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Abstract: As radio-frequency (RF) based wireless energy harvesting technology can provide remote
and continuous power to low-power devices, e.g., wireless sensors, it may be a substitute for batteries
and extend the lifetime of the wireless sensor networks. In this paper, we propose a wireless energy
harvesting localization system (WEHLoc), which contains batteryless wireless sensors as anchors
and an energy access point (E-AP) to transfer power to the anchors. We consider a passive target
localization scenario, in which the anchors monitor the target and send the sensed ranging data
back to the E-AP. Additionally, we formulate the optimal estimation accuracy problem which is
a 0–1 mixed-integer programming problem and relates to the energy beam, target transmitted
power, and deployed anchor density. Then, we develop the power allocation scheme of the E-
AP to solve the objective. In order to reduce the complexity, we propose a heuristic method that
converts the maximum estimation accuracy problem into the energy efficiency problem and use
linear programming to solve them. The simulations demonstrate that WEHLoc can be massively
deployed in a wide area, and the estimation error and the power consumption are relatively low.

Keywords: wireless power transfer; localization; Fisher information matrix; integer programming;
energy efficiency

1. Introduction

Locating and tracking the target are important topics for wireless sensor networks
(WSNs) especially in GPS denied environments, e.g., buildings, urban canyons, under tree
canopies, or caves [1]. However, prolonging the lifetime of sensors with limited energy is a
crucial issue [2]. Energy efficiency schemes are applied to keep the wireless sensors in a low
energy cost mode [3,4]. However, no matter how we design the energy efficiency schemes
for WSN systems, the batteries still will be inevitably depleted in the end. Although the
batteries can be replaced or recharged, it is inconvenient, costly, or even dangerous for a
large-scale deployed network in a harsh environment.

In recent years, radio frequency (RF) based wireless power transfer (WPT) technique
has gain a lot of attention in both academia and industry [5]. It has become a promising
solution for low power and small devices and can effectively solve the energy bottleneck
of wireless networks or wireless sensor networks [6]. Consequently, simultaneous wireless
information and power transfer (SWIPT) systems harvest wireless energy to power up the
wireless devices in order to transmit data [7]. In addition to the fundamental research [8–10],
WPT has been applied in many typical applications and wireless sensor devices, e.g., RFID
[11], body area networks [12], and underground sensor networks [13]. An important
application is the implant device for biomedical applications, which employs wireless
power to supply the energy for the devices with body [14,15]. Additionally, Naderiparizi
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et al. demonstrated that a visual data transfer sensor using WPT can achieve a high
transmission rate [16]. Therefore, WPT is a promising and feasible solution for wireless
communications and applications, and it will benefit the wireless localization system as a
new type of energy supplier.

Since the sensors nodes are equipped with the energy harvesting components, local-
ization techniques are essential to such system. On one hand, the sensor networks need to
know the exact positions of the passive sensor nodes which are not always active without
WPT energy. Such position information may help the network manage the nodes and
allocate resources efficiently [17]. On the other hand, these passive sensor can also provide
location-based services as if they were activated. Thus, how to control the remote wireless
power to achieve the goals of some specific localization requirements is a critical issue [18].

In this paper, we investigate a localization framework of a wireless sensor network,
where no batteries are equipped in the wireless sensors (or anchors), and the MIMO-based
wireless energy access point (E-AP) provides the remote energy to power up these anchors.
The target periodically broadcasts the signals and the anchors collect such signals and
send them back to the E-AP in order to track the target. Such a wireless energy harvesting
localization system (WEHLoc) can be deployed on a large scale since the anchors are
relatively cheap and small [17]. Additionally, WEHLoc can be seen as a typical application
for SWIPT [19], since the uplink data carries the ranging measurements of the target. Such
a system can be implemented by the commercial facilities, e.g., PowerCast, in which the
passive sensors attain the energy from the remote transmitter and send the data back to
the wireless gateway [17]. Compared with the traditional energy-constrained wireless
localization systems, e.g., GPS, cell-based localization system [20], sensor networks [21],
wide-band wireless localization network [22], or MIMO-based localization systems [23],
WEHLoc breaks the bottleneck of power constraints. In addition, the batteryless anchors
are the extensions of the E-AP and they are suitable for large area monitoring. Several
researchers have already implemented real passive sensors to provide localization functions.
In [24], the harvested energy is converted into UWB signals by rectifying the received
waveform and motivating the UWB chips. Pannuto et al. achieved 30 cm positioning
accuracy with UWB based backscatter module [25]. Fantuzzi et al. designed a circuit that
turns the UHF signal into UWB TDOA ranging [26].

With a given WEHLoc system, wireless power is the major control scheme for all
the anchors, and the system model should consider two propagation models with the
wireless power beam simultaneously, since it is a typical application of SWIPT and used for
localizations. The first one is the formulation of power propagation from E-AP to anchors,
and the second one is the formulation of localization estimation accuracy. Thus, the power
allocation not only influences the received power of the anchors, but also leads to the
estimation performance changes. In this paper, the equivalent Fisher information matrix
(EFIM) is introduced as the fundamental tool to formulate the problems and use squared
position error bound (SPEB) as the major metric for evaluation, which are widely applied
in many studies [18,27,28]. The main contributions are three fold:

• First, we use EFIM to formulate an analytical framework of WEHLoc and derive the
SPEB as the localization performance metric. Within this framework, the wireless
power, network topology, signal to noise ratio (SNR), prior information, and non-
line-of-sight (NLOS) are fully considered and integrated. The formulation indicates
that the localization accuracy relies on the target transmitted power and the network
topology. Additionally, the wireless power beam directly actives parts of the anchors
and further influences the network topology.

