted Round-Robin 2 4 700 98,485,536
Weighted Round-Robin 2 2 700 75,990,773

Round-Robin 2 4 500 9,259,595
Round-Robin 4 2 700 9,046,203
Round-Robin 2 2 500 49,746,342

Weighted Round-Robin 2 2 500 5,652,527
Weighted Round-Robin 2 4 500 92,825,589

Round-Robin 4 2 500 9,160,168
Weighted Round-Robin 4 2 700 9,059,349

Round-Robin 4 4 700 901,238
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6.2. Analysis Results

Figure 4 depicts the Pareto graph for the factors related to the MRT metric. In the
Pareto chart, the absolute values of the standardized effects are presented from the biggest
effect to the smallest one [32]. A standardized effect size is a unitless measure of the
effect size, which is in turn some quantity used to capture the magnitude of the effect
under consideration [33]. We used Minitab® to generate the Pareto chart to highlight the
standardized effect values of the significant factors and interactions [34]. The Pareto chart
enables one to estimate and measure the difference in the absolute values of the effects
of each factor or interaction under consideration. Considering the MRT (in milliseconds)
as a response, the significant variables at a α = 0.05 significance level are the (i) routing
strategy, (ii) cores (number of cores), (iii) VMs (number of nodes), and (iv) queue (queue
size) (as shown in Table 3). In the Pareto chart, a reference line is plotted to indicate the
statistically significant effects with a 95% statistical confidence. The impact of a factor on
the output metric of interest is indicated by the level of difference in magnitude of the
obtained output metric values when compared to each other. Furthermore, the interaction
between the factors can expose a specific impact on the output metric of interest, which
is also depicted in the Pareto graph. The higher values reflect the greater significance of
the factor under consideration indicated via the vertical axis. The graph enables us to
investigate the factors and their interaction effects that manifest significant impacts on
the output metric of interest. The bars that cross the red reference line are considered
statistically significant, considering the 95% statistical confidence with the terms of the
current model. The factor of the number of cores exposes the greatest relevance among the
considered factors in this study. Therefore, the number of computing cores in the fog nodes
is the most impacting factor for the system performance. The load balancing algorithms
also expose a high relevance of the MRT. The queue size and the number of nodes are the
factors that expose far less influential impact. As the Pareto plot displays the absolute value
of the effects, one can determine which effects are large, but it cannot determine which
effects increase or decrease the response time.

Figure 5 presents the main effects graph for the MRT metric. The dashed line in the
graph breaks down the resulting values in each level for easier analysis of the continuous
lines, which represent the differences between the impact of the factors. The more horizon-
tal the line is, the less influence that factor exposes as it indicates the different levels of the
factor that similarly influence the results. All factor levels interfere with the MRT metric
in some way. The factors of the load balancing algorithms and the number of computing
cores expose the greatest effect. Regarding the algorithms, weighted round-robin led to the
highest mean response time (about 5000 ms), while in the case of round-robin, this time
was much lower (almost 2000 ms). Therefore, the computing in the IoRT infrastructure is
more efficient using the simple round-robin. Regarding the number of cores factor, it can be
seen that the MRT is much higher when using two cores instead of four cores. When using
four cores, the processing speed doubles. As a consequence, the MRT drastically reduces.

Figure 6 shows the interaction of each possible factor combination. Two factors interact
with each other if the effect of one depends on the remaining. We observed that there was
an interaction between all factors even though the variation of effects was low in some
cases. The largest variation occurred for two cores in the interaction between the load
balancing algorithms and the number of cores. In this case, the MRT was above 8000 ms
for weighted round-robin and less than 4000 ms for round-robin. When considering the
interaction between the load balancing algorithms and the number of nodes, the greatest
variation occurred in the case of four nodes, where the MRT was close to 0 ms for round-
robin and reached more than 4000 ms for weighted round-robin. As one can observe, the
combination of interactions that included the load balancing algorithms, number of nodes,
and number of cores showed the highest variance ranges for the MRT. On the other hand,
in the interaction between the number of nodes and queue size, the MRT metric exposed a
stable behavior (i.e., around 4000 ms) for both levels of these factors. Thus, they were the
least interacting factors in the experiment.
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Figure 4. Impact of different factors on the MRT metric (response is the MRT (milliseconds),
(α = 0.05)).
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Figure 5. Main effects for the average response time.
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Figure 6. Interaction of factors regarding their impact on the MRT metric. The ∗ mark means the
relationship between the two factors.

