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Abstract: The latest cloud resource management research has revealed that virtual machine (VM)
consolidation allows for effectively managing the physical resources of cloud data centers. However, a
tremendous waste of power and physical resources has been pointed as one of the research challenges
related to the development of new methods for VM management in a cloud data center in order
to deliver a wide range of IT services to clients effectively. This paper investigates a problem of
power-aware VM consolidation under dynamic workloads, uncertainty, and a changing number
of VMs. For this purpose, the authors propose a dynamic VM management method based on a
beam search that takes into account four types of resources (CPU, memory, network throughput,
and storage throughput) and six quality metrics. Optimal beam search algorithm parameters for
the defined problem are determined using a new power-aware integral estimation method. The
SLA violation minimization allows significant improvement of SLA quality metrics, accompanied by
the decreased number of VM migrations and slight deterioration in the power consumption. The
proposed method is evaluated using common widespread hardware configurations and Bitbrains
workload traces. The experiments show that the proposed approach can ensure the efficient use of
cloud resources in terms of SLA violation and the number of VM migrations.

Keywords: energy efficiency; virtual machine consolidation; service level agreement; beam search
algorithm; virtual machine migration

1. Introduction

A multicloud strategy and a hybrid cloud strategy dominated last year [1], and the
IaaS cloud service model remains the most prevalent to manage performance, quality
of services, and power consumption in cloud data centers. A wide range of modern
information services and applications are provided by cloud data centers represented by
complex systems to deliver high-performance and fault-tolerant IT services for users and
tenants using a utility computing concept [2].

Still, three main objectives for effective management of data center resource provision-
ing are (i) ensuring the service level agreement (SLA) between a cloud service provider
and a user, (ii) reducing the power consumption of data centers, and (iii) reducing the
operational costs of managing data center services.

An effective cloud data center resource utilization is mainly achieved by virtual
machine (VM) consolidation, which determines how physical machine (PM) resources
are allocated to run many VM instances to guarantee QoS requirements and reduce the
total number of PMs used. VMs with different resource demands are usually placed in
the same PM using the oversubscription technique, leading to resource contention, poor
QoS, and, consequently, SLA violations. Nevertheless, data center administrators continue
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accepting VM consolidation methods despite all the drawbacks, such as performance
and QoS degradation. Therefore, current issues in VM management schemas lead to the
development and improvement of VM consolidation, considering the heterogeneity of
resources, live VM migration, network and storage parameters, deployment platforms,
workload patterns, and resource usage forecasting.

In the production data center, a mapping between VMs and PMs is usually performed
with oversubscription according to the VM’s required resource capacity without consider-
ing long-term utilization. Moreover, the number of VMs and the intensity of VM workloads
are continuously changing, requiring adaptive methods for dynamic VM management
starting with a new VM placement request.

A VM consolidation problem is considered a bin-packing problem, where N numbers
of items (virtual machines) with different sizes in a multidimensional resource space are
placed on M numbers of bins (physical machines) to satisfy multiple objectives simulta-
neously. In this paper, the authors consider two: power consumption minimization and
SLA violation minimization. The bin-packing problem is compounded by the variation
of the item’s properties, requests to deploy new items, and reassigning existing items to
other bins. As clients request services and submit jobs to be processed by one or multiple
VMs, the workload in a cloud data center can change significantly over time. It requires
solving an optimization problem to place new VMs and reallocate active VMs periodically
using an asynchronous mode or after a defined number of steps. Other constraints while
consolidating virtual machines are a restriction of the number of concurrent VM migrations
per PM, a restriction of the PM’s resource utilization, and a limitation of the number (or
time) of SLA violations [3].

This paper investigates a problem of SLA-aware VM consolidation under dynamic
workloads, uncertainty, and the changing number of VMs. The proposed method of
dynamic VM management consists of two stages, which are performed in each time
interval. The first stage of the method is determining overloaded and underloaded PMs.
The second stage of the method is choosing VMs for migration and placement as well
as running a migration plan using a beam search algorithm proposed by the authors
in [4]. The migration plan is executed by constructing a tree of possible target PMs for
VM placement, which considers no more than n vertices, where n is a beamwidth. Each
candidate vertex has an estimate by which the vertices are compared, so the best n vertices
are selected.

To rate VM consolidation schemas and approaches on the infrastructure level, the
authors define six quality metrics related to SLA violations, power consumption, and
VM migrations. To estimate beam search algorithm parameters, the authors propose an
integral estimation method (IEM) that allows determining optimal power consumption
parameters, considering the minimum area under each curve that approximates a specific
chart. To conduct optimization, the authors define two objectives: a minimization of PMs’
uptime (the power consumption minimization, PCM) and a minimization of the number
of SLA violations (the SLA violation minimization, SLAVM), aiming to determine model
parameters for both objectives separately. The optimization results allow for obtaining
some scientific insights into VM consolidation approaches regarding the thresholds for
the specified resource utilization, the minimization objectives, SLA violations, a workload
intensity on a specific resource, and a complementary VM placement.

The current study extends the author’s previous paper [5] to the particular case of dy-
namic VM management based on the modified model and the modified VM consolidation
method, resulting in determining different parameters of the proposed model and their
effect on the quality metrics. As shown earlier, the approach presented in [5] outperforms a
basic best-fit heuristic regarding the SLA violation, the number of active physical machines,
and the number of VM migrations.

In the research literature, the problem of VM management in cloud environments is
often referred to as a multiobjective multidimensional bin-packing problem. Exploring VM
management as a general instance of the initial VM placement and the consolidation of
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active VMs is an ongoing research track [3,6,7]. It has been studied in the literature from a
variety of perspectives, including the proactive resource allocation strategy [8], the use of a
responsive live migration approach for high-throughput computing (HTC) systems with
various migration policies as a fault-tolerance mechanism [9], the multiobjective genetic
algorithm and Bernoulli simulation for the minimization of the number of active PMs [10],
the cloud infrastructure resource allocation framework based on reinforcement learning
mechanism [11], and setting upper and lower thresholds in VM consolidation schemas [12],
to mention a few.

In the literature, multiobjective VM consolidation schemes are the most commonly
used approaches to manage cloud resources under uncertainty [6,7,13,14]. However,
despite the numerous research studies, there is a lack of research results regarding the
effect of different parameters of VM management schemes on quality metrics in a dynamic
mode (i.e., considering new VM requests, the different VM lifetime, the dynamic compute-
intensive, memory-intensive, storage-intensive, and network-intensive workloads).