• In the second contribution, we jointly consider minimizing the estimation error and
power consumption from E-AP. Thus, we formulate the wireless power allocation
problem as a multi-objective optimization problem, which contains the optimal SPEB
and optimal energy efficiency problems. Within the objective, the wireless power beam
is the parameter of the step functions which are independent of some other parameters.
Thus, achieving the optimal estimation and energy efficiency are independent of fixing



Electronics 2021, 10, 2592 3 of 19

some constraints. Then, we divide the multi-objective optimization into two sub-
problems. In addition, we also prove that such problem formulation is also suitable
for multi-target localization.

• The third contribution is that we develop a 0–1 mixed integer programming to obtain
the optimal solution. Both the optimal estimation accuracy and energy efficiency
can be achieved. In order to reduce the complexity of the optimization method in a
large-scale network, we also design a heuristic algorithm by setting a fixed batch of
used anchors and relaxing the minimum SPEB as a maximum trace of EFIM. Then,
the objectives are further simplified to linear programming methods. Based on our
proposed method, the anchor uncertainty problem is also formulated, and the related
robust algorithm is also developed.

Our proposed schemes are evaluated by extensive simulations, where the estimation
accuracy and energy efficiency performance are analyzed. During the simulation, we
observe several factors that will influence the estimation and energy consumption, e.g.,
target transmitted power, anchor density, wireless power beam, and the number of used an-
chors in the proposed algorithms. The results demonstrate that our proposed optimization
scheme can achieve the optimal estimation accuracy and the minimum energy consump-
tion with given wireless power constraints simultaneously. Additionally, the heuristic
method can approach the optimal estimation with the minimum energy consumption.

2. System Model

The architecture of WEHLoc can be divided into three parts, which are energy access
point (E-AP), batteryless anchors, and the targets. The E-AP contains multiple antennas
and provides a wireless power beam to power up the batteryless anchors. Such anchors
are equipped with antennas to capture the microwave from E-AP, and the rectifiers convert
the microwave into the direct current. Then, a supercapacitor for each anchor stores
the energy of the current which guarantees sufficient energy is collected for sensing,
processing, encoding, and transmitting. Considering a low power chip in such a system,
e.g., BLE communications which only require mW power to work, the harvested energy
is enough to execute such procedure. Thus, the batteryless anchors are used to send
the sensing data back to the E-AP when they gain enough energy. The targets only
broadcast periodic ranging signals to the anchors, and WEHLoc continuously monitors
and tracks their positions by gathering the ranging measurements from anchors. Note
that the anchors start sensing when enough energy is gained. Then, such energy can
guarantee that the anchors can collect all the targets ranging information, encode them
and transmit to the E-AP to remote locate these targets. Since the ranging information is
a periodically short data packet, the anchors have the ability to address the information
sequentially during the sensing period. After transmitting the data, the energy stored in
the supercapacitors is released. Then, no energy is left until E-AP broadcasts the wireless
power waves in the next period. The E-AP is a core module in the WEHLoc, which contains
wireless power transfer, receiving ranging data from anchors, localization, computing, and
power allocation functions. Therefore, the communication, wireless power transfer, and
computing functions are integrated in the E-AP. The localization and power allocation
schemes are executed in E-AP when the ranging signals arrive. E-AP decodes the signal
and extracts the ranging information. Then it employs a typical localization algorithm, e.g.,
NLLS or Kalman filter, to derive the target position. Therefore, the microwave transmission
in WEHLoc contains wireless power beam from E-AP to anchors, uplink sensing data
from anchors to the E-AP, and broadcasting ranging signal from the target to anchors as
illustrated in Figure 1.
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Wireless Power Beam

Sensing Data

Ranging Signal

Figure 1. The architecture of WEHLoc.

Since the wireless power beam will influence the sensing data from the batteryless
anchors and further determine the localization accuracy, the system model will focus on
the wireless power propagation and the formulation of the localization accuracy. Thus,
the impact of wireless power allocation is considered for energy efficiency purposes. The
energy consumption for localization algorithms mainly occurs within the E-AP, which is in-
dependent of the wireless power allocation. In this case, such parts of energy consumption
are beyond our scope.

In the WEHLoc, there are K antennas equipped in the E-AP and form an antenna
array. Each anchor is equipped with a single omnidirectional antenna. The number of
deployed anchors is N and these anchors are without batteries. Let G , [g1, g2, . . . , gN ]

T

be the downlink wireless power beam channel matrix from the E-AP to the anchors, and
define gkn , [G]kn as the channel coefficient between the k-th antenna of the E-AP and the
n-th anchor.

For the anchors, we use pn = [pX
n , pY

n ]
T to indicate the n-th anchor’s 2D position and

use p0 = [pX
0 , pY

0 ]
T to indicate the target’s position. Let dn = ||pn − p0|| be the line-of-sight

(LOS) range (or distance) between the n-th anchor and the target and dn = ||pn − p0||+ ln
be the nonline-of-sight (NLOS) range, where ln is the NLOS path error and || · || indicates
the Euclidean distance between two vectors. The WEHLoc can locate multiple targets
simultaneously and independently, and we assume there is only one target to simplify the
following analysis.

