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Abstract: The goal of single image super resolution (SISR) is to recover a high-resolution (HR)
image from a low-resolution (LR) image. Deep learning based methods have recently made a
remarkable performance gain in terms of both the effectiveness and efficiency for SISR. Most existing
methods have to be trained based on large-scale synthetic paired data in a fully supervised manner.
With the available HR natural images, the corresponding LR images are usually synthesized with
a simple fixed degradation operation, such as bicubic down-sampling. Then, the learned deep
models with these training data usually face difficulty to be generalized to real scenarios with
unknown and complicated degradation operations. This study exploits a novel blind image super-
resolution framework using a deep unsupervised learning network. The proposed method can
simultaneously predict the underlying HR image and its specific degradation operation from the
observed LR image only without any prior knowledge. The experimental results on three benchmark
datasets validate that our proposed method achieves a promising performance under the unknown
degradation models.

Keywords: image super resolution; blind unsupervised learning; blur kernel learning; generated
network; degradation operation

1. Introduction

Single image super resolution (SISR) aims at recovering a high-resolution (HR) image
from a low-resolution (LR) image, and is a fundamental low-level vision task. SISR has
received substantial research attention in decades, and has widely been used in different
applications [1–3]. However, due to its ill-posed nature with multiple possible HR versions
for a specific LR image, SISR is still a challenging task. Numerous SISR methods have been
explored to recover the plausible one from many possible solutions. The existing research
is mainly categorized into traditional optimization-based methods [4–7] and recent deep
learning-based methods [8–14].

Recent deep learning-based methods have made a remarkable performance gain in
terms of both the effectiveness and efficiency for SISR, and various network architectures
and training strategies [15–19] have been elaborated. Since the pioneering work of employ-
ing a convolutional neural network (CNN) for SISR (SRCNN) [20] has proven the feasibility
and validity, most subsequent efforts have striven for designing more complicated and
deeper network architectures for boosting performance. They usually requires previously
prepared large-scale training pairs and well-honed training tricks for generating a stable
and good super-resolution (SR) model. However, in terms of the synthesizing of the train-
ing pairs, most studies have produced the LR versions simply via bicubic down-sampling
of the available HR images [15,19–22], which in general leads to the large deviation from the
imaging conditions (degradation operations) of the target real LR images to be required for
super resolution. Moreover, the degradation procedure is usually unknown for a specific
LR image, and thus the fully supervised deep learning methods cannot be directly adapted
to the real LR images captured under diverse imaging conditions.
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To handle the real LR image SR problem with the unknown degradation operations,
several blind SR methods have been proposed, and therein most fall in the model-based
research line [23–26]. The model-based blind SR generally follows two steps of a paradigm
with the blur kernel (degradation operation) estimation via exploring the self-similarity
properties of natural images [27], and the subsequent optimization procedure for recovering
the latent HR image. However, the reliability of the estimated blur kernel is greatly affected
by the noise in the input image, and then results in the deterioration of the recovered HR
image in the following optimization step. More recently, a few deep learning-based blind
SR methods, such as CAB [28] and SRMD [29], assumed that the the blur kernel for a specific
LR image is known, and combined the LR observation and its corresponding blur kernel
as the input for deep network training. The learned model can be used for predicting
the latent HR image from the real LR image conditioned on the blur kernel, which is
usually required to be estimated in a separate step. In addition, Ulyanov et al. [30,31]
exploited a high-quality image generating framework, dubbed as deep image prior (DIP),
from a noisy input via leveraging the observed degraded image only, and applied to
several image restoration tasks. Via extensive experiments for natural image generation,
DIP argued that the network architecture itself possess a large amount of low-level image
statistics (image priors), and is prospected to reconstruct the high-quality HR image from its
degraded version only via searching the parameter space of a generative network. Without
the requirement to previously learn the reconstruction model with large-scale training
dataset, DIP can be considered as the unsupervised SR problem. Furthermore, since the
DIP learns the optimal network parameter separately for each individual observation, it
inherently has ambitious potential to be adapted for an arbitrary LR observation captured
by different imaging conditions (diverse blurring kernels). However, DIP requires the
known degradation operations (blurring and down-sampling) to be implemented.

This study proposes a novel blind image super-resolution framework using deep
unsupervised learning for adaptively super resolving the LR observations captured un-
der diverse imaging conditions. Specifically, inspired by the fact that the image priors
are owned in the network architecture itself, we construct a generative encoder–decoder
network for automatically learning the inherent priors of the latent HR image from an
interference noisy input without any additional training paired samples, and establish an
unsupervised deep learning framework. To adaptively deal with arbitrary LR observa-
tions with unknown degradation operations, we further propose a learnable depth-shared
convolutional layer (learnable degradation module: LDM) for automatically learning the
degradation operations such as blurring kernel and down-sampling operations, and then
configure a blind image SR paradigm. Via inputting the learned HR image of the generative
network to the designed LDM, we obtain the approximated LR image to formulate the loss
function of our proposed blind SR network, and form an end-to-end blind HR image unsu-
pervised learning network from an LR observation only. Moreover, a joint optimization
strategy is investigated to solve the unconstrained deep blind SR model for simultaneously
estimating the degradation operations and the latent HR image. The experimental results
on several benchmark datasets validated that our proposed method illustrates an impres-
sive performance with the known degradation and manifest reasonable reconstruction
with little, even no knowledge about the degradation model.