7. Performance Analyses

In this section, we present numerical performance analyses based on the proposed
queuing network model for the IoRT infrastructure, considering the variation of the two
factors that exposed the most impact on the system performance of the IoRT infrastructure
recognized by the DoE sensitivity analyses in Section 6. First, we analyzed the impact of
the alteration of two load balancing algorithms and then the variation of the number of
computing cores in each node of the computing edge/fog/cloud layers.

7.1. Load Balancing Algorithms

The main purpose of load balancing is to prevent a single server from being overloaded
and possibly failing. Load balancing improves service availability and helps prevent
downtime. In addition, when the amount of workload that a certain server receives is
within an acceptable level, it would have sufficient computing resources (e.g., CPU, RAM)
to process requests within acceptable response times. Importantly, a rapid response with
a short time is vital to end user satisfaction and productivity. It is worth noting that the
use of this approach has not been verified in the literature with queuing networks. Table 4
shows the input parameters used for each component of the model. The letter x indicates
that the component does not have a specific value of the queue capacity. The column “Time
(ms)” represents the service time for each component of the model. The delay components
represent the transmission times for messages from one component to the other. In this
work, the processing nodes in the cloud and fog layers were VMs with different numbers
of processing cores. However, the appraiser can consider any other computing element
such as containers.

Table 5 presents three specific scenarios for the performance evaluation denoted as
RR, WRR − A, and WRR − B. Scenario RR explores the round-robin algorithm, while
scenarios WRR− A and WRR− B explore the weighted round-robin strategy with different
weights. The purpose of these scenarios was to demonstrate the capabilities of adopting the
proposed performance model to evaluate specific configurations of an IoRT infrastructure
that impact its performance. Furthermore, it is critical to identify the compromise between
computing power and communication delays in the IoRT infrastructure adopting the
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multilayer computing pattern of edge/fog/cloud continuum in which the use of weights
in load balancing can further optimize this aspect in order to decrease mean response times
and decrease the drop rate.

Table 4. Fixed input parameters used to feed the model.

Type Component Time (ms) # Queue Size

Station with Queue

Access Point 2 1000
Fog Nodes 10 250

Public Cloud (VMs) 10 250
Private Cloud (VMs) 30 100

Delay Station

Delay Edge-Gateway 1 6 x
Delay Edge-Gateway 2 12 x
Delay Edge-Gateway 3 24 x

Delay Edge-Fog 100 x
Delay Edge-Private Cloud 500 x
Delay Edge-Public Cloud 2000 x

Table 5. Explored scenarios in the analysis of the load balancing algorithms.

Weight

Scenarios Load Balancing Strategies Public Cloud Private Cloud Fog

RR Round-Robin x x x

WRR-A Weighted Round-Robin 3 2 1

WRR-B Weighted Round-Robin 1 2 3

Figure 7 shows the results observed in the three scenarios. The results were produced
based on five metrics of interest including the (i) MRT, (ii) utilization, (iii) number of
messages in the system, and (iv) drop rate. An appraiser can use any load balancing
strategy, but in this work, we limited ourselves to adopting two existing strategies due to
the readiness of those strategies in the JMT analysis tool [26].

Figure 7a shows the MRT referring to the system’s exit point, that is three MRTs were
calculated for each of the three computing layers. In the comparison of the three scenarios,
we observed that the greatest impact of the alteration of the balancing algorithms on the
MRT occurred in the fog while obtaining similarity in the scenarios RR and WRR − A
reaching a value of ≈94.00 ms. However, the MRT exposed a considerable increase in
scenario WRR − B, which reached 403.243 ms. It was observed that in the public and
private cloud, there were similar values of ≈2023.00 ms and ≈31.00 ms, respectively.
Therefore, the smallest MRTs were obtained with the configuration of scenarios RR and
WRR− A. Additionally, scenario WRR− A was superior to scenario WRR− B because a
heavier weight was given to the cloud, which doubled in the processing capacity compared
to the fog regarding the number of cores, thus offering a shorter service time. When
comparing the results by layer in the three scenarios, it was observed that the fog had the
lowest MRT compared to the private cloud, which in turn, had a lower MRT than the public
cloud. This result greatly influenced the location of the three fog/private cloud/public
cloud computing resources with their latencies of 100 ms, 500 ms, and 2000 ms, respectively.
Observing scenario WRR− B specifically, we see that the MRT of the fog was very close to
the result of the private cloud, while the greater weight of the load balancing strategy was
allocated to the fog. Therefore, it is important to note that the weights had a major impact
on the MRT.