With the aim of minimizing the number of active PMs and maximizing the resource
utilization, the framework based on the multiobjective genetic algorithm and Bernoulli
simulation was proposed in [10]. Thus, two objectives were combined into one by the
proposed weighted sum function as a fitness function of the genetic algorithm. However,
the proposed framework considers only CPU and memory utilization and does not consider
other PM resources and VM migrations.

In [14], extensive lab experiments and simulations with different controllers and
different workloads were conducted using 6 identical servers and 90 VMs. The authors
proposed combining placement controllers with periodic reallocations to achieve the
highest energy efficiency in dynamic environments. The combinations of demand-based
placement controllers with reallocation controllers lead to fewer VM migrations than
reservation-based placement controllers and lower server demand. However, the proposed
algorithm takes into account only CPU and memory monitoring data as an input to
the controller and does not consider other PM resources. Besides, the authors used the
homogenous PM configuration during the experiments.

To optimize VM placement in dynamic cloud data centers, the authors of [11] proposed
an intelligent learning approach based on reinforcement learning (RL). The proposed RL
approach learns optimized VM consolidation decisions under uncertainty of the incoming
workload. However, the proposed algorithm does not account for the influence of the VM’s
memory changes on the migration overhead.

In [9], the authors proposed VM live migration as a fault-tolerance mechanism in
HTC systems. The proposed responsive live migration approach for HTC systems with
various migration policies demonstrates low performance and energy impact. It saves
approximately 75% of the system wasted energy due to job evictions by user interruptions,
where migration is not employed as a fault-tolerance mechanism. The proposed HTC-Sim
simulation framework has been used for trace-driven simulations to explore the impact of
the policies on performance and energy.

The authors of [15] proposed the power-aware and performance-guaranteed VM
placement method by developing the algorithm based on ant colony optimization. Based on
the nonlinear power model of the PM and VM performance model, the authors formulated
the VM placement problem as a biobjective optimization problem, which tries to minimize
PM power consumption and guarantee VM performance. At the same time, storage
utilization and VM migration overhead are not considered in the proposed models.

The proactive resource allocation method based on the adaptive prediction of the
resource requests was proposed in [8]. The method is based on the prediction of resource
requests and the multiobjective resource allocation optimization model, which alleviates
the latency of the resource allocation and balanced utilization of the CPU and memory
of a PM. However, the proposed approach considers only CPU and memory utilization
and does not consider other PM resources. Furthermore, the proposed method does not
account for VM migration and VM consolidation.
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The first issue of many VM consolidation schemes is employing strategies aiming
to optimize resource allocation based only on CPU utilization [11,12,16,17]. However,
application workloads inside VMs can also be compute-intensive, memory-intensive,
storage-intensive, and network-intensive, which can be a significant challenge to such
schemes. The second issue is using outdated or unbalanced hardware configurations used
for simulating data center PMs [10–12]. However, the modern PMs installed in data centers
have very high performance and can host hundreds VMs. Therefore, evaluation results
obtained by simulating data centers using PMs and VMs that differ little in performance are
not helpful for real data centers. The third issue is using power consumption minimization
and minimization of the number of migrations as the main objective function while mini-
mizing the number of SLA violations according to the residual principle [9,14,15]. However,
a minimization of power consumption, including those based on adaptive thresholds, is
always accompanied by aggressive consolidation, which always results in sufficient SLA
violations and an increasing number of switching PMs between the active and sleep modes.
Besides, with respect to this, it is questionable whether an adaptive threshold in VM
management schemes is suitable for modern data centers compared with static thresholds.

In contrast to prior VM management schemes reported in the literature, in this paper,
the authors are improving the client’s experience by minimizing SLA violations, thereby
ensuring maximum service uptime for clients, with the concern of minimizing the number
of VM migrations while reducing power consumption. Besides, heterogeneous PMs
with typical widespread hardware configurations are used for simulations applying real
workload traces as input data. The proposed method considers all SLA violations on the
infrastructure level.

The remaining parts of the paper continue with Section 2, where the authors develop
the proposed dynamic VM management method. Section 3 describes the simulation
environment, the simulation settings, the model parameters, and the optimization results
using two objectives. Section 4 summarizes the revealed findings and scientific insights.
Finally, Section 5 presents conclusions with remarks on future work.

2. Materials and Methods
The System Model and Main Objectives

The cluster of cloud data centers is composed of M PMs and N VMs, N, M ∈ N . Each
PM has a fixed amount of hardware resources, such as a CPU measured in MHz, a RAM
measured in GB, a storage measured in IOPS (input/output operations per second), and a
network throughput measured in Gbps. VM resource requirements can change over time.
During the time interval (also called a management step), the number of PMs is constant,
but the numbers of VMs and VM resource requirements change.

There are four types of resources in the model denoted by k ∈ {CPU, RAM, IO, NET}.
The required resource k capacity of the j-th VM denoted by ck

j is determined by a workload

served by a VM. The resource k capacity of the i-th PM denoted by Ck
i is determined by the

PM hardware configuration. The utilization of resource k of the i-th PM is denoted by uk
i .

The number of VMs running on the i-th PM is denoted by vi. The variables ck
j and uk

i can
be changed during the VM lifetime and the VM migration.

The rest of the variables of the model are defined as follows: wk ∈ [0, 1] is the weight
of resource k, rk

max is the largest value of the required capacity of each resource k among
VMs for normalization, rj is the required resource capacity of the j-th VM, Rk

max is the
largest value of the capacity of each resource k among PMs for normalization, Ri is the
existing resource capacity of the i-th PM, ui is the utilization of resources of the i-th PM,
Tk ∈ [0, 1] is the threshold of the available resource k of the i-th PM, Dk ∈ [0, 1] is the
desired workload on the resource k, Lk ∈ [0, 1] is the threshold of the available resource
k of the i-th PM that is determined as underloaded, Qk ∈ (Tk, 1] is the threshold of the
available resource k of the i-th PM that can host migrating VMs, vi is the number of hosted
VMs of the i-th PM, di is the deviation from the desired utilization of the i-th PM, dk

i is
the deviation from the desired utilization level of the resource k, f k is the total number of
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resources available for all migrations, ck
m is the capacity of the resource k needed for VM

migration, θ is an assessment of the VM migration possibility, A is a set with overloaded
PMs, W is a set with underloaded PMs that is going to be set to sleep mode, B is a set of
PMs that can accept migrating VMs, S is the total simulation time measured as the total
number of simulations steps, and t = 1, S is the management step.