In summary, the main contributions of our work are as the follows:

(1) A novel blind SR method with deep unsupervised learning, i.e., BSR-DUL, is proposed
for simultaneously learning the latent HR image and the degradation operations
without any external training samples and prior knowledge.

(2) We leverage an encoder–decoder-based generative network for modeling the prior of
the latent HR image, and a learnable depth-shared convolutional layer for automatic
estimation of the degradation operation. Moreover, via combining these two compo-
nents, we obtain an approximated LR image for formulating the loss function of the
proposed unsupervised network with the LR observation only.
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(3) We investigate a joint optimization strategy to solve the BSR-DUL model for simulta-
neously generating the latent HR image, learning blur kernel and implementing the
degradation operation, and thus establish an end-to-end blind SR learning framework,
which can be adapted to super resolve the diverse LR observation captured under
arbitrary imaging conditions.

The rest of this paper is organized as follows. Section 2 surveys the related work
including supervised and unsupervised CNN-based image super-resolution approaches
and Section 3 presents the proposed blind SR method with deep unsupervised learning
(BSR-DUL). Extensive experiments are conducted in Section 4 to compare the proposed BSR-
DUL with the state-of-the-art image SR methods on three benchmark datasets. Section 5
summaries this work.

2. Related Work

In this section, we briefly survey the relevant works, including fully supervised deep
learning-based methods and deep unsupervised learning approaches for single image
super resolution.

Supervised deep learning-based image super resolution: Motivated by the great
success of deep convolutional neural networks (DCNNs) in image classification and object
detection, DCNN has widely been applied for SISR, and has made significant progress in
terms of the recovery performance. Recently, various network architectures and training
strategies [15–19] have been elaborated for performance boosting. Dong et al. [20] firstly
employed a three-layer fully convolutional neural network (CNN) for directly modeling
the mapping relation between the observed LR and the HR images, and later extended
to the faster version (Faster-SRCNN) [32] via expanding the spatial resolution of feature
maps in the final stage for accelerating the computational speed. The continuous research
attention focuses on exploring more complicated and deeper network architectures for
SR performance boosting, which usually causes remarkable difficulty for training a stable
model. Kim et al. increased the depth of the SR model to 20 convolutional layers in
very deep convolutional networks (VDSR) [8] and further integrated the advanced resid-
ual learning structure to ease the training difficulty in deep reconstruction-classification
networks (DRCN) [9]. Shi et al. proposed an efficient subpixel convolutional neural
network (ESPCN) [15] to reduce the used memory and computational cost via adopting
efficient subpixel convolutional layer to upscale the learned LR features to HR output at
the end of the SR network. Later, Lim et al. investigated a very deep and wide network
EDSR [15] by stacking residual blocks without the batch normalization (BN) layers while
Ledig et al. exploited the SRResNet [11] and further integrated the dense connections [33]
for boosting performance. Moreover, to improve the perceptual quality of the SISR results,
several works [11,33,34] combined the perceptual loss [35] and adversarial loss [36] with
the commonly used fidelity loss for the SR network training. However, all of the above SR
networks are realized in a fully supervised manner and require large-scale training pairs for
reconstructing a robust model. In addition, the top-performing LR-to-HR reconstruction
models are generally learned with the previously prepared training sample pairs under
a fixed degradation model (blurring and down-sampling operations), such as bicubic
down-sampling, and face difficulty to be generalized to the LR observations captured by
the real imaging sensors. Therefore, Cai et al. [37] made an effort to generate LR–HR image
pairs under a realistic setting via tuning the focal length of DSLR cameras, and collected
the real training images with different resolutions for learning the SR model. It is well
known that different imaging sensors usually have various imaging settings, and thus the
learned models, even while using the real captured image pairs by a specific sensor, may
be incapable of being generalized well to the LR observations by other imaging sensors.
More recently, to learn a more robust and generalized SR model for dealing with the LR ob-
servations captured under diverse imaging conditions, several works prepared the training
LR/HR image pairs with a different degradation operation, such as diverse blur-kernels,
and then constructed the SR model in the fully supervised learning manner [29,38,39].
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However, the generalization of these constructed SR models greatly depends on the used
blur-kernels in the prepared training datasets, and thus have an insufficient modeling
capability to handle arbitrary blur kernels.