Figure 7b shows the utilization of the components in each layer, including the edge
layer. When compared to each other, it could not be distinguished which of the three
approaches in the three scenarios had the best results in the utilization, generally. However,
the utilization of the edge layer and public cloud remained constant in the three scenarios.
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This utilization at the edge layer occurred because the adoption of load balancing strategies
was not considered before reaching the edge access point devices. In turn, this utilization
in the cloud layer occurred because the cloud had a lower arrival rate due to its greater
distance from the edge layer (edge–cloud delay), which resulted in a low utilization. The
fog layers across the three scenarios achieved a notable variation in the utilization. The
lowest utilization occurred in scenario WRR− A (with 38%). The highest utilization values
for the fog happened in scenario WRR − B because the fog had a greater weight, thus
receiving more messages for processing. Observing the private cloud, the variation in the
utilization metric was not significant. The lowest utilization of the private cloud occurred
in scenario WRR− B (6.2%).
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Figure 7. Simulation results with the proposed model considering different load balancing algorithms.
(a) Mean response time. (b) Utilization. (c) System number of messages. (d) Drop rate.

Figure 7c shows the mean number of messages processed within the system including
all processing points and queue buffers. In principle, fewer messages should remain within
the system, indicating a high processing capability and a high data throughput. However,
it should be carefully observed whether the occasional low number of messages is due to a
high drop rate. The number of messages was different for the three scenarios. Scenario
WRR − A maintained the highest number of messages (728 msg). Scenario WRR − B
resulted in the lowest number of messages (428 msg).

In order to understand the low number of messages in scenario WRR− B, one must
also pay attention to the utilization graphs (Figure 7b) and drop rate (Figure 7d). In scenario
WRR− B, a greater weight was given to the fog layer. Thus, more messages were directed
to that layer. With more messages, the resources became overloaded at some points, as
seen in the fog’s use. This saturation caused scenario WRR− B to have a higher drop rate
and, therefore, a smaller number of messages. Therefore, the low number of messages in
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scenario WRR− B is a negative impact. Dropped messages can generate inconsistencies in
the robots’ requests.

7.2. Number of Cores Per Node

The number of cores was one of the two factors that exposed the most impact on the
overall performance of the IoRT infrastructure. The increase in the number of cores avoided
processing overloads, which therefore, resulted in longer response times. On the other
hand, the number of cores should be increased gradually to prevent the underutilization
of computing resources, then excessive and unnecessary investments in the deployment
of the IoRT architecture. In Table 6, we consider three scenarios to analyze different
configurations of the computing cores in the nodes, which are denoted as scenarios I,
I I, and I I I. In scenario I, we explored the nodes with low processing power in terms
of the number of cores. In scenario I I, the processing capacity was two-times bigger to
explore an intermediate system. Finally, scenario I I I represents the computing system
with a high processing power in which the number of cores in the nodes is three-times
higher than in the first scenario I. The purpose of these scenarios was to demonstrate
how the proposed model could evaluate specific configurations when deploying the IoRT
computing infrastructure and their impact on system performance. Furthermore, this
analysis can help identify the trade-offs between computing power and communication
delays in an IoRT infrastructure adopting multiple fog/cloud computing layers.

Table 6. Configurations of the computing layers for the performance trade-off analyses.

Cores

Scenarios Public Cloud Private Cloud Fog

I 8 8 4

I I 16 16 8

I I I 24 24 12

Figure 8 shows the numerical analysis results in the three scenarios I, I I, and I I I,
representing different configurations of the computing layers. We analyzed the same
metrics of interest as presented in the previous section including the MRT, utilization,
number of messages in the system, and messages drop rate metrics.

In Figure 8a, we show the MRT for each of the three computing tiers of the remote
computing resources (fog, private cloud, and public cloud). As one can observe, the
fog layer exposed the highest MRT variation for the three configurations of computing
capacities. In particular, scenario I showed the longest MRT at approximately 790.00 ms,
whereas a sharp drop to approximately 95.00 ms occurred in scenario I I I. The public and
private cloud layers maintained the same MRT in all three scenarios. For the public cloud,
the MRT remained stable at approximately 2023.00 ms in the three scenarios. In the case
of the private cloud, it stayed at 525.00 ms. Therefore, the deployment of a minimum
configuration of the public and private clouds along with a high-level configuration of the
fog layer can apparently gain better values for the MRT metric.