2.1. Wireless Power Beam

The E-AP generates orthogonal signal vector x = [x1, x2, . . . , xK]
T to form a wireless

power beam, where E(xixk|i 6= k ∈ K) = 0. The anchors are activated by such signals.
Additionally, the power of each signal is defined by rk

x = E(||xk||2), where k ∈ [1, 2, . . . , K].
Then we obtain the the transmit power vector rx = [r1

x, r2
x, . . . , rK

x ]
T . On the anchor side, the

received signal for n-th anchor is:

yn = gnx + vn
0 =

K

∑
k=1

gknxk + vn
0 (1)

where vn
0 is the additive noise which follows zero-mean Gaussian distribution. For the

wireless power beam, we assume that the received energy is mainly from the E-AP, and vn
0

is too small to power up the device, which can not be collected as the energy source. Then,
the received power rn

y = E(||yn||2) of the n-th anchor is attained:
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rn
y = E(||

K

∑
k=1

gknxk||2)

= E(∑
k 6=j

gkngjnxkxj +
K

∑
k=1
||gkn||2||xk||2)

= E(
K

∑
k=1
||gkn||2||xk||2)

= ḡT
n rx

(2)

where ḡn = [E(||g1n||2), E(||g1n||2), . . . , E(||gKn||2)]T is the channel power gain vector
for the n-th anchor, rx = [r1

x, r2
x, . . . , rK

x ] is the transmitter power vector of x, and rk
x =

E(||xk||2), k ∈ {1, 2, . . . , K}. By defining Ḡ = [ḡ1, ḡ2, . . . , ḡN ]
T , we have:

ry = Ḡrx (3)

2.2. Sensing Data

For the n-th anchor, if the received energy exceeds a typical threshold, it can be
activated to sense the ranging signal from the target and sends back the sensing data to the
E-AP. Such a requirement is the constraint to guarantee the wireless power can turn on the
anchor and the anchor still has enough power to feedback the ranging data. In each sensing
slot, we assume that some anchors accumulate enough energy and can only sense the target
once. Then, the anchors encode the sensed signal into a fixed packet, then transmit the data
packet back to the E-AP. Since the size of sensing data is fixed, the received energy should
guarantee that the sensing data signal is still above the minimum required received power
of the E-AP. In this case, the received power constraint should follow:

cnrn
y ≥ Pth (4)

where cn is the power fading co-efficiency due to the uplink channel from the n-th anchor
and the E-AP. After sending the data back to the E-AP, all the remaining energy will be lost
since there are no energy storage devices in the sensors.

2.3. Ranging Signal

For a successfully activated anchor, the sensing data is the measurement of the ranging
signal. Consider that the target broadcasts the ranging signal to the surrounding anchors
periodically with a fixed power, the anchors will not send the sensing data back to the E-AP
until they capture the ranging signal. We assume the anchors and the targets are coarsely
synchronized, in which the anchors can sense the ranging signal within a broadcasting
slot. For the low-power devices, we only use the received signal strength as the ranging
measurements. Thus, we can formulate the observation as follows:

zn =

√
Ptar

dβ
n

+ vn
e (5)

where zn is the received signal from n-th anchor and contains the ranging information, Ptar
is the transmitted power of the target, dn is the real distance between the n-th anchor and
the target, β is the path loss factor, and vn

e is the additive background noise which follows
zero-mean Gaussian distribution vn

e ∼ N (0, σ2). Here, we assume a free-space flat fading
channel, and the noise follows the Gaussian distribution. It is clearly observed that the
ranging signal is independent of the energy beam if the anchors are activated. The anchors
just need to send the ranging measurement results back to the E-AP with sufficient energy.
Additionally, the usage of wireless power beam is to activate the anchors to transmit the
sensing data.
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3. Problem Formulation
3.1. Localization Performance Metric

To evaluate the localization performance, the mean square error (MSE) or root mean
square error (RMSE) are employed. As the common indicator, the Cramér–Rao lower bound
(CRLB) is a prime metric for localization performance. The CRLB indicates the optimal
performance of the localization for any unbiased algorithm. If an unbiased algorithm
is well designed, its estimation covariance will achieve the CRLB. However, CRLB is a
covariance matrix. Thus, we employ the squared position error bound (SPEB) as the
localization accuracy metric, which is the trace of CRLB and derived from the equivalent
Fisher information matrix (EFIM) Je(p0|x) [29]:

P(p0|x) , tr{J−1
e (p0|x)} (6)

where J−1
e (p0|x) is the CRLB. Thus, we employ the CRLB and related SPEB to indicate the

general performance of WHELoc and which algorithm is applied is not considered. Since
the SPED relies on the EFIM, we firstly derive the EFIMs of the WEHLoc by considering
the ranging data in two scenarios: the first one is full of the line-of-sight (LOS) ranging
signals and the second one is with parts of nonline-of-sight (NLOS) ranging signals, which
are given by: 

Je(p0|x) = ∑N
n=1

anPtar

d2β
n σ2

n
J(φn) LOS

Je(p0|x) = ∑N
n=Nl+1

anPtar

d2β
n σ2

n
J(φn) NLOS

(7)

where J(φn) = qnqT
n is the angle-of-arrival (AOA) matrix to indicate the network topology,

qn = [cos φn sin φn]T with φn = arctan pX
0 −pX

n
pY

0−pY
n

denoting the AOA from the n-th anchor to

the target; σ2
n is the noise level and Ptar

d2β
n σ2

n
is the SNR on the receiver side, which relates to the

ranging error; Nl indicates the number of NLOS ranging signals, and an is a step function
to indicate whether the n-th anchor is powered up:

an =

{
1 cnrn

y ≥ Pth

0 cnrn
y < Pth

(8)

The detailed derivation which only considers the LOS ranging can be found in
Appendix A. For NLOS ranging, the formulation without prior information is attained
in (14) in [29], and related proof in Proposition 1 [29] indicates that the NLOS ranging
can be deviated without prior information and draw the similar FIM formuation for only
LOS ranging. In this case, the NLOS ranging does not contribute to Je(p0|x), which draws
similar conclusion from [30]. Therefore, we mainly consider the LOS ranging for analysis
and power allocation scheme.