Unsupervised deep learning-based method: To tackle the limited generalization issue
of the fully supervised deep learning methods on real scenarios, recently unsupervised
learning methods have been explored for image super resolution [40]. The research based
on generative adversarial networks (GAN) [36] has illustrated that the image data with
the same content but different styles can be mutually translated, generally called image-
to-image translation, without using the paired training samples [41,42]. Via treating the
LR images as the source domain and the HR image as the target domain, image super
resolution can be categorized as a special image translation task. Yuan et al. [43] proposed
to solve the image SR problem using cycle-in-cycle GAN (CinGan) consisting of two
translation cycles, where one cycle is adopted for translating between the real LR and
synthetic LR images while the other is used between the real LR and HR images. CinGan
utilized the fixed degradation model in the translation cycle from the HR images to real LR
images, and therefore has a deficiency to generate diverse and real-world LR images. To
increase the diversity of the degradation operations between the HR images and the real LR
images, Zhao et al. [44] integrated unsupervised learning of the degradation procedure for
image SR, and established the cycle for predicting the HR reconstruction and degradation
models via leveraging an additional perceptual loss on the LR domain instead of HR
domain. Lugmayr et al. [45] investigated two stages of the SR framework via separating
the image pair synthesizing and the HR image restoration model training, where the fist
stage leveraged the unsupervised image translation model to generate realistic image pairs,
and the second stage learned the HR image restoration model with the synthesize image
pairs. Later, Fritsche et al. [46] extended the two-stage SR method to separately deal with the
low and high frequency components. In addition, Bulat et al. [47] proposed an end-to-end
learning framework using the high-to-low and low-to-high networks for simultaneously
modeling the relation of the LR–HR image and learning the degradation from HR images to
real LR images. Moreover, to improve the SR performance, Chen et al. [48] attached another
cycle learning network to model the subtle distinctiveness between the real and synthetic
LR images for aiding the reconstruction of the HR images. Although these unsupervised
methods manifested great potential for dealing with the real LR images, they still have to
be trained previously using external image samples.

Instead of resorting to the external data, another research line make use of the observed
LR image only to generate internal training samples according to the inter-scale similarity
in natural images, which can be categorized into the zero-shot learning (ZSL) paradigm.
Shocher et al. [49] firstly proposed a zero-shot super-resolution network, dubbed as ZSSR,
which synthesized the training pairs via treating the LR observation as HR supervision
and its down-sampled images as the corresponding LR version, and then learned a specific
CNN model for the under-studying scene. Via varying degradation (blur kernel and
down-sampling) operations in preparing the internal training samples according to the
imaging conditions of the observed LR image, ZSSR is capable of addressing different
blur kernels but the degradation model for the under-studying LR image is assumed to
be known. Soh et al. [50] integrated meta-learning into ZSSR methods, and leveraged the
advantages of both internal and external learning for improving the SR performance. These
ZSL-based SR pipelines treat the observed LR image as the HR supervision (“HR father”)
and synthesize the “LR son” via down-sampling the LR observation to extract training
paired samples for internal learning, and thus result in insufficient paired samples to train
a stable model, especially for a large upscale factor. Therefore, these methods are generally
adapted only to small, upscale SR tasks such as 2–4. Moreover, Ulyanov et al. [30] proposed
to leverage the powerful modeling ability of deep CNN for capturing the inherent structure
of nature images, and exploited a ’self-supervised’ SR learning paradigm without any
external and internal training pairs. DIP adopted a generative network to directly estimate
the latent HR image using only the observed LR image, and demonstrated an impressive
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performance even for large upscale factor. However, DIP assumed that the observed LR
image is a “bicubic” down-sampling version of the latent HR image, and implemented
this fixed degradation operation with mathematical computation, which restricts the
wide applicability to the real scenarios. This study proposes a blind unsupervised SR
framework for being adapted to the LR images captured under different imaging conditions,
and closely relates to DIP [30] but has a distinctive difference. We propose to model not
only the latent HR image with a generative network but also the degradation kernel with a
learnable depth-shared convolutional module to construct an end-to-end blind zero-shot
SR learning framework.

Summarized limitations of the existing methods: We briefly summarize the limita-
tions of the existing SR methods and clarify the key challenges in the SR task. On one hand,
the popularly used deep learning methods are implemented in a fully supervised learning
way using a previously collected external dataset. Most methods synthesize the training
pairs via bicubic down-sampling the available HR image to give the corresponding LR
images [15–19], and only learn the models for approximating the inverse transformation
of the bicubic down-sampling operation. Therefore, the applicability to the LR image
captured under uncontrolled conditions would lead to a great performance degradation.
On the other hand, although the blind SR methods have been actively explored recently,
they are mainly realized in two separated steps via firstly estimating the blur kernel and
then constructing the deep supervised models guided by the kernel. These separated
strategies would cause a complicated training procedure, and the incorrectly estimated
kernel possibly results in unstable super-resolving images. Moreover, the unsupervised
methods (ZSSR and DIP) [30,31,49] do not require off-line model training using the external
dataset, and has remarkable flexibility for dealing with the LR image captured under
various conditions. However, the degradation operations of the LR observation are still
required to be known, and cannot simultaneously reconstruct the latent HR image and
predict the blur kernel in an end-to-end manner. This study aims to alleviate the above-
mentioned difficulty in the real SR problem, and exploits an unsupervised SR method with
high generalization.

3. Blind Image SR Framework with Deep Unsupervised Learning

This section first describes the problem formulation of the blind SR task, and then
presents the proposed blind SR framework with deep unsupervised learning (BSR-DUL),
including the motivation, the detailed generative network for modeling a latent HR im-
age, the learnable depth-shared convolutional module for implementing the degradation
operation and the joint optimization algorithm for network training.