All PMs are subdivided into three sets: A, W, and B, |A|+ |W|+ |B| = M, A ∩ B =
∅, A ∩W = ∅, B ∩W = ∅. The proposed method tries to switch PMs from set W of
underloaded PMs to the sleep mode by migrating all their VMs to PMs from set B and
offloads PMs of set A of overloaded PMs. For each PM from sets A and W, the proposed
method searches for PM from set B, which can accept VM migrations from overloaded and
underloaded PMs. Then, all PMs of set W can be switched to the sleep mode when all their
VMs migrate to PMs of set B.

The defined variables are used for the dynamic model of a data center during each
simulation step (i.e., the interval between time t and t + 1). A number of PMs operating
at the current simulation step t is defined as MPM(t) = |A|+ |W|. The SLA violation is
measured in time intervals when a resource contention is observed in the proposed model.
An SLA violation occurs when ∀i = 1, M, k ∈ {CPU, RAM, NET, IO} : uk

i ≥ Ck
i during

one-time interval (management step t), namely, when the total demand for the resource k
exceeds the available resource capacity.

The authors define two objectives for the problem. First, the problem of a power
consumption minimization can be formulated as follows:

minimize ∑t=1,S MPM(t).

Second, the problem of an SLA violation minimization can be formulated as follows:

minimize ∑t=1,S (∑i=1,M Vi(t)),

subject to ∀i = 1, M : Vi(t) =
{

1, ∑k uk
i − Ck

i ,
0, otherwise.

.

3. Results
3.1. Dynamic VM Management Method

This paper extends the author’s previous work [5] by modifying the VM selection
stage, defining the main objectives, and exploring model parameters. VM selection is
performed by choosing for migration a VM with minimal memory modification rate and
minimum utilization of memory (RAM). A VM with a minimal memory modification rate
is determined by considering the number of storage IO operations. A hypothesis is the
smaller the number of storage IO operations is, the lower the memory modification rate is.
In [18,19], experiments show that reducing the memory modification rate can significantly
reduce the VM migration time, which in turn reduces a PM’s CPU utilization.

The proposed method provides consolidation of new and active VMs intending to
minimize the number of active PMs and decrease the number of SLA violations. VM
migration occurs due to PM overloading on one or more resources. The overloading of PM
leads to resource contention, resulting in poor QoS and SLA violations. In turn, resource
contention always leads to increased response time and SLA violation at the application
level [20–23]. When the PM’s CPU utilization increases to 100%, the latency increases
significantly, hosted VMs experience performance degradation, and their application
performance becomes unpredictable.

The idea of the proposed dynamic VM management method is to place new VMs and
consolidate active VMs, applying migrations using a beam search algorithm. The previous
results [4,5] show that it is possible to consider the preferred VM migration plan using a
specified objective since the best VM migration schema in the current step of the algorithm
is not always improving in objective function value in the following steps. Therefore, the



Electronics 2021, 10, 2581 6 of 22

beam search algorithm can find a solution very close to the optimal one, given the objective
of varying complexities [4].

Thus, in each time interval, the proposed method is composed of two stages. In the
first stage of the method, three sets of PMs are created, namely, A, B, and W. In the second
stage, the method performs VM consolidation by migrating determined VMs from PMs
of sets A and B to PMs of set B. A set of consolidating VMs, U, contains migrating VMs
and new VMs. VM migration is needed to either offload an overloaded PM or switch an
underloaded PM to the sleep mode, migrating all VMs to other PMs.

3.1.1. The First Stage of the Method

The first stage of the method is a source PM selection for determining overloaded and
underloaded PMs. Sets A and B are obtained due to the first stage of the method to further
determine the migration plan in the second stage.

1. Set A of overloaded PMs is composed of PMs satisfying the following condition:

∀i = 1, M, ∃k ∈ {CPU, RAM, NET, IO} :
Ck

i − uk
i

Ck
i

< Tk, (1)

where Ck
i is the resource k capacity of the i-th PM, uk

i is the utilization of resource k of
the i-th PM, and Tk ∈ (0, 1] is the threshold of the available resource k of the i-th PM. If
condition (1) is satisfied, the i-th PM is overloaded and added to set A. The main reason
behind condition (1) is to avoid SLA violations.

2. Set B of PMs can accept inbound VM migrations, and the new VM placement is
composed of PMs satisfying the following condition:

∀i = 1, M, i /∈ A, ∀k ∈ {CPU, RAM, NET, IO} :
Ck

i − uk
i

Ck
i

> Qk,

where Ck
i is the resource k capacity of the i-th PM, uk

i is the utilization of resource k of the
i-th PM, and Qk ∈ (Tk, 1] is the threshold of the available resource k of the i-th PM that can
accept migrating and new VMs.

3. Set A is sorted in descending order of a deviation from the desired workload. The

deviation is defined as follows: ∂i = ∑k
wk∂k

i
Rk

max
, i ∈ A, where ∂k

i = uk
i − Ck

i Dk, ∀k is the

deviation of the utilization of resource k, Dk ∈ (0, 1) is the desired workload on resource k,
uk

i is the utilization of resource k of the i-th PM, wk ∈ [0, 1] is the weight of resource k, and
Rk

max is the largest capacity of resource k for normalization.
4. Underloaded PMs are determined among elements of set B. All PMs of set B that

satisfy condition (2) are moved to set W.

∀i ∈ B, ∃k ∈ {CPU, RAM, NET, IO} :
uk

i

Ck
i
> Lk, (2)

where Lk ∈ (0, 1) is the threshold of the available resource k of the i-th PM, which is
determined to be underloaded.

5. Set W is sorted in descending order of the utilization of resources of PMs denoted
by ui, and then set W is sorted in descending order of the number of hosted VMs, vi. The

utilization of resources of the i-th PM is defined as follows: ui = ∑k
wkuk

i
Rk

max
, i ∈W.

6. Set B is sorted in descending order by ∑k
Ck

i −uk
i−ck

j

Ck
i

, i ∈ B, j = 1, N.