Note that, the FIM formulation is a theoretical analysis, in which the AOA is con-
sidered to be known to the system. Then, the fundamental limits of the localization
performance can be attained and the optimization strategies can be implemented. Addi-
tionally, it is also observed that the prior information matrix is independent of Je(p0|x) and
the power allocation mainly focus on adapting Je(p0|x). Thus, the strategies are designed
only according to Je(p0|x).

3.2. Multi-Objective Optimization

With a given transmit power constraint, the power allocation strategy is to achieve
both the minimum location estimation error and the minimum power consumption si-
multaneously. Such multi-objectives can be solved when a group of sufficient anchors is
powered up while minimizing the Tx power to guarantee each anchor gains enough energy.
Then the system follows two basic practical constraints: the first one is the transmit power,
which should not exceed a constant value P0 and the individual power of each antenna is a
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non-negative value; the second constraint is that the received power of activated anchors
should not be smaller than a fixed threshold Pth, which is the minimum received power
after sensing the ranging signal and sending the data back on the E-AP side. Thus, the
objectives are expressed as follows:

(P1) : min
rx

tr{(
N

∑
n=1

anPtar

d2β
n σ2

n

J(φn))
−1}

min
rx

1Trx

s.t. 1Trx ≤ P0

rk
x ≥ 0, k ∈ [1, 2, . . . , K]

an = 1, cnrn
y ≥ Pth

an = 0, cnrn
y < Pth

(9)

where P0 is the sum of E-AP transmit power constrains. It is clearly observed that P1
is to achieve both the optimal localization accuracy and the energy efficiency. For the
localization accuracy optimization, the objective is complex and not convex, especially
there are several step functions an, which are discontinuous and cannot be solved directly
by convex optimization algorithms. However, the energy efficiency optimization is a
linear programming if an is given and the optimal localization is achieved. Therefore,
we divide P1 into two sub-problems, which are optimal localization and optimal energy
efficiency problems.

3.3. Multi-Target Localization

For multiple target localizations, the EFIM is the linear combination of each individual
target, which is Je(p|x) = ∑NT−1

i=0 Je(pi|x). And p is the target states vector, in which
p = [pT

0 , . . . , pT
NT

]T and NT is the number of targets. Then P1 is reformulated as:

(P∗1) : min
rx

tr{(
NT−1

∑
i=0

N

∑
n=1

anPtar

d2β
n σ2

n

J(φn))
−1}

min
rx

1Trx

s.t. 1Trx ≤ P0

rk
x ≥ 0, k ∈ [1, 2, . . . , K]

an = 1, cnrn
y ≥ Pth

an = 0, cnrn
y < Pth

(10)

It is clearly observed that the solutions for such multi-object programming do not
change much. In this case, we can use the same solutions to solve P∗1 . To make the
simulation clear, we only evaluate single target scenario.

3.4. 0–1 Mixed Integer Programming

As indicated in (9), the optimal localization accuracy is the monotonically nonin-
creasing function of Je(p0|x) and Je(p0|x) is the sum of anPtar

d2β
n σ2

n
J(φn) with an = 1. Therefore,

achieving the minimum SPEB is to collect the maximum number of anPtar

d2β
n σ2

n
J(φn) and ensure

the anchors are powered up, in which an = 1. Then, two cases are considered. Firstly,
the minimum SPEB should be the value when all the anchors are powered up. This case
can be achieved with a greater transmit power of E-AP, which covers all the playing field.
For the second case, if all the anchors can not be activated simultaneously, the wireless
power beam should point to parts of the anchors. Consequently, the objective, in this case,
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is just equivalent to power up the maximum anchors around the target with the wireless
power beam.

Then we decompose anPtar

d2β
n σ2

n
J(φn) into an and Ptar

d2β
n σ2

n
J(φn), where Ptar

d2β
n σ2

n
J(φn) is pre-determined

by the target transmit power and the network topology. Additionally, an is the indicator
determined by the wireless power beam. Thus, we can simplify the optimal localization
accuracy problem by finding proper values of an, which is 0–1 integer programming:

(P2) : min
rx ,an

tr{(
N

∑
n=1

anPtar

d2β
n σ2

n

J(φn))
−1}

rk
x ≥ 0, k ∈ [1, 2, . . . , K]

cnrn
y = ḡT

n rx ≥ Pth, n ∈ [1, 2, . . . , NA]

(11)

where we consider part of the anchors are powered up by the wireless power beam and
these anchors form a subset {1, 2, . . . , NA}. Then, the power allocation should satisfy
cnrn

y ≥ Pth for all the active anchors.
If the integer programming is solved, the second sub-problem is to use the mini-

mum wireless power beam rx to ensure that all the constrains are met. However, it is
clearly observed that the system does not need the maximum power P0 to achieve the
constraints. Then, we just need to find the minimum transmitted power of E-AP to active
the anchors. Thus, the energy minimization can be achieved and it is independent of the
0–1 integer programming:

(P3) : min
rx

1Trx

s.t. 1Trx ≤ P0

rk
x ≥ 0, k ∈ [1, 2, . . . , K]

cnrn
y ≥ Pth, n ∈ [1, 2, . . . , NA]

(12)

Due to the partially independent nature, such multi-objective optimization can be
divided into two steps: the first step is to search the maximum number of available anchors
that achieve the minimum SPEB and the second step is to find the minimum transmitted
power to meet the constraints.