3.1. Problem Formulation

With an observed LR image ILR ∈ Rw×h, the goal of the SR problem is to reconstruct
an HR image IHR ∈ RW×H with w�W and h� H. Generally, the degradation procedure
of the observed ILR is mathematically formulated as the follows:

ILR = (IHR ⊗ k) ↓s +n, (1)

where ⊗ denotes the 2D convolution operation, k and ↓s represent the blur kernel and
down-sampling operation with factor s, respectively, while n is the additive white Gaussian
noise. Most current deep learning-based SR methods synthesize the external training
dataset by using the available natural images and their simulated LR versions with a
simple bicubic down-sampling operation without noise term, and construct a deep LR–HR
prediction model using the prepared LR–HR pairs. Therefore, the super-resolved HR
results with these learned models for the LR images captured under uncontrolled imaging
conditions would be greatly degraded. This study proposes a blind SR method using deep
unsupervised learning, and simultaneously learns the latent HR image and the unknown
degradation model (the blur kernel and down-sampling operation) using only the observed
LR image.
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3.2. Motivation of the Proposed BSR-DUL

Given the previously synthesized external LR–HR image pairs (xLR
n , yHR

n ) (n = 1, 2, · · · , N),
where xLR

n is generally a bicubic down-sampled version of xHR
n , the fully supervised CNN

methods learn an off-line SR model via minimizing the reconstruction errors of training HR
images to obtain the optimal network parameters as follows:

θ∗ = arg min
θ

N

∑
n=1
‖xHR

n − f CNN
θ (xLR

n )||2, (2)

For a test LR image ILR to be super resolved, the latent HR image IHR is predicted
using the learned model with the optimal network parameters θ∗ as: IHR = f CNN

θ∗ (ILR).
Unlike the above paradigm, this study appeals only to the observed LR image instead
of previously preparing the external and internal training paired samples for learning
an HR image reconstruction model whilst leveraging the powerful capability of deep
network architecture for capturing enough low-level image statistics [30] to reconstruct the
arbitrary high-quality natural images, which can simultaneously learn the latent HR image
and the degradation model (the blur kernel and the down-sampling operation) from a
noisy input. Specifically, we construct a generative network G with the unknown network
parameters θ, and search a set of optimal θ in the network parameter space for capturing
the latent HR image’s prior: IHR. Moreover, following after the generative network, we
design a learnable degradation module (LDM) using a depth-shared convolutional layer to
automatically predict the blur kernel for a specific LR observation, and establish the blind
unsupervised SR network in an end-to-end learning manner. The conceptual structure
of our proposed BSR-DUL is shown in Figure 1a. According to the the loss function of
the fully supervised CNN-based SR network in Equation (2), we formulate the objective
function of the BSR-DUL framework as follows:

θ∗ = arg min
θ

‖ILR − Gθ(z)⊗ k ↓s ‖2,

s.t. 0 ≤ Gθ(z)i,j ≤ 1, ∀i, j
(3)

where z is the input of the generative network, and Gθ(z)i,j denotes the intensity of the
estimated HR image on the i-th row and j-th column pixel. In Equation (3), instead
of optimization directly on the latent HR image, we search the parameter space of the
generative network Gθ for pursuing a set of optimal θ∗ to well reconstruct the target as
ÎHR = Gθ∗(z) using only the observed LR image. In the following subsection, we describe
the detailed design of the proposed BSR-DUL including the encoder–decoder architecture
of the generative network Gθ , the used input of Gθ , the learnable degradation block for
automatically estimating the blur kernel and down-sampling operation and the joint
optimization algorithm for network training.

3.3. The Detailed Implementation of the Proposed BSR-DUL

As shown in Figure 1a, our proposed BSR-DUL mainly includes the modeling module
of the latent HR image with the generative network and the learnable degradation module
(LDM) for automatically learning the blur kernel and down-sampling operation related to
the imaging conditions of the LR observation. We substantiate the encoder–decoder archi-
tecture of the generative network, the specifically designed depth-shared convolutional
layer for LDM and the joint optimization algorithm for network training.

The encoder-decoder-based architecture of the generative network: To handle diverse
images containing salient structures and rich textures, the generative network is required
to have sufficient modeling capacity. Inspired by the successful generation of high-quality
image with the encoder–decoder network in various adversarial learning [42,51], we ex-
ploit a symmetric encoder–decoder architecture with skip connections, to serve as Gθ for its
multi-level feature learning nature and simplification. Both the encoder and decoder have
five blocks for learning multiple scales of contexts, and the outputs of the five blocks in the
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encoder are skip connected to the corresponding blocks of the decoder for feature reuse.
Each block consists three convolutional layers following the RELU activation function
while the max-pooling layer with a 2 × 2 kernel is used for decreasing the feature map
size between blocks of the encoder and the up-sampling layer is employed for doubly
recovering the feature map size between blocks of the decoder. Finally, a convolutional
output layer is adopted to generate a latent HR image. The encoder–decoder architecture
of our generative network is shown in Figure 1b.
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Figure 1. The conceptual scheme of the proposed blind SR framework with deep unsupervised
learning (BSR-DUL). (a) The overall architecture of the proposed BSR-DUL. (b) The generative
network. (c) The learnable degradation module.