It is necessary to consider all resources needed for VM consolidation and to deter-
mine the total amount of resources available for all migrations and placements. Dur-
ing VM migration, the source and destination PMs experience additional resource us-
age. For example, VM migration utilizes about 20% CPU of each PM [20,24]. There-



Electronics 2021, 10, 2581 7 of 22

fore, the total amount of resources available for all migrations is defined as follows:
f k = (1− Tk)∑i∈B (Ck

i − uk
i )− ck

m∑i∈A,i∈W (vi), where ck
m is a capacity of resource k needed

for VM migration, vi is the number of hosted VMs on the i-th PM, Ck
i is the capacity of

resource k of the i-th PM, uk
i is the utilization of resource k of the i-th PM, and Tk ∈ (0, 1] is

the threshold of the available resource k of the i-th PM. The utilization of resource k by one
inbound or outbound VM migration on the i-th PM is denoted by umk

i .
7. The transformation is applied for each i-th PM of set A as follows:

f k =

{
f k − uk

i , uk
i < f k,

f k + (Ck
i − uk

i )(1− Tk), otherwise.

Besides, if uk
i ≥ f k, then the i-th PM is moved from set A to set B.

3.1.2. The Second Stage of the Method

The second stage of the method is to run a migration plan using a beam search
algorithm proposed by the authors in [4]. Set U of migrating VMs comprises VMs of
overloaded PMs, new VMs to be deployed, and VMs of underloaded PMs. The second
stage is performed by applying the beam search algorithm for each PM i of sets A and W
as follows:

1. VMs of each PM of sets A and W are sorted in ascending order by the used resource
capacity indicator rj defined as follows:

rj = ∑k

wkck
j

rk
max

,

where rj is a required resource capacity indicator of the j-th VM, k ∈ {CPU, RAM, NET, IO},
wk ∈ [0, 1] is the weight of resource k, ck

j is the current demand of resource k of the j-th

VM, and rk
max is the largest value of the required demand of each resource k among VMs

for normalization.
2. The first VM is added with minimal utilization of resource k = IO and minimum

RAM size used to set U.
3. The possibility of the migration of each VM of set U to the first PM in the sorted list

B is checked.
4. N possible migrations with the highest value of a variable, θ, defined as θ = ∑k

wkθk

θk
max

from all possible migrations are selected, where wk ∈ [0, 1] is the weight of resource k, and
θk is defined as follows:

θk =

{
uk

i < LkCk
i : LkCk

i − uk
i → max

uk
i ≥ LkCk

i : −
∣∣∣DkCk

i − uk
i

∣∣∣→ max
, (3)

where Lk ∈ (0, 1) is the threshold of the available resource k of the i-th PM determined to be
underloaded, Ck

i is the resource k capacity of the i-th PM of set B, Dk ∈ (0, 1) is the desired
workload on resource k, and uk

i is the utilization of resource k of the i-th PM of set B.
Condition (3) guarantees that all PMs can accept inbound VM migrations with suffi-

cient free resource capacity. The value uk
i also includes the utilization caused by previous

VM migrations started at previous time intervals and continued in the current time interval.
For overloaded PMs, when the PM is turned on, the PM startup penalty is subtracted from
θ. In the case of underloaded PMs, such a penalty is not applied. However, the number of
simultaneous VM migrations per PM is not taken into consideration.

Additionally, it is assumed that a PM can awake from the sleep mode between manage-
ment steps t and t + 1. As shown in the following subsection, the time between management
steps is 300 s. Modern dynamic power management methods with a server processor sleep
state(s) allow a relatively fast transition of a PM to the active mode. Thus, it is assumed
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that a PM has time to switch to the active mode for inbound VM migrations or to place
new VMs.

VM migrations are performed until the following conditions are satisfied: (i) ful-
fillment of condition (1) for PMs of set B; (ii) for underloaded PMs, vi = 0, i ∈ W; (iii)
∀i ∈ B, k ∈ {CPU, RAM, NET, IO} : uk

i ≥ Qk; and (iv) U = ∅. If the migration condi-
tions are violated, the migration of the remaining VMs of set U is not performed, and
correspondent PMs remain in the previous state.

Thus, the main models’ parameters to be evaluated using PCM and SLAVM objectives
are n, Tk, Dk, Lk, and Qk. Such assumption is made considering the data center environment,
resource constraints, and dynamic nature of processes. Analysis of the research literature
shows that the specified parameters can sufficiently influence the quality metrics of the
management method.

3.2. Evaluation of Simulation Results
3.2.1. The Simulation Environment

To evaluate the proposed method, the authors used Bitbrains trace data available for
download from the Grid Workloads Archive at http://gwa.ewi.tudelft.nl/fileadmin/pds/
trace-archives/grid-workloads-archive/datasets/gwa-t-12/fastStorage.zip (accessed on
20 October 2021) [25]. Four types of resources considered in Section 3 ensure the use of
Bitbrains workload traces as input data for simulations. The simulation environment and
the method of dynamic VM management are implemented as a software toolkit in C#. The
experiments were conducted on a Windows 10 Pro computer with an Intel i7-3632QM
processor and 8 GB RAM.

The software toolkit provides various types of simulation and allows for determining
optimal model parameters for the power consumption minimization and the SLA violation
minimization. It uses a multilayered architecture and a domain-driven design approach.
It consists of: (i) the database layer providing interfaces for obtaining data from the
database with Bitbrains traces, (ii) the layer of the main logic of the method of dynamic VM
management, and (iii) the presentation layer providing interfaces for the console output,
logging results into text files and generating MS Excel files with simulation results.

In each simulation, the authors used 20 heterogeneous PMs with the parameters as
presented in Table 1. Besides, the authors used Bitbrains traces of 1250 VMs with different
amounts of the requested CPU (in MHz) and requested memory (in MB).

Table 1. Physical machine parameters.

Physical
Machine Number CPU, MHz Number of

PEs RAM, GB
Storage

Performance,
IOPS

Network
Throughput,

Gbps

PM Names
during

Experiments

PowerEdge R940 5 2500 112 384 32,000 40 PM1–PM5

PowerEdge R740 5 2500 56 192 23,190 40 PM6–PM10

PowerEdge R830 5 2200 88 256 8000 40 PM11–PM15

PowerEdge R630 5 2200 44 128 6000 40 PM16–PM20

Detailed statistical metrics of each Bitbrains trace are reported in [26]. The number of
VMs is changed during simulation, as shown in Figure 1, according to data in Bitbrains
workload traces [25]. Moreover, some VMs are provisioned in different time intervals and
considered during the simulation as new VMs. Thus, each VM has its own runtime.

http://gwa.ewi.tudelft.nl/fileadmin/pds/trace-archives/grid-workloads-archive/datasets/gwa-t-12/fastStorage.zip
http://gwa.ewi.tudelft.nl/fileadmin/pds/trace-archives/grid-workloads-archive/datasets/gwa-t-12/fastStorage.zip
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Figure 1. The number of VMs running on PMs during each simulation.