Note that, the optimization objectives in our paper are different from the other resource
allocation schemes, which fix the power constraints to find the minimum estimation error
or fix the localization requirements to attain the minimum transmitted power. It is also
not necessary to prove whether the multi-objective optimization problem has a feasible
solution, because the priority of attaining the minimum SPEB is higher than achieving the
minimum transmit power. We need firstly solve the integer programming and then solve
the energy efficiency problem. Since the wireless power of WEHLoc is used to power up
the anchors and send the sensing data back to the E-AP, the total transmitted power can
be minimized after the available anchors are determined. In this case, both the minimum
SPEB and energy consumption can be achieved in a single problem. It is also different to
the tradeoff schemes which compromise the localization accuracy and energy efficiency,
because the wireless power allocation in WEHLoc is not a continuous function of the SPEB
and there is not a scheduling parameter for such tradeoff.

4. Multi-Objective Optimization Algorithms
4.1. Exhaustion Method

Since the objective is 0–1 mixed-integer programming, a direct way is to use the
exhaustion method to list all the combinations of an and search whether the beamforming
vector rx could satisfy the constraints in (11) [31]. Then, if the beamforming meets the
constraints, we can re-schedule the power allocation in order to reduce the total transmitted
power.
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This problem is divided into two sub-problems, which are 0–1 integer programming
and linear programming. Thus, it can be solved in two steps: the first step is to search every
combination for {an}N

n=1 and the second step is to find whether there is a feasible solution
to meet the constraints. It is clearly observed that the minimum of tr{(∑N

n=1
anPtar

d2β
n σ2

n
J(φn))−1}

is achieved when all an = 1, otherwise it is the value with most of {an}N
n=1 to be 1. Then, we

can consider Ptar

d2β
n σ2

n
J(φn) as the weight of the n-th anchor. And since SPEB is monotonically

nonincreasing to Je(p0|x), the bigger weight will lead to the smaller SPEB. Here we use the
following lemma to convert Ptar

d2β
n σ2

n
J(φn) into a scalar weight of the anchor:

Lemma 1. The minimum SPEB in P1 can be relaxed to the following maximum trace of EFIM:

(P̃1) : max
rx ,an

tr{(
N

∑
n=1

anPtar

d2β
n σ2

n

J(φn))}

min
rx

1Trx

s.t. 1Trx ≤ P0

rk
x ≥ 0, k ∈ [1, 2, . . . , K]

cnrn
y ≥ Pth, n ∈ [1, 2, . . . , NA]

(13)

Proof. The detailed derivation can be found in Appendix B.

Lemma 1 provides a lower bound of SPEB by finding the maximum trace of EFIM. In this
case, the minimum of SPEB is approaching if P̃1 is solved. Consider tr{(∑N

n=1
anPtar

d2β
n σ2

n
J(φn))} =

∑N
n=1

anPtar

d2β
n σ2

n
tr{J(φn)} and tr{J(φn)} = 1, the trace of EFIM is ∑N

n=1
anPtar

d2β
n σ2

n
, which is the sum

of weights of the anchors. Then, we just need to power up the anchors with heavy weights
as many as possible to achieve the minimum SPEB. In this case, the calculation in the loop
is significantly reduced since the inverse calculation of tr{(∑N

n=1
anPtar

d2β
n σ2

n
J(φn))} is avoided.

The details of the exhaustion algorithm are illustrated in Algorithm 1. Here, we
sort the anchors according to Ptar

d2β
n σ2

n
in a descent order and use a 0–1 sequence vector si to

mark the anchors, in which each element (1 or 0) represents the corresponding anchor is
activated or not. All the sequence vectors form a sequence set si ∈ S, where S lists all the 0–1
combinations. Then, the search begins from setting s1 = {11 . . . 11} to s2N−1 = {00 . . . 01}.
Note that, the minimum SPEB can be directly achieved when the constraints are met with
s1 = {11 . . . 11}. Thus, the searching starts from s1 in order to reduce the searching time.
Then, the constraints are constructed according to the 1 element in s1, which denotes
an = 1 and the received power should be above the threshold Pth. If the constraints are not
able to be achieved, the algorithm will move to si+1 in the next loop. During each loop,
linear programming is used to find whether the constraints are met and further reduce
the transmitted power to the minimum value, and it can be solved by many efficient tools,
which are not necessarily detailed. If we can not find a feasible solution, the algorithm will
return an empty solution. However, it will not happen since the power beam can reach
any anchor in the whole playing field, in which there is at least one anchor that can be
activated.
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Algorithm 1 Multi-Objective Optimization (MOO).

Initialization

Descend Sort anchors according to Ptar

d2β
n σ2

n

Generate 0-1 sequence si from 11 . . . 11 to 00 . . . 01

Forms set S = {si}2N−1
i=1

while Evaluate each element in S from si do

Setting the constrains according to (12)

Linear programming for min
rx

1Trx

if A feasible solution si is attained then

SPEB: tr{(∑n∈{an=1|si}
Ptar

d2β
n σ2

n
J(φn))−1}

Beamforming: rx

Return;

end if

end while

4.2. Heuristic Algorithms for High-Density Sensors

The exhaustion method consumes much computational overhead. If the number of
anchors is 20, there will be 220 evaluations during the searching in order to attain the
optimal solution. For a large number of anchors which are deployed in a wide area, e.g.,
10,000 anchors, it is inefficient and unnecessary to search every 0–1 combination. In this
case, some heuristic methods which may reduce the complexity are preferred. The key idea
of our proposed heuristic algorithm is that we choose a subset of the anchors and attain the
power allocation vectors to achieve the minimum energy consumption. Since the anchors
are massively deployed in the playing field, we assume the target is surrounded by at least
NA anchors, where NA is a proper number based on the anchor density and localization
requirements. When the subset of anchors is fixed, we just need to solve the energy
efficiency issues based on linear programming. Thus, the multi-objective optimization
problem turns into linear programming which is much simpler:

(P̃∗3) : min
rx

1Trx

s.t. 1Trx ≤ P0

rk
x ≥ 0, k ∈ [1, 2, . . . , K]

cnrn
y ≥ Pth, n ∈ [1, 2, . . . , NA]

(14)

In P̃∗3 , the first NA biggest anchors contribute a major proportion of SPEB and other
anchors can be ignored. In this case, the theoretical SPEB is fixed and the remaining work is
to achieve energy efficiency. The proposed heuristic algorithm is presented in Algorithm 2.
Firstly, we sort the anchors according to the weights. Then, we fix the number of used
anchors in the heuristic method and choose only NA anchors with biggest Ptar

d2β
n σ2

n
to achieve

the maximum trace of EFIM. Since the anchors can be powered up by the wireless power
beam as we assumed, the constraints are constructed accordingly. The final step is to
attain a feasible solution to achieve the minimum total transmitted power. Note that, if the
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constraints are not met, the algorithm will return an empty solution and stop. However,
we apply this algorithm in a large-scale deployed network, all the chosen anchors can be
powered up, and the algorithm will always return a feasible solution. It is also noted that
although we attempt to power up the chosen anchors, it does not mean other anchors
can not gain wireless energy. Therefore, the actual SPEB should be no higher than the
calculation based on our algorithm.

Algorithm 2 Heuristic Algorithm (HA).

Initialization

Descend Sort anchors according to Ptar

d2β
n σ2

n

Set NA as a fixed number

For a subset of anchors with NA biggest Ptar

d2β
n σ2

n

Setting the constrains according to (12)

Linear programming for min 1Trx with constrains in (12)

SPEB: tr{(∑n∈NA
Ptar

d2β
n σ2

n
J(φn))−1}

Beamforming: rx

Return;

5. Anchor Uncertainty and Robust Solutions

In addition to the ranging error, the position error of the anchors also affects the local-
ization accuracy, which is defined as the anchor uncertainty. The anchor uncertainty affects
the localization performance since the target requires the accurate position information of
the anchors. In addition, the channel estimation accuracy from E-AP to passive anchors
also relies on the anchor position information. With anchor uncertainty, the system attains
inaccurate channel information and leads to an inefficient power allocation scheme. Thus,
we consider the anchor uncertainty problem in order to develop a robust algorithm to
reduce the impacts of channel estimation errors and localization errors. Here, we define a
set which is a circle and the n-th anchor is located in the center. If the radius is defined as
∆, the actual ranging is indicated as:

dn ∈ Dn
.
= [d̃n − ∆, d̃n + ∆] (15)

where d̃n > ∆ is the ranging of the anchor with position error.
In the anchor uncertainty scenario, a robust algorithm is developed which considers

the worst case of P(p0|x):

PR(p0|x) = max
{dn∈Dn}

P(p0|x) (16)
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Considering the relationship between P(p0|x) and the trace of FIM, we have:

(P̃R) : max
rx ,an

min
dn∈Dn

tr{(
N

∑
n=1

anPtar

d2β
n σ2

n

J(φn))}

min
rx

1Trx

s.t. 1Trx ≤ P0

rk
x ≥ 0, k ∈ [1, 2, . . . , K]

cnrn
y ≥ Pth, n ∈ [1, 2, . . . , NA]

(17)

In this case, the minimum trace of FIM is the range dn with the maximum ∆. After
determining the minimum trace value, we can execute the same algorithms to attain the
final results.

6. Simulations

Our proposed power allocation schemes are evaluated by various simulations. In
the simulations, we assume that there is only one E-AP and several anchors are randomly
deployed around the E-AP. A single target is walking around the effective localization
playing field. The E-AP transmits the beamformed power signals to the anchors and the
anchors sense the ranging signals from the target, and send the sensing data back to the
E-AP. Then, the E-AP locates the target according to these signals. Although there are
some off-the-shelf products that can harvest energy while communicating, the localization
functions are still lacking. Thus, we can only apply simulations to evaluate our schemes
and set the commonly used parameters to approach the actual environment. The E-AP
is equipped with eight MIMO antennas. The signal carrier frequency is 2.4 GHz and
the maximum total transmitted power of E-AP is 30 dBm (1 W). We assume a free space
propagation model of the wireless power transfer channel. The minimum received power
from anchors is −90 dBm, which ensures the E-AP can decode the data successfully.
Additionally, the background noise for anchors is −100 dBm. According to the above
analysis, the NLOS ranging will not contribute to the EFIM value, thus we only focus
on the performance evaluation in the LOS scenario. The prior information is also not
considered in the simulation, since the power allocation has little impact on it.