The encoder–decoder network is used to generate the latent HR image. In nat-
ural image generation research of adversarial learning, such as DCGAN [52] and its
variants [53–56], most methods use the randomly sampled noisy vectors or (observed
knowledge) conditioned noisy vectors for the network input, and the quality of the gen-
erated images with the help of adversarial learning is continually improved. However,
GAN-based methods aim at learning the inherent structures (priors) of the latent images
with a specific concept, and expect more diverse generated samples having the same distri-
bution with the real samples via an additional real/fake discriminator. In our unsupervised
SR problem, we want to generate the corresponding HR image of a specific LR observation
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instead of diverse HR samples, and thus the network input in the training procedure
should be fixed. Similarly in [30], we adopt a random generated noise z0 at the beginning
of the network learning as the base input of our generative network Gθ . However, the fixed
input possibly leads to the generative network failing into a local minimum status. Thus,
we make a small random perturbation (a randomly generated noise with a uniform dis-
tribution of the value range (0, 1)) on the initialized noise for each step of the network
training, and the input to the generative network in i-th training step is formulated as:

zi = z0 + βni
(0,1), (4)

where β denotes the perturbation degree on the base noise, and ni
(0,1) represents the

randomly generated noise in the i-th training step. We adopt the perturbation noise ni
(0,1)

to prevent the dropping into a local solution of the network training, and the perturbation
degree β should be small enough to avoid the loss oscillation. In our experiments, we set β
from 0.01 to 0.08, which usually provides the stable training procedure for our BSR-DUL
network. With the learned generative network, we estimate the latent HR image from the
initial fixed noise z0 as ÎHR = Gθ(z0).

The learnable degradation module: With the generated HR image of the generative
network, it is needed to employ the degradation operations to approximate its correspond-
ing LR image for conducting an evaluation of the network training. With the known
blur kernel k and down-sampling operation, we can employ a mathematical formula to
approximate the degradation model, which limits the applicability on the observation with
unknown degradations. Moreover, the mathematical implementation of the degradation
model is usually difficult to integrate into the learning network as an end-to-end frame-
work. Thus, this study designs a special learnable module to implement the degradation
model after the generative backbone, and constructs an end-to-end SR framework for
flexibly accommodating the known and unknown degradation. Specifically, we alter a
vanilla depth-wise convolutional layer to realize the blurring and down-sampling trans-
formation. It is well known that the same blurring and down-sampling operations are
conducted for all of the RGB channels in a real scenario, and then we impose the depth-wise
convolutional layer on different color bands to share the same kernel with zero bias; stride
parameter: 1 for blurring the operation and spatial expanding factor for down-sampling
operation, which construct our proposed depth-shared convolutional (DSC) block as shown
in Figure 1c. The specifically designed DSC block is expressed as:

ÎLR = fθDSC (Î
HR) (5)

where ÎLR denotes the degraded LR version of the estimated HR image using Gθ . With the
learnable fθDSC module, it is prospected for being flexibly adapted to different real settings.
Via substituting the mathematical transformation in Equation (3) with the learnable DSC
block, the loss function for training our end-to-end blind unsupervised SR network can be
rewritten as:

(θ∗, θ∗DSC) = arg min
θ,θDSC

‖ILR − fθDSC (Gθ(z))‖2, (6)

where θ∗DSC denotes the learnable parameters of the depth-shared convolutional layer for
approximating the degradation model. Via minimizing Equation (6), we can jointly opti-
mize parameters of the generative network and the degradation module. The optimization
process of the blind SR network can be explained as a kind of ”zero-shot” self-supervised
learning [49], where the generative networks Gθ and the degradation block are trained
using only the observed image (i.e., the observed LR image) and no ground truth HR image
is available.

Joint optimization algorithm: The optimization problem of the constructed model
in Equation (6) for our BSR-DUL is unconstrained and highly non-convex. Most of the
existing solutions, such as to solve the traditional MAP-based framework, often utilize
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an alternating minimization strategy, which may lead the solution to be stuck in saddle
points [57]. We investigate a joint optimization method instead of using alternating opti-
mization, taking advantage of the powerful modeling capacity of Gθ , which can avoid an
invalid and trivial HR solution. In the joint optimization, we derive the gradients w.r.t. θ
and θDSC using the automatic differentiation techniques [58], and simultaneously update
the parameters of the generative networks Gθ and fθDSC . The proposed joint optimization
algorithm is summarized in Algorithm 1, which jointly updates the parameters θ and θDSCk
using the ADAM algorithm [59]. ADAM is an efficient optimization algorithm with an
adaptive learning rate, which is specifically designed for training deep neural networks,
and has been proven to achieve a relatively stable training procedure compared with other
optimization methods. Moreover, ADAM is also an efficient method as it only requires
first-order gradients with little memory requirement. In the experiments, we conduct
the optimization procedure with T iterations, and then the latent HR image IHR can bey
generated as ÎHR = Gθ(z0, θT).

Algorithm 1 Joint Optimization for BSR-DUL.

Input: the LR observation ILR

Output: the latent HR image IHR

Sample the base noise z0
0 from uniform distribution

for i = 0 to max. iter. (T) do
Sample the noise ni

(0,1) from uniform distribution

Perturb z0 with ni
(0,1): zi = z0 + βni

(0,1)

ÎHR = Gθ(zi, θi−1)

ÎLR = fDSC(ÎHR, θi−1
DSC)

Loss function of Equation (6): ‖ILR − ÎLR)‖2

Compute the gradients w.r.t θ and θDSC
Update θ and θDSC using the ADAM algorithm [59]

end for
IHR = Gθ(z0, θT)