Bitbrains workload traces represent resource usage of Web, database, or application
servers by 1250 VMs that belong to 44 different classes [26]. Each VM trace file contains
data about CPU, memory, storage, and network interface usage.

The cumulative distribution functions (CDFs) of the requested resources per VM are
shown in Figure 2 [5]. Figure 2 (left) shows the CDF of the amount of CPU frequency
requested per VM. A large percentage (more than 80%) of VMs have low requirements for
CPU frequency (about 20 GHz). Figure 2 (right) shows the CDF for the requested memory
(RAM) of each VM. The requested memory can range from 1 to 512 GB per VM, but over
70% of VMs requested at most 8 GB of memory [5].

Figure 2. CDFs of the requested CPU frequency (left) and the amount of requested RAM (right).

Newly created VMs do not request the amount of storage performance and the net-
work interface throughput during simulation. Thus, the initial VM-to-PM assignment
(initial VM placement) is performed according to the amount of CPU and memory re-
quested per VM, as presented in [5].

Nevertheless, the dynamic VM management method consolidates VMs considering
all current workloads inside a VM, namely, storage usage and network interface usage.
Besides, the dynamic VM management method considers the impact caused by VM migra-
tions to the PM’s CPU and network interface.

3.2.2. Simulation Settings and Model Parameters

The model parameters shown in Table 2 are stored in the settings.ini file and are used
for each simulation.
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Table 2. Simulation settings.

Parameter Variable Value

TIME_STEP_VALUE - 300, s
STEPS_TO_SIMULATE - 1100
RESOURCE_WEIGHT wk 1

RESOURCE_THREADHOLD Tk changes, [0.01, 0.03, 0.05,
0.08, 0.1, 0.13, 0.15, 0.2]

RESOURCE_DESIRED_LEVEL Dk changes, [0.98, 0.95, 0.93,
0.9, 0.88, 0.85, 0.82, 0.8]

RESOURCE_LOW_LEVEL Lk changes, [0.1, 0.15, 0.2,
0.25, 0.3, 0.35, 0.4, 0.45]

RESOURCE_RECEIVER_THREADHOLD Qk changes, [0.98, 0.95, 0.93,
0.9, 0.88, 0.85, 0.82, 0.8]

BEAM_LENGTH n changes, [4, 5, 6, 7]
VM_PER_SERVER m changes, [3, 4, 5]

MIN_CHILD_NODES_PER_VM l changes, [3, 4, 5]
CPU_ON_MIGRATION 100, MHz

MIN_NETWORK_ON_MIGRATION 100, Mbps

The parameter BEAM_LENGTH determines the number of PMs taken into the search
process. The parameter VM_PER_SERVER determines the number of VMs taken as can-
didates for migration from a source PM. The parameter MIN_CHILD_NODES_PER_VM
determines the number of PMs taken into the search process for each migrating VM. The
parameter CPU_ON_MIGRATION determines the CPU utilization of the PM (source and
destination) per one VM migration. The parameter MIN_NETWORK_ON_MIGRATION
determines the network utilization of the PM (source and destination) per one VM migra-
tion. The number of values the variables n, m, and l can take is selected considering the
analysis of the system behavior during the experiments. The parameters wk, Tk, Dk, Lk,
and Qk were set up with the same values for each resource k ∈ {CPU, RAM, NET, IO}, for
example, wCPU = wRAM = wNET = wIO.

All Bitbrains data indicating each VM resource usage are loaded into the SQL database
to be used during all simulation runs. Each simulation run consists of 1100 time intervals
(management steps), which equal 300 s as presented in Bitbrains traces. The proposed
method performs dynamic VM consolidation better if monitoring data (or trace measure-
ments) are obtained in intervals shorter than 5 min but greater than the maximum VM
migration time in the current environment. Different factors affect the maximum VM mi-
gration time that needs adoption during regular operations. Therefore, the authors do not
consider the maximum VM migration time parameter for adoption in the proposed method.

3.2.3. Determining the Model Parameters and Optimization

The experimental evaluation aims to determine optimal model parameters (Table 2)
and evaluate quality metrics of the proposed VM management method under dynamic
workloads. The quality metrics are defined as follows: the number of CPU SLA violations,
the number of memory SLA violations, the number of network SLA violations, the number
of storage SLA violations, the uptime of PMs, and the number of VM migrations. The
authors propose to rate VM consolidation schemas and approaches on the infrastructure
level using the quality metrics defined in this paper. The uptime of PMs is defined in terms
of time intervals when a PM is in an active state. A direct relationship is used; the less a
PM is in an active state, the less power it consumes.

In this way, the further study aims to determine the following: optimal beam search
algorithm parameters, optimal model parameters to the power consumption minimization,
optimal model parameters to the SLA violation minimization, and finally, to evaluate the
results and the quality metrics.
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Determining the Optimal Beam Search Algorithm Parameters

The first phase of the study is to determine the optimal beam search algorithm parameters
for the defined problem, namely, BEAM_LENGTH, VM_PER_SERVER, and MIN_CHILD_NODES_PER_VM,
to minimize all quality metrics, namely, the power consumption (the uptime of PMs), the
number of SLA violations, and the number of VM migrations.

Several experiments are carried out, each of which is designated by the code “nml”. For
instance, the designation “Uptime744” denotes the influence of the beam search algorithm
parameters n = 7, m = 4, and l = 4 on the uptime of PMs during a simulation run. “CPU633”
denotes the influence of the beam search algorithm parameters n = 6, m = 3, and l = 3 on the
number of CPU SLA violations during a simulation run. Finally, “Migrations644” denotes
the influence of the beam search algorithm parameters n = 6, m = 4, and l = 4 on the number
of VM migrations during a simulation run. The degree of dependence between the quality
metrics and the beam search algorithm parameters, having changed the variable Lk, is
depicted in Figure 3.

From Figure 3a, it is seen that the minimum uptime of PMs is accompanied by an
increase in the number of VM migrations. The minimum uptime is obtained by setting Lk

within a fixed range of 0.25–0.35. The number of migrations reduces when Lk tends toward
0 and when Lk is more than 0.4, accompanied by increased uptime. In VM management, it
is also preferred to reduce the number of VM migrations. Another interesting conclusion
is that the beam search algorithm parameters have sufficient influence on the CPU SLA
violations, the number of network SLA violations, and the number of VM migrations, but
less influence on the uptime of PMs and the number of storage SLA violations. A negligible
influence is observed on the number of memory SLA violations. The beam search algorithm
parameters determined during optimization are helpful when a VM management system
must achieve a particular objective in the specific mode, for example, minimizing VM
migrations or minimizing the number of CPU SLA violations when a trend of new VM
requests is present.