We employ two metrics for performance evaluations simultaneously: the first one is
the SPEB, which indicates the estimation accuracy; the second one is the total transmitted
power of the E-AP, which indicates the energy efficiency level. Since SPEB is introduced in
the simulation as the optimal localization performance indicator, the dedicated localization
performance for some specific algorithms are not considered in this paper. The multi-
objective optimization (MOO) algorithm and heuristic algorithm (HA) are evaluated in
the simulation. We compare our schemes with the equally assigned power scheme, which
is indicated as Equal in the simulation. Additionally, the maximum total transmit power
constraint in the simulation is 30 dBm, and Equal uses the fixed power with 30 dBm.
Firstly, the MOO is compared with Equal with only a few anchors. Since the computational
overhead of MOO is increasing significantly by the number of anchors, thus the playing
field for MOO evaluation is small and the number of anchors is limited. Then, we evaluate
the SPEB and energy consumption of HA with massively deployed anchors. The playing
area is about 1 km2 and the maximum number of used anchors is 10,000 for large-scale
evaluation. In the following simulations, the results are obtained via 10,000 Monte-Carlo
simulations and averaged in each scenario.

6.1. Multi-Objective Optimization Evaluation

In the MOO evaluation, we deploy only 20 anchors in a 500 × 500 m2 playing field,
since massive anchors will increase the computational overhead significantly and not
improve the SPEB much, which will be demonstrated later. As observed in (7), the target
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transmit power is the dominant factor to determine the estimation accuracy. Thus, we first
evaluate the impact of target transmit power.

The results are demonstrated in Figure 2, where the y-axis on the left side is the SPEB
values and the y-axis on the right side indicates the power consumption of our proposed
algorithm. Firstly, it is observed that the SPEBs of MOO and Equal are overlapped and
drop with the increased target transmit power. This is because both MOO and Equal
are the power allocation schemes instead of the localization schemes. If MOO and Equal
can power up the same anchors, the SPEBs rely only on the target transmit power Ptar as
indicated in (7), where Ptar is independent of MOO and Equal. If both MOO and Equal
share the same anchors with the same Ptar, the SPEBs are the same. However, the power
consumption of MOO and Equal are quite different. The results indicate that the power
transfers of both MOO and Equal cover the playing field and activate anchors. In this case,
all anchors contribute the estimation and the same accuracy is attained. In WHELoc, the
target contains its own battery and sends the ranging signal periodically on its own. Such
a signal does not rely on the Tx power of E-AP. In addition, the beamforming of E-AP
only indicates whether the anchors can send the sensing data back, it will just allocate the
minimum power and propagate to the anchors. Thus, it is observed that the total transmit
power of E-AP changes only a little bit between 19.4 dBm and 19.7 dBm, which is not a
significant value. Such Tx power change of E-AP mainly due to the anchor-target topology
changes since our evaluation is a Monte-Carlo simulation, which may introduce some
variances. Additionally, the results indicate that the energy efficiency is achieved with
MOO, which is about 19.6 dBm and lower than 30 dBm in Equal.
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Figure 2. Optimal evaluation of the target transmit power.

Then, we fix the target transmit power as 30 dBm, the E-AP transmit power constrain
as 30 dBm, and the playing area as 100× 100 m2. Then, we adapt the deployed anchor from
5 to 20 in order to increase the anchor density of the playing field. The SPEBs and energy
consumption of E-AP are illustrated in Figure 3, where SPEBs of MOO and Equal are still
overlapped and decreased with a higher anchor density. However, the energy consumption
of E-AP is increased, because more anchors are powered up. Comparing Figures 2 and 3,
we find that the energy consumptions are largely related to the areas of the playing field.
If we deploy the anchors in a large area, more wireless power is required in order to
propagate such power to reach the remote anchors. As illustrated in Figures 2 and 3, Equal
can achieve the same SPEB to MOO when the Tx power of E-AP can activate all the anchors
simultaneously, since the minimum SPEB is achieved when all the anchors contribute their
ranging measurements. Without considering the energy efficiency optimization, we can
use Equal as the indication of the optimal estimation performance if the Tx power of E-AP
is high enough. Then, we employ Equal as the optimal indicator to compare with HA.
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Figure 3. Optimal evaluation of anchor density.

6.2. Massive Anchor Evaluation

Next, we extend the playing field to 103 × 103 m2 and deploy 104 anchors randomly
to evaluate the massive anchor scenario. In this simulation, we evaluate the SPEB and
power consumption of the HA. We compare HA with the optimal solutions. However, the
complexity of MOO is rather high. Thus, we adapt the Tx power of Equal to ensure all the
anchors are powered up, and derive the SPEB as the optimal indicator. Then, we employ
the linear programming in MOO to attain the minimum Tx power of E-AP when all the
anchors are powered up. In HA, we only consider the constraints for 30 anchors with the
biggest weight and derive the minimum Tx power of E-AP for energy efficiency. Firstly,
we test the performances of target Tx power, which are presented in Figure 4a. It is clearly
observed that Equal slightly outperforms HA thanks to the wide coverage with higher Tx
power. In addition, HA only needs to power up 30 anchors and Equal can power up all of
the anchors, which leads to the minimum SPEB. The power consumptions are presented in
Figure 4b, in which HA is lower than MOO. In addition, the power consumption of HA
gains similar results in Figure 2, which is also independent of the target transmit power.
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(b) Tx power consumption evaluation.

Figure 4. Performance evaluation of different target transmit power using massive deployed anchors.

Similar to Figure 3, we also fix the playing area and Tx powers of the target and E-AP.
Then, we adapt the number of deployed anchors from 100 to 10,000, which makes the
anchor density range from 0.01 to 1 per 100 m2. When the anchor density is extremely low,
which is 0.01 per 100 m2, the SPEB of HA is larger than Equal, as shown in Figure 5a. When
the anchor density is increased, both SPEBs of HA and Equal converge together to a quite
small value. However, higher anchor density requires more power transfer as illustrated
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in Figure 5a and the energy consumption level is much greater than in Figure 3 due to a
much larger playing field. Thus, it is unnecessary to deploy so many anchors to achieve a
more accurate estimation. According to our simulation, the anchor density is about 0.1 to
0.2 per 100 m2 in order to achieve an acceptable estimation accuracy.
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Figure 5. Performance evaluation of different anchor densities.