4. Experimental Results
4.1. Experimental Settings

We conducted experiments on three widely used benchmark datasets: Set5 [6],
Set14 [5] and BSD100 [60]. The Set5 dataset has 5 test data including baby, bird, but-
terfly, head and woman images while the Set14 dataset consists of 14 data with Baboon,
Barbara, bridge, coastguard, comic, face, flowers, foreman, lenna, man, monarch, pepper,
ppt3 and zebra images. BSD100 is a widely used classical dataset for both for image de-
noising and super resolution, and has 100 test images. The dataset is composed of a large
variety of images ranging from natural images to object-specific images, such as plants,
people, food etc. All of the datasets are commonly used for testing the performance of
image super-resolution models. We consider the original images in all of the datasets as
the HR images, and synthesize the LR observations using different blurring kernels and
down-sampling operations. For simple implementation, we first top-left cropped the HR
image with the pixel numbers in both horizontal and vertical directions to be the multiply
of 32. All of the experiments are performed with a scale factor of 4× or 8× between low-
and high-resolution images. The quantitative metrics: peak signal-to-noise ratio (PSNR)
[dB] and structural similarity index measure (SSIM) have been adopted for evaluating
the SR performance, and for a fair comparison, all are computed on three RGB channels
instead of the y-channel only. We calculate the average quantitative values of all of the
images in each dataset, and provide the fair comparisons with the state-of-the-art (SoTA)
methods and a different experimental setting in our proposed BSR-DUL.

The proposed BSR-DUL is implemented using Pytorch. We set the learning rates for
Gθ and fθDSC as 0.01 and 1× 10−4, respectively, and adopt the ADAM optimization strategy.
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The iteration step in all of the experiments is set as T = 4000 for scale factor 8 and T = 2000
for scale factor 4. The noises z0 and ni

(0,1) are sampled from the uniform distribution with
fixed random seed 0 while the perturbed parameter β is set as 0.03 for most experiments.
We also change the values of β to validate the effect on the SR performance. All of the
proposed models with different experimental settings are run on the computer with Ubuntu
OS, 8GB memory and Tesla K80 GPU.

To verify the effectiveness of our proposed BSR-DUL framework, we firstly conduct
experiments on different simulated LR images to analyze the effect of the learnable degrada-
tion module (LDM) for approximating different degradation operations. Then, we compare
the SR performance of our unsupervised non-blind/blind method with the state-of-the-art
methods, including the fully supervised non-blind methods and unsupervised non-blind
SR methods.

4.2. Compared Results on Different Degraded LR Images

Without a lack of generalization, we simulate the LR inputs from the benchmark
datasets: Set5 [6], Set14 [5] and BSD100 [60] with different degradation operations including
the simple bicubic down-sampling only (without the blur kernel) and the combined bicubic
down-sampling and Gaussian blur kernels with different standard deviation values (σ
from 1.0 to 3.0). As mentioned in Section 3, the kernel weights of the learnable degradation
module fθDSC can previously be defined and fixed in the network training procedure
to establish a non-blind SR framework. For the bicubic down-sampled LR images, we
firstly conduct the experiments in the non-blind setting via initially fixing the LDM’s
kernel weights as the correct kernel (Lanczos kernel for approximating bicubic down-
sampled operation) and a wrong kernel, such as the Gaussian kernel, for validating the
learning capability of the generative network Gθ . Moreover, we assume no prior knowledge
about the degradation procedure, and automatically learn the kernel weights to verify the
potential of the kernel modeling capability of the fθDSC . The quantitative comparisons on
all three datasets from the bicubic down-sampled LR images with upscale factor 4 and 8 are
manifested in Table 1. It can be seen from Table 1 that the learnable kernel under the blind
setting of our proposed method illustrates comparable results with the correct kernel (here
Lanczos kernel for bicubic down-sampling) under the non-blind setting. Two recovered
HR images of two samples with a wrong kernel, the correct kernel and the automatically
learned kernel are shown in Figure 2.

Next, we simulate the LR image using both the blur kernel k and the bicubic down-
sampling operation, and conduct experiments to verify the feasibility of the our blind
SR method. Without a loss of generality, Gaussian blur kernels with different standard
deviations from 1.0 to 3.0 are used. Experiments have been conducted under varieties of
settings, including non-blind (known blur kernel and down-sampling), semi-blind, where
there is little knowledge about the blur kernel such as only the known kernel type (Gauss) is
known, and a complete-blind paradigm without any prior knowledge about the blur kernel.
In the semi-blind experimental setting with the known kernel type but unknown deviation
value σ, we simply set three values: 0 (assume no blur kernel), 1 and the true value to get
the Gaussian kernel, and set them as the weights of the LDM, respectively, while learning
the parameters θ of the generative network Gθ only to estimate the latent HR image IHR.
Moreover, with an unknown kernel type, the blur kernel is automatically learned via
setting the stride of the DSC layer as 1 in the LDM to give a non-down-sampled blurred
version of the estimated HR image, and further adopt another DSC layer with the fixed
Lanczos kernel to produce the approximated LR image. Table 2 manifests the quantitative
comparisons on the Set5 and Set14 datasets using different experimental settings with the
upscale factor 4 and 8, respectively. From Table 2, it can be seen that the correct kernel
can provide the best results while the learned blur kernel with the known down-sampling
operation can only give the second best results for most different types of LR images.
Figure 3 gives the visualization of the reconstructed HR images with different experimental
settings for the simulated LR images using a Gaussian blur kernel with σ = 1.0.
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Table 1. Comparison of quantitative evaluation on Bicubic downsampled LR images using fDSC

the pre-defined and learnable kernels. The first and second numerals represent the PSNR and SSIM
values, respectively.