Two mutually exclusive objectives are seen here for further optimization. The first
objective is the minimization of the uptime of PMs (the power consumption minimization).
The second objective is the minimization of the number of SLA violations (SLA violation
minimization) for each resource k. The goal is to determine optimal beam search algo-
rithm parameters for the defined problem and the remaining model parameters for both
objectives separately.

Figure 3. Cont.
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Figure 3. The influence of the variables Lk, n, m, and l on the (a) the uptime of PMs and the number
of VM migrations, (b) the number of CPU and Storage SLA violations, (c) the number of network
and memory SLA violations.

Since many model parameters influence quality metrics, the authors propose a power-
aware integral estimation method that considers the area under a curve approximating a
specific chart in Figure 3. A polynomial trendline of degree 2 is used to approximate each
chart in Figure 3; then the area under each curve is calculated using integration. Table 3
lists the areas under each curve approximating a specific chart in Figure 3 for different
beam search algorithm parameters.

The minimal area under all curves that correspond to the quality metrics is obtained
using the following values: n = 6, m = 3, and l = 3 (sum = 10,347 in the first highlighted line
of Table 3). However, all quality metrics must be taken into account in production data
centers with scaling by the same factor, for instance, the associated operating costs.

The second phase of the study is to determine the optimal model parameters according
to two formulated objectives. To perform the study’s second phase, the values n = 6, m = 3,
and l = 3 are fixed.
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Table 3. The area under each curve approximates a specific chart in Figure 3.

The Beam Search
Algorithm

Parameters (n, m, l)

The Area under the Curve

Uptime VM
Migrations

CPU SLA
Violations

Memory
SLA

Violations

Network
SLA

Violations

Storage SLA
Violations Sum

633 5431 4510 162 6 17 220 10347
733 5436 4512 166 6 17 227 10364

744 5463 4601 150 6 19 218 10457

644 5480 4719 147 6 20 222 10595

544 5501 4788 148 6 21 222 10687

444 5505 4955 344 6 22 226 11057

555 5605 4951 137 6 23 225 10948

655 5611 4982 133 6 25 225 10981

Determining the Model Parameters for the Power Consumption Minimization

The effect of Lk on the quality metrics is determined using the arbitrary model param-
eters Tk = 0.05, Dk = 0.9, and Qk = 0.4. Lk takes values as shown in Table 2. The optimal
value in power consumption is Lk = 0.35 (Figure 4) since the minimum uptime of PMs is
observed. The exact value of the parameter Lk is used when determining the remaining
model parameters to minimize the number of SLA violations. Besides, the number of
migrations is not the maximum (12,755). However, the number of CPU SLA violations is
quite large (529).

Figure 4. The effect of Lk on the quality metrics for power consumption minimization.

An explicit relatively large number of storage SLA violations can be explained by using
Bitbrains traces with high VM demands for storage along with a weak storage hardware
performance of PMs used in simulations. The hardware of the PMs (Table 1) cannot cope
with the storage workload, which leads to an increase in the number of VM migrations
and the number of storage SLA violations. The important conclusion here is that a PM’s
hardware must be balanced. That is, the proportions between the performances of all four
subsystems (CPU, RAM, storage performance, and network throughput) must be ensured
for the specific workload intensity. For example, a PM with a high volume of RAM and
many CPU cores cannot be equipped by the network interface and the storage controller
with poor productivity. Before the experiments, this requirement was not considered, and
the vendor’s standard servers were chosen (Table 1).

Next, with a fixed value of the parameter Lk = 0.35, the effect of Tk on the quality
metrics is determined. Tk takes values as shown in Table 2. The optimal value in power
consumption is Tk = 0.03 (Figure 5) since the minimum uptime of PMs is observed. The
value of Tk is fixed at 0.03 when determining the optimal values of the remaining model
parameters Dk and Qk.
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Figure 5. The effect of Tk on the quality metrics for power consumption minimization.

Figure 6 shows the effect of Dk on the quality metrics with the fixed values Lk = 0.35
and Tk = 0.03. Dk takes values as shown in Table 2. The optimal value in terms of power
consumption is Dk = 0.9 (Figure 6) since the minimum uptime of PMs is observed. The
values of Tk and Dk are fixed when determining the optimal value of the parameter Qk.

Figure 6. The effect of Dk on the quality metrics for power consumption minimization.

Next, with the fixed values of Lk = 0.35, Tk = 0.03, and Dk = 0.9, the effect of Qk on
the quality metrics is determined. Qk takes values as shown in Table 2. The optimal value
in terms of power consumption is Qk = 0.1 (Figure 7) since the minimum uptime of PMs
is observed.

Figure 7. The effect of Qk on the quality metrics for power consumption minimization.

Thus, to achieve the minimum power consumption (the minimum uptime of PMs),
it is necessary to set the model parameters as follows: Lk = 0.35, Tk = 0.03, Dk = 0.9, and
Qk = 0.1. The quality metrics of the power consumption minimization are presented in
Figure 8.

Figure 8. The quality metrics of the power consumption minimization after a simulation run.
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It can be observed from Figure 8 that the proposed method of dynamic VM manage-
ment can effectively offload PMs in order to switch them to the sleep mode and reduce the
power consumption. However, during the study, it is also determined that the storage per-
formance is too low for the PMs of the first (PM1–PM5) and the third (PM11–PM15) groups.

Determining the Model Parameters for the Minimization of the Number of SLA Violations

Cloud services based on the IaaS service model are always affected by an SLA violation
due to a lack of one or more resources for a VM serving a dynamic workload. The effect of
Lk on the quality metrics was determined earlier in the previous section. The minimum
number of SLA violations is obtained by Lk = 0.1 (Figure 4). At the same time, the number of
VM migrations is 16.8% less than with the power consumption minimization. The number
of CPU SLA violations is also decreased by 37.2%, and the uptime of PMs is increased by
only 7.3%.

Next, with a fixed value of the parameter Lk = 0.1, the effect of Tk on the quality metrics
is determined. Tk takes values as shown in Table 2. The optimal value in terms of the
number of SLA violations is Tk = 0.15 (Figure 9) since the minimum number of CPU SLA
violations is observed.

Figure 9. The effect of Tk on the quality metrics for SLA violation minimization.