Figure 8b shows the utilization of the computing resources in each of the four com-
puting layers of the IoRT infrastructure. We included the edge layer in this figure to show
that the proposed scenarios did not affect the utilization of this specific layer. However,
they affected the other layers and, therefore, the overall system performance. The resource
utilization in the public and private clouds was lower due to the longer task interarrival
times in these layers, i.e., a greater distance led to greater communication delays between
the edge and cloud. Additionally, the utilization decreased as we increased the processing
power from configuration I to I I I, i.e., from 40% to 10% utilization. In the fog layer, in
turn, one can observe resource overload with 100% utilization in scenarios I and I I and
60% utilization in scenario I I I, given an increase in the processing power of scenario I I I.
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Our analysis showed that the fog required a higher processing power when the traffic of
task arrival increased (i.e., shorter arrival time) to this layer, which may cause resource
shortages due to utilization overload.
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Figure 8. Model numerical results considering the variation of the number of cores per node.
(a) Mean response time. (b) Utilization. (c) System number of messages. (d) Drop rate.

Figure 8c shows the average number of messages processed within the overall sys-
tem, including the four layers. Fewer messages remaining within the system at a time
indicate a higher performance, reflecting high processing power and high throughput.
However, it is necessary to take into account the culprit of the message drop rate, as
shown in Figure 8b. For example, Figure 8c shows that scenario I I I had the lowest number
of messages (1747 msg), while scenario I and scenario I I had a higher number of 1948
messages and 1956 messages, respectively. However, scenario I exposes an inferior per-
formance compared to scenario I I since the highest drop rate was in scenario I, as shown
in Figure 8b. This was due to the lower processing capability in scenario I (50% lower
compared to scenario I I), which led to a greater number of messages in the system (i.e.,
lower throughput and higher drop rate) as new tasks arrived in the system. By contrast,
in scenario I I I, the system had the highest processing capacity, which resulted in fewer
messages and, at the same time, a lower discard rate.

The above performance analyses pointed out the insights into the performance-related
behaviors of the IoRT infrastructure and also reflected the capability of adopting the pro-
posed queuing-network-based performance model to assimilate a number of performance
metrics of interest. The analysis results can help improve the design and selection of system
configuration and architecture of an IoRT infrastructure.
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8. Conclusions

In this paper, we proposed a performance model adopting a D/M/c/K/FCFS queuing
network to assimilate the behaviors and performance of message transmission within an
IoRT infrastructure that employed the edge/fog/cloud computing continuum. Different
arrival rates in the model were used to capture the clustering and data generation of robots
by groups at different places in practical manufacturing factories. The adoption of the
proposed performance model helped measure and comprehend a variety of performance
metrics of interest including the average response time, utilization, and drop rate, and the
calculation of other performance metrics can be further extended. The proposed model
elaborated some load balancing strategies for computing at different strategic locations (i.e.,
at the edge/fog/private cloud/public cloud gateways) in the whole computing system.
DoE analyses were carried out to assess the most impactful factors on the overall system
performance. A set of different configurations was given under the combination of the
factors (i) load balancing algorithms, (ii) number of processing cores, (iii) number of
processing nodes, and (iv) capacity of queues in different computing layers. In particular,
among the considered system parameters, the processing capacity of the virtual machines
was exposed to be the most impacting factor. Based on the output results of the DoE,
a detailed performance evaluation was carried out to assess the impact of the variation
of the computing servers’ processing capacity on the system performance in different
scenarios. The performance evaluation was also conducted according to different routing
strategies. Three different routing scenarios were evaluated adopting two popular routing
algorithms, which were round-robin and weighted round-robin with different weights. The
simulation results pointed out that a higher weight with a low capacity selected for a specific
computing layer can lead to significant package losses of messages. Therefore, the weights
for message routing and distribution to each computing layer in the weighted round-robin
strategy should be designed under the awareness of the specific processing capacity of
the virtual machines in the corresponding computing layer. Furthermore, through the
analysis results, the research finding was that the processing capacity of the machines
was exposed to be the most impactful factor on the overall system performance of the
IoRT computing infrastructure. Simulation results highlighted the capability to adopt the
proposed performance model to assimilate sophisticated behaviors in performance based
on the variation of the configuration and the impacting factors of the IoRT infrastructure.
The use of the proposed performance model enabled us to design system configurations to
obtain the desired performance in a typical IoRT infrastructure.
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