Dataset Factor Correct Wrong Learnable
Kernel Kernel fθDSC

Set5
X4 28.36/0.9049 19.10/0.6965 27.31/0.9053

X8 24.25/0.7944 19.00/0.6475 23.35/0.7750

Set14
X4 25.14/0.8144 18.31/0.6398 23.41/0.8107

X8 23.37/0.7046 18.48/0.5950 20.84/0.6896

B100
X4 25.16/0.7869 19.60/0.6452 23.11/0.7858

X8 23.02/0.6824 20.02/0.6083 20.82/0.6751

Table 2. Quantitative comparison for super-resolving the LR images with Gaussian blur kernels
(different standard deviation values) and the bicubic down-sampling (DS) operation. The first and
second numerals represent the PSNR and SSIM values, respectively.

Semi-Blind Blind

Dataset σ Known DS and Gaussian Kernel with Different σ Unknown Kernel

σ = 0 σ = 1.1 True σ fθDSC

σ = 1.0 24.17/0.7895 24.34/0.7962 24.39/0.7976 24.07/0.7875

σ = 1.2 24.00/0.7846 24.34/0.8087 24.44/0.8000 23.84/0.7789

σ = 1.5 23.83/0.7786 24.24/0.7911 24.36/0.7962 23.62/0.7812

Set5 σ = 2.0 23.73/0.7732 24.25/0.7918 24.38/0.7968 23.84/0.7886

σ = 2.5 21.42/0.6913 21.84/0.7055 23.73/0.7716 21.54/0.7000

σ= 3.0 20.77/0.668 21.05/0.6776 23.09/0.7464 20.80/0.6719

σ = 1.0 22.17/0.6951 22.30/0.6912 22.45/0.7052 22.10/0.6971

σ = 1.2 22.12/0.6925 22.38/0.7030 22.46/0.7041 21.87/0.6902

σ = 1.5 22.05/0.6898 22.28/0.6988 22.45/0.7043 20.88/0.6897

Set14 σ = 2.0 21.99/0.6867 22.33/0.6995 22.41/0.7029 21.12/0.6940

σ = 2.5 20.43/0.6314 20.74/0.6407 22.03/0.6821 19.66/0.6355

σ = 3.0 19.92/0.6145 19.92/0.6145 21.69/0.6673 19.27/0.6163

4.3. Comparison with State-of-the-Arts

Most of the existing methods typically super resolve the bicubic down-sampled LR
images to measure the quality of the recovered HR images. To provide a fair comparison,
we also conduct experiments on the bicubic down-sampled LR images using our proposed
method and the state-of-the-art methods, including the unsupervised/non-blind pipeline
(bicubic up-sampling, TV_Prior: unsupervised optimization-based method, DIP [30]),
ZSSR [49], fully supervised deep network: LapSRN [10] and EDSR [15]. It should be
noted that the degradation operations should be known for realizing the ZSSR [49] method
(denoted as ZSSR_CK). Since it has to first obtain the training samples of the synthesized
LR images and the original LR observation to begin the specific CNN model training
in ZSSR, it is difficult to extend the ZSSR for the blind SR task. As introduced above,
our proposed BSR-DUL method is a generalized unsupervised framework, and can be
implemented in non-blind, semi-blind and complete-blind ways. Thus, we give the com-
pared quantitative results of our non-blind and blind unsupervised implementation with
the existing methods in Table 3, which manifests that our non-blind implementation can
achieve an acceptable performance. Although the complete-blind implementation on the
more challenging conditions leads to the performance degradation, it demonstrates the
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feasibility and potential of the proposed generalized framework on super resolving the LR
images captured under diverse imaging conditions. Figure 4 shows the comparison of the
visualization results of the HR images restored by our methods and various SoTA methods.
Moreover, in order to evaluate the effect of the perturbation degree β and the optimizing
strategies, we further provide the compared results with different values of β and different
optimizers in Tables 4 and 5.

PSNR/SSIM

Ground Truth

Bicubic

Correct Kernel Wrong Kernel Learned Kernel

27.17/0.7835 22.41/0.6932 27.10/0.7805

26.67/0.7662

(a)

25.25/0.7754

Ground Truth Correct Kernel Wrong Kernel Learned Kernel

PSNR/SSIM

Bicubic

25.64/0.7862 22.07/0.7012 25.61/0.7939

(b)

Figure 2. The experimental results of two images from the Bicubic down-sampled LR observation
with the upscale factor 8. The first row gives the recovered HR images with different kernels, and the
second row visualizes the difference in image between the ground truth and their corresponding
estimations. (a) The ’head’ image in Set5. (b) The ’103070’ image in BSD100.

4.4. Discussion

As validated in the above section, our proposed BSR-DUL method can simultaneously
learn the latent HR image and the adaptive degradation operations on the LR observation,
and thus has a high generalization ability for dealing with real diverse images. In spite of
the proved feasibility on the LR images captured under uncontrolled conditions, the degra-
dation operations are naively learned using a depth-wise convolution layer, which may
result in the irrational parameters inconsistent with the real imaging scenario. As we know,
the mathematical transformation parameters of the degradation in the real optical systems
should be non-negative and equality. However, the learned parameters in the depth-wise
convolution layer are not always conformed to the optical constraints. Thus, it would be
encouraged to incorporate the optical constraints in learning the degradation operation
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in the future work. Moreover, the proposed method requires us to train an image-specific
CNN model for each under-studying image, and thus leads to additional on-line training
time, including the inference time. In our experiments, recovering a 512 × 512 image takes
the training and inference time about 3 and 5 minutes for the upscale factors 4 and 8,
respectively. We are going to improve the efficiency of the network training by exploit-
ing different strategies, such as constructing a common model as the initial state of the
image-specific CNN.