CPU violations play a critical role in cloud services as a CPU resource is most critical.
Thus, it is crucial to allocate sufficient resource capacity for VMs considering changing a
VM number and a workload. Since the number of network SLA violations and the number
of memory SLA violations are small, their related contribution to a result may be negli-
gible. Thus, the number of CPU SLA violations is considered the primary quality metric
during SLA violation minimization. However, the number of storage SLA violations is not
considered when detecting optimal model parameters due to the unbalanced hardware
configuration of PMs used for the study. Therefore, the value of Tk is fixed at 0.15 when
determining the optimal values of the remaining model parameters Dk and Qk.

Next, with fixed values of the parameters Lk = 0.1 and Tk = 0.15, the effect of Dk on the
quality metrics is determined. Dk takes values as shown in Table 2. The optimal value in
terms of the number of SLA violations is Dk = 0.95 (Figure 10) since the minimum number
of CPU SLA violations is observed. The values of Tk and Dk are fixed when determining
the optimal value of the parameter Qk.

Figure 10. The effect of Dk on the quality metrics for SLA violation minimization.

Next, with fixed values of the parameters Lk = 0.1, Tk = 0.15, and Dk = 0.95, the effect of
Qk on the quality metrics is determined. Qk takes values as shown in Table 2. The optimal
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value in terms of the number of SLA violations is Qk = 0.4 (Figure 11) since the minimum
number of CPU SLA violations is observed.

Figure 11. The effect of Qk on the quality metrics for SLA violation minimization.

Thus, to achieve the minimum number of CPU SLA violations, it is necessary to set
the model parameters as follows: Lk = 0.1, Tk = 0.15, Dk = 0.95, and Qk = 0.4. The quality
metrics of the SLA violation minimization are presented in Figure 12.

Figure 12. The quality metrics of the SLA violation minimization after a simulation run.

As shown in Figure 12, the number of SLA violations is reduced significantly compared
with the power consumption minimization results shown in Figure 8. The high rate of
storage SLA violations remains due to the unbalanced hardware configuration of PMs. The
low rate of CPU SLA violations is observed as a result of the SLA violation minimization.
Figure 12 also shows that the storage performance is too low for the PMs of the first
(PM1–PM5) and the third (PM11–PM15) groups.

Figure 13 shows SLA quality metrics of the dynamic VM management method during
the simulation run. The number of active PMs (green) corresponds to the SLA viola-
tion minimization.

SLA violations cannot be completely avoided because of the nature of cloud workloads.
Nevertheless, compared with the results of the power consumption minimization, the
proposed VM management method can achieve a better reduction of SLA violations by
decreasing the number of CPU SLA violations by 76.5%, by decreasing the number of
memory SLA violations by 53.8%, and by decreasing the number of network SLA violations
by 3.6% (Figures 8 and 12). Moreover, the number of VM migrations is also decreased by
16.4% (Figure 14). However, at the same time, the uptime metric is increased only by 14.9%,
which means that PMs are in an active state only 14.9% longer.
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Figure 13. The number of SLA violations during the simulation run using the model parameters Lk = 0.1, Tk = 0.15, Dk = 0.95,
and Qk = 0.4.

Figure 14. The number of inbound and outbound VM migrations during two simulation runs for both objectives.

4. Discussion

Table 4 summarizes the influence of the model parameters on the quality metrics
during the SLA violation minimization and the power consumption minimization (the
objective functions as defined in Section 2). Grey rows of the table indicate the power
consumption minimization results. IEM is applied in the study’s first phase, whereas PCM
and SLAVM are applied in the second phase.

The thresholds Tk, Dk, Lk, and Qk have a complex influence on each objective func-
tion’s quality metrics. There appears to be no benefit in using the threshold Dk for VM
management because it has a weak effect on both objectives’ quality metrics. The threshold
Tk strongly influences the five out of six quality metrics for the PCM objective function;
therefore, it should be used for VM management. On the other hand, for SLAVM objective
function, Tk has a strong influence on three out of six quality metrics; therefore, it can be
constant. The threshold Lk strongly influences the five out of six quality metrics for both
objective functions; therefore, it should also be used for VM management. The threshold Qk

strongly influences the four out of six quality metrics for both objective functions; therefore,
it is recommended for VM management. From Figures 4–7 and Figures 9–11, it should
be noted that the overall objective function sensitivity to the thresholds is not great, and
consequently, the proposed model is practical.
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Table 4. The influence of the model parameters on the quality metrics.

The Model
Parameter Value Optimization Uptime CPU SLA

Violations

Memory
SLA

Violations

Network
SLA

Violations

Storage
SLA

Violations

VM
Migrations

n, m, l n/a IEM strong strong weak strong weak strong

Lk 0.35 PCM strong strong strong weak strong strong
0.1 SLAVM strong strong strong weak strong strong

Tk 0.03 PCM strong strong strong strong weak strong
0.15 SLAVM weak strong weak strong weak strong

Dk 0.9 PCM weak weak weak weak weak weak
0.95 SLAVM weak weak weak weak weak weak

Qk 0.1 PCM strong strong weak strong weak strong
0.4 SLAVM strong strong weak strong strong weak

The memory SLA violation metric varies from around 5 cases up to 33 cases during
simulation runs. However, compared with other quality metrics, memory SLA violations
occur very rarely, which can be explained by the sufficient RAM capacity of PMs.

The parameters of the beam search algorithm have a substantial effect on the quality
metrics except for memory and storage SLA violations. The storage SLA violation metric is
affected only by the parameter Lk, which controls the number of underloaded PMs. This is
explained by the unbalanced hardware configuration of PMs that were used for the study.
Each VM migration increases storage utilization under other storage capacities except for
storage based on storage area network.

The model parameter Dk has a negligible effect on the quality metrics. It means that
the desired workload threshold cannot be applied in such hardware configurations with
insufficient storage capacity and periodical storage SLA violations. This parameter can be
taken into account when workload balancing schemas are applied. In all other cases, it can
be set to 0.9.

In this study, minimizing the number of VM migrations is not considered but is taken
into account when determining optimal model parameters according to defined objectives.
Simulation results show the strong effect of SLAVM on the number of VM migrations
(Figure 14), which decreases the number of VM migrations by 16.4%.

Based on the minimization results using two defined objectives, the authors conclude
that the SLA violation minimization is a preferred optimization technique compared with
the power consumption minimization. It is explained by the significant improvement of
SLA quality metrics, the decreased number of VM migrations, and a slight deterioration in
the uptime metric directly related to power consumption.