Then, we fix the anchor density as 0.1 per 100m2, and evaluate a moving object with
a random slow velocity. For dynamic target tracking problems, there are three typical
scenarios. The first scenario is the static target localization. In this case, the anchors and
E-AP have enough time to sense and process the target signal. Then, our EFIM formulations
and power allocation schemes can solve this problem as the above simulations indicate.
The second scenario is the target tracking with a low velocity, which is the most common
case in a sensor network. Generally, such a dynamic tracking problem should employ a
prediction-update type algorithm to track the target, e.g., Kalman filter. For our formulation,
we need to fuse the prior information into the EFIM formulation and execute our algorithm.
In this case, the prior information will help us improve the localization performance.
Then, the EFIM should not only consider the ranging measurement but also the prior
information, which is J(p0|x) = Jp(p0) + J0(p0|x) and Jp(p0) is the prior information. For
such sequential estimations, the power allocation schemes still only allocate the power
based on J0(p0|x), and the actual estimation performance should be calculated based on
J(p0|x). For the third scenario, the target moves faster than the signal acquisition. In
this case, the proposed algorithms highly rely on the prediction function, and the power
allocation schemes should be a pre-determined algorithm that is used for the future time
slots. However, the applications in our paper are only used for human or network nodes.
Such high speed will not happen in our paper. Then, the sequential evaluation is depicted
in Figure 6. In this simulation, we employ HA to evaluate the SPEB. Since the power
consumption is mainly based on J0(p0|x), it is almost stable if other parameters are not
changed. Additionally, the estimation accuracy is improved gradually with the help of
prior information.
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Lastly, we evaluate the anchor uncertainty and related robust algorithms. The SPEB
results are illustrated in Figure 7, in which we adapt the range error caused by anchor
uncertainty from 0 to 10 m. Additionally, we compare the SPEB with perfect anchor position
information. However, the increased SPEB is rather small as indicated in Figure 7. Such
estimation error with anchor uncertainty is quite close to the ideal anchor information,
which means our robust formulations and solutions are effective.
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Figure 7. Anchor uncertainty evaluation.

7. Conclusions

In this paper, we propose a WEHLoc which employs passive sensors to harvest
energy and track the target. The lifetime of the range-based wireless localization system is
significantly extended with a continuous wireless power supply. The EFIM of the system
is formulated and we propose a multi-objective optimization algorithm as the energy
beamforming scheme to achieve both the minimum SPEB and energy consumption. To
reduce the high computational overhead in the massive deployed anchor scenario, we
also propose a heuristic algorithm. The multi-target tracking and anchor uncertainty
problems are also discussed. Then, the robust problem formulation and solutions are also
developed. The simulation results demonstrate that the system estimation accuracy and
energy efficiency heavily depend on the target transmitted power, area of the playing
field, and number of deployed anchors. The results also demonstrate that our heuristic
algorithm can approach the optimal performances in any scenario with relatively low
power consumption.

Note that our work provides the fundamental limits of localization performance for
WEHLoc, which will benefit the system design and control. Such SPEB evaluations are
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easily proven in the simulations and real experimental data can not indicate the fundamen-
tal limits directly. Although several off-the-shelf chips containing the energy harvesting,
sensing, and communicating functions are being developed, e.g., Powercast products,
constructing such sensors in a network is still a work in progress. So it is still difficult to
attain the real experimental data. In a future work, we will focus on circuit design and
network construction to provide a real platform for location-based services.
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Appendix A. EFIM Derivation

According to [29], the EFIM should have the following form:

Je(p0|x) =
N

∑
n=1

λnJ(φn), (A1)

where λn is the equivalent ranging coefficient (ERC), which is expressed as:

λn =
Ptar

d2βσ2
n

. (A2)

Considering whether the anchor is powered up, we use an = 0 or 1 as the coefficient.
Then, we have (7).

Appendix B. Proof of Lemma 1

Here, we define ρ0 , P(p0|x), and ρ0 = tr{J−1
e (p0|rx)}. Let τ1 and τ2 be the eigenval-

ues of Je(p0|rx), then Je(p0|rx) can be decomposed as:

Je(p0|rx) = Uψ

(
τ1 0

0 τ2

)
UT

ψ (A3)

where Uψ is a rotation matrix with angle ψ in the LOS case, given by:

Uψ =

(
cos ψ − sin ψ

sin ψ cos ψ

)
(A4)

Then, ρ0 = tr{J−1
e (p0|rx) =

1
τ1
+ 1

τ2
. Consider τ1, τ2 > 0 due to the feature of EFIM,

we attain the following formulation [32]:

1
τ1

+
1
τ2

=
τ1 + τ2

τ1τ2
≥ τ1 + τ2

(τ1+τ2)2

4

=
4

tr{Je(p0|rx)}
(A5)

where (τ1 + τ2)
2 ≥ 4τ1τ2, and the equal mark = holds if and only if τ1 = τ2. Thus, we

obtain a relaxed bound for ρ0 which is monotonically nonincreasing convex function of
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tr{Je(p0|rx)}. In this case, achieving the minimum SPEB is equivalent to attaining the
maximum tr{Je(p0|rx)}. Considering tr{Je(p0|rx)} is a linear function of rx, P̃1 is a linear
programming if an is fixed.
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