Ground Truth 𝜎 = 0 𝜎 = 1.1 𝑇𝑟𝑢𝑒 𝜎 𝑓𝜃𝐷𝑆𝐶

PSNR/SSIM

Bicubic

21.09/0.6884 21.11/0.6915 21.29/0.6981 21.17/0.6906

(a)
Ground Truth 𝜎 = 0 𝜎 = 1.1 𝑇𝑟𝑢𝑒 𝜎 𝑓𝜃𝐷𝑆𝐶

PSNR/SSIM 27.28/0.837626.91/0.8311 27.36/0.8370 27.33/0.8371

Bicubic

(b)

Figure 3. The compared visualization of the reconstructed HR images with different experimental
settings. (a) The ’flower’ image in Set14 from its simulated LR images using a Gaussian blur kernel
with σ = 1.0. (b) The ’baby’ image in Set5 from its simulated LR image using a Gaussian blur kernel
with σ = 2.0. (a) The ’flower’ image in Set14. (b) The ’baby’ image in Set5.

Table 3. Quantitative comparison of our proposed BSR-DUL with the sate-of-the-art methods on the simulated LR images
of all three benchmark datasets. The LR images are simulated via bicubic down-sampling the ground truth HR images
for a fair comparison with fully supervised methods, such as LapSRN [10] and EDSR [15]. Similarly, the first and second
numerals represent the PSNR and SSIM values, respectively.

Datasets

Categories Methods Set5 Set14 BSD100

X4 X8 X4 X8 X4 X8

Bicubic 26.71/0.8660 22.74/0.7278 24.20/0.7860 21.37/0.6624 24.78/0.7725 22.48/0.6618

Unsuper TV_Prior 26.66/0.8761 23.01/0.7433 24.34/0.7870 21.60/0.6761 - -

Non-Blind DIP [30] 27.93/0.8928 24.04/0.7828 25.01/0.8030 22.17/0.6953 25.15/0.7862 23.01/0.6859

ZSSR_CK [49] 28.85/0.8009 24.18/0.6272 26.86/0.7381 23.07/0.5627 −/− −/−
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Table 3. Cont.

Datasets

Categories Methods Set5 Set14 BSD100

X4 X8 X4 X8 X4 X8

Our_CK 28.36/0.9049 24.25/0.7944 25.14/0.8144 23.37/0.7046 25.19/0.7919 23.02/0.6824

Unsuper Our_blind 27.31/0.9053 23.73/0.7876 23.41/0.8107 20.84/0.6896 23.11/0.7858 20.82/0.675
Blind

Super LapSRN [10] 29.36/0.9196 24.22/0.7913 25.90/0.8327 22.43/0.7061 25.97/0.8115 23.21/0.6926

Non-Blind EDSR [15] 29.99/0.9275 24.25/0.7959 26.37/0.8441 22.39/0.7060 26.20/0.8178 23.05/0.6890

Table 4. Performance effect of the perturbation degree β on the Bicubic down-sampled LR images of
the Set5 dataset.

Factors β = 0 β = 0.01 β = 0.03 β = 0.05 β = 0.08

X4 25.80/0.8567 26.93/0.8932 27.31/0.9053 26.88/0.8989 26.25/0.8850

X8 22.07/0.7176 23.62/0.7900 23.73/0.7876 23.35/0.7750 23.18/0.7651

Table 5. Performance effect of different optimization strategies on the Bicubic down-sampled LR
images of the Set5 dataset.

Optimizers SGD Adadelta Adagrad ADAM

17.67/0.5862 18.22/0.5950 21.38/0.7474 23.73/0.7876

Ground Truth

PSNR/SSIM

DIP

18.71/0.7998

Our_CK

18.72/0.8005 18.51/0.7890

Our_blind LapSRN

18.50/0.7972

EDSR

18.61/0.8021

Bicubic

(a)

Figure 4. Cont.
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Ground Truth

Bicubic

PSNR/SSIM

DIP

28.27/0.8549

Our_CK

28.33/0.8564

Our_blind

28.29/0.8586

LapSRN

28.31/0.8537

EDSR

28.32/0.8584

(b)

Figure 4. Compared visualization results of the recovered HR images with different SoTA methods. The first row denotes
the resulted HR images while the second row gives the difference in images between the recovered and the ground truth
images. (a) The ’ppt3’ image in Set14. (b) The ’253055’ image in BSD100.

5. Conclusions

This study proposed a blind unsupervised learning network for a real SR task from
a single LR image. We specifically constructed a generative network for simultaneously
learning the inherent priors of the latent HR image and the degradation operations with
the under-studying LR observation only. The proposed method is capable of learning any
complicated blurring kernel in a general SR framework, and is an end-to-end HR image
learning network. The experimental results on three benchmark datasets validated that
the proposed method achieved an impressive performance under the unknown degrada-
tion model.
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