The power consumption minimization is always followed by an increasing number of
VM migrations that are usually not acceptable in production [27]. Furthermore, switching
a PM from the sleep mode to the active state (PM setup) takes significant time at a data
center scale, and ignoring the power consumption during PM setup can be a serious
drawback when many PMs change their states frequently [28]. For example, during a
setup, PMs consume about 200 W, which is close to the maximal rate for some PMs [29,30].
Furthermore, the setup time of PMs varies from 20 to 200 s depending on the hardware
and software configuration and can be as large as 260 s [31]. Thus, keeping some PMs in
the active state, the VM management method will be more robust to the emergence of new
VM schedule requests and VM migrations.

Figure 15 shows each resource utilization and the number of active PMs resulting from
the power consumption minimization (red) and the SLA violation minimization (green)
during each simulation run. It also shows summarized data from Bitbrains about each
VM’s demands, namely, CPU, memory, network, and storage resources used by all VMs.
The dashed lines show CPU, memory, network, and storage resources provisioned by PMs.
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Figure 15. The results of dynamic PM management, resource utilization of active PMs, and VM workload during the
simulation run.

Notable amounts of network and memory resources are provisioned to serve a VM’s
workload; therefore, these resources are underutilized. However, at the same time, the
amounts of CPU and storage resources are not always enough for spikes of a VM’s work-
load, which results in an increased number of SLA violations.

In response to the increasing workload on any resource, many PMs switch from the
sleep mode to the active state. The red chart (PCM) shows a significantly higher number of
such switches than using SLAVM; therefore, from the perspective of power consumption,
an increase in uptime by 14.9% may be comparable to switching overhead.

To summarize, the authors propose scientific insights into VM consolidation approaches:
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1. The determined model parameters Lk = 0.1, Tk = 0.15, Dk = 0.95, and Qk = 0.4
can also be used with other VM consolidation methods and frameworks along with any
dynamic workloads.

2. In many cases, there is no need to define adaptive thresholds for the specified
resource utilization since experiments show that an aggressive policy of switching PMs
into the sleep mode is not helpful to minimize the number of SLA violations and the
presence of workload spikes mainly defines the thresholds. Furthermore, the sensitivity
of many model parameters to a small range of changes does not significantly affect the
quality metrics.

3. Generally speaking, objectives such as power consumption minimization and
minimization of the number of migrations sometimes appear to be an end in themselves,
as a deterioration in service quality level often accompanies them. However, a careful
analysis of the above results reveals that it is preferred to transform these objectives into
constraints for the well-known VM consolidation methods. At the same time, the SLA
violation minimization has more chances to be used in an objective function. A set of
simulation-based experiments shows that minimizing the number of SLA violations will
decrease the number of VM migrations, and the uptime of PMs will increase insignificantly.

4. The proposed dynamic VM management method (probably as well as many others)
copes well with VM consolidation if the SLA is violated by only one resource. However, if
the SLA violations occur on two or more resources, it is necessary to use more balanced
PM hardware configurations.

5. A consolidation, taking into account the mutual influence of VMs running on one
PM at runtime (a complementary VM placement [32]), is excessive here, since when the
management method takes into account all PM resources, the availability of PM resources
for VMs is verified using already-known resource requirements by default. Therefore, a VM
consolidation focusing on a specific workload intensity is more promising, namely, a mixed
VM consolidation with balanced compute-intensive, memory-intensive, storage-intensive,
and network-intensive workloads. However, such a heuristic is not applied in this paper.

5. Conclusions

Effective power-aware VM management directly affects power consumption, cost,
scalability, scheduling, and capacity planning. By being grounded in an extensive quan-
titative and qualitative analysis of the literature, the authors present the dynamic VM
management method to effectively allocate new VMs and migrate active VMs by applying
the beam search algorithm to offload overloaded and underloaded PMs. Furthermore, the
proposed method consolidates VMs, considering all current workloads inside a VM, such
as CPU, memory, storage, and network interface usage.

A new power-aware integral estimation method for determining the optimal beam
search algorithm parameters for the defined problem is proposed, which considers the area
under a polynomial trendline of degree 2 that approximates a specific chart. It considers
multiple quality metrics defined as follows: the number of CPU SLA violations, the number
of memory SLA violations, the number of network SLA violations, the number of storage
SLA violations, the uptime of PMs, the number of VM migrations. The minimum area
under all curves corresponding to the quality metrics is obtained using the following beam
search algorithm parameters: n = 6, m = 3, and l = 3. The beam search algorithm parameters
have sufficient influence on the CPU SLA violations, the number of network SLA violations,
and the number of VM migrations, but less influence on the uptime of PMs and the number
of storage SLA violations. Furthermore, the number of memory SLA violations has a
negligible influence on the beam search algorithm parameters. The thresholds Tk, Lk, and
Qk have a complex influence on the quality metrics, and they are recommended to be used
in VM management frameworks based on the SLAVM or the PCM objectives.

The main models’ parameters that influence the quality metrics of the proposed
method are obtained for two objectives, namely, the minimum power consumption and the
minimum number of CPU SLA violations. Prior research in cloud computing shows that
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SLA violations cannot be completely avoided because of the nature of cloud workloads
and oversubscription. However, the number of SLA violations is reduced significantly in
the SLAVM optimization compared with the PCM optimization results. Thus, the authors
conclude that the SLAVM is a preferred optimization technique compared with PCM. It
is explained by a significant improvement of SLA quality metrics (the number of CPU
SLA violations decreasing by 76.5%, the number of memory SLA violations decreasing by
53.8%, and the number of network SLA violations decreasing by 3.6%) accompanied by a
decreased number of VM migrations (decreased by 16.4%) and by a slight deterioration in
the uptime metric (increased by 14.9%), which is directly related to the power consumption.

Without entangling with the implementation aspects of applying thresholds, the ob-
tained results provide sufficient insight into the critical challenges in VM management.
These insights include: using the quality metrics defined in this paper to rate VM con-
solidation schemas and approaches on infrastructure level, an advantage of using static
thresholds for the specified resource utilization, preferred usage of the SLA violation
minimization as the main objective, transformation of the objectives such as the power
consumption minimization and the number of migration minimizations into constraints
to use with well-known VM consolidation methods, and considering a specific workload
intensity and balanced VM consolidation instead of considering the mutual influence of
VMs at runtime (complementary VM placement).

Future work can improve the dynamic VM management method by predicting re-
source demands, planning a preferred PM’s resource capacity used for dynamic VM
consolidation, and considering all quality metrics with scaling by the factor associated with
operating costs.
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