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Abstract: Cooperative adaptive cruise control (CACC) has important significance for the develop-
ment of the connected and automated vehicle (CAV) industry. The traditional proportional integral
derivative (PID) platoon controller adjustment is not only time-consuming and laborious, but also
unable to adapt to different working conditions. This paper proposes a learning control method for a
vehicle platooning system using a deep deterministic policy gradient (DDPG)-based PID. The main
contribution of this study is automating the PID weight tuning process by formulating this objective
as a deep reinforcement learning (DRL) problem. The longitudinal control of the vehicle platooning
is divided into upper and lower control structures. The upper-level controller based on the DDPG
algorithm can adjust the current PID controller parameters. Through offline training and learning
in a SUMO simulation software environment, the PID controller can adapt to different road and
vehicular platooning acceleration and deceleration conditions. The lower-level controller controls the
gas/brake pedal to accurately track the desired acceleration and speed. Based on the hardware-in-
the-loop (HIL) simulation platform, the results show that in terms of the maximum speed error, for
the DDPG-based PID controller this is 0.02–0.08 m/s less than for the conventional PID controller,
with a maximum reduction of 5.48%. In addition, the maximum distance error of the DDPG-based
PID controller is 0.77 m, which is 14.44% less than that of the conventional PID controller.

Keywords: learning control; deep deterministic policy gradient (DDPG); parameter tuning;
automated platoon vehicles; longitudinal tracking control

1. Introduction

Connected and automated vehicles (CAVs) are an important development direction
for the automobile industry. They are not only an important way to solve the problems
of traffic safety, resource consumption, environmental pollution, etc., but are also the
core element of establishing an intelligent transportation system. Cooperative adaptive
cruise control (CACC) based on on-board sensors and vehicle-to-vehicle (V2V) and/or
infrastructure-to-vehicle (I2V) communication has become a hot spot in the research of
intelligent vehicles [1,2]. Through vehicle-to-everything (V2X) communication, this mode
can receive the dynamic information of the surrounding environment in real-time and im-
prove driving safety [3,4]. Simultaneously, CACC has a significant influence on improving
the road capacity, reducing fuel consumption, decreasing environment pollution, and so
on [5–7].

By sharing information among vehicles, a CACC system allows automated vehicles to
form platoons and be driven at harmonized speed with smaller constant time gaps between
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vehicles [8]. CACC plays a positive role in improving the performance of the vehicular pla-
tooning system and ensuring the safety of vehicles, so it has attracted wide attention from
researchers. Previous methods for CACC include proportional integral derivative (PID)
control [9,10], sliding mode control (SMC) [11,12], model predictive control (MPC) [13–15],
H-Infinity (H∞) control [16,17], etc. Due to the advantages of low complexity and less
computation, PID controllers play an important role in the control field. However, the
parameters of the PID controller need to be adjusted manually and cannot adapt to different
working conditions. The control effect of SMC, MPC, and H∞ methods are closely related
to model accuracy, and need a reasonably good model of the system to be controlled. When
the model precision is higher, the control effect is better. Nevertheless, due to the complex
nonlinear dynamics of the longitudinal movement of the vehicular platooning, it is difficult
to establish an accurate model.

In recent years, Google’s DeepMind team has combined deep neural networks with the
decision-making capabilities of reinforcement learning to establish a framework for deep
reinforcement learning (DRL) [18]. Then the deep deterministic policy gradient (DDPG) al-
gorithm was proposed to realize the control of the continuous action space [19]. In addition,
it has achieved good results in the field of automatic driving control [20]. At present, the
DRL algorithm is mainly applied to the control of individual vehicles, specifically divided
into longitudinal [21,22] and lateral [23,24] motion control. Zhu et al. [21] used real-world
driving data for training and proposed a human-like car-following model based on the
DDPG algorithm, which has higher accuracy than traditional methods. A lane change
model based on DRL was designed, which can achieve more stable, safe, and efficient
results by adjusting the reward function [23]. Chen et al. [25] proposed a path tracking
control architecture that combines a conventional pure pursuit method and DRL algorithm.
It was found that the approach of adding a DRL in parallel improves the performance of
a traditional controller under various operating conditions. Zhou et al. [26] proposed a
framework for learning the car-following behavior of drivers based on maximum entropy
deep inverse reinforcement learning. Aiming at the problem of simple simulation scene
setting in the above research, Makantasis et al. [27] established the traffic flow model in
SUMO simulation software to train the agent. The car-following and lane-changing behav-
ior integrated model using DDPG was developed and trained in the VISSIM simulation
environment [28]. Some studies have tried to apply theory to practice [22], but the DRL
algorithm based on a deep neural network is a “black box” model. In other words, the
control principle is unknown and has significant uncertainty. The training results depend
on the setting of random seeds, which is unstable. This is the reason why the current DRL
algorithm is mainly implemented on the simulation platform and is difficult to apply to
the real vehicle [29].

The learning controller has the strong ability of discrimination, memory, and self-
adjustment. It can adjust its own parameters according to different controlled objects
and environmental changes to achieve the best control performances. There are currently
three main types of learning control systems: iterative learning control (ILC) [30,31],
adaptive control based on neural networks (NN) [32,33], and learning control based on
the Markov decision process (MDP) [34,35]. Wang et al. [30] presented a novel learning-
based cruise controller for autonomous land vehicles (ALVs). The controller consists of a
time-varying proportional-integral (PI) module and an actor-critic learning control module.
Lu et al. [36] designed a personalized driving behavior learning system based on neural
reinforcement learning (NRL), which utilized data collected by on-board sensors to learn the
driver’s longitudinal speed control characteristics. Combining DRL with traditional control
methods has been a research hotspot in recent years. It takes advantage of the self-learning
and self-tuning abilities of DRL. Moreover, it uses the traditional controller to ensure the
stability of the system. The learning-based predictive control (LPC) method using the
actor-critic framework was proposed, which was shown to be asymptotically stable in the
sense of Lyapunov [37]. Ure et al. [38] developed a reinforcement learning framework for
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automated weight tuning for MPC-based adaptive cruise control (ACC) systems. This
approach significantly shortens the exhausting manual weight tuning process.

In summary, researchers in different fields have already completed numerous works
in the longitudinal motion control of vehicular platooning, but there still exist some defi-
ciencies as follows. (1) The vehicular platooning controller is difficult to adapt to various
working conditions and controller parameters must be set manually by professional engi-
neers (e.g., PID). The existing controllers such as MPC, LQR, and H∞ need a high-precision
controlled object model. However, this knowledge is very difficult to obtain. (2) Neural
networks and their derived controllers belong to the scope of supervised machine learning,
which can only imitate the parameter adjustment strategies of expert demonstrations,
but not necessarily the optimal control effect. Another issue is that their generalization
ability also needs to be proved. (3) The end-to-end learning method performs well in an
autonomous driving simulation environment, but its interpretability is poor, and there is
little literature to analyze the stability of the control system. The vehicular platooning has
complex nonlinearity, so the actual control effect cannot be guaranteed.

In view of the above problems, a learning control method that uses DDPG-based PID
for longitudinal motion control of vehicular platooning is proposed in this paper. PID
controllers are the most commonly used for industrial applications due to their simplicity
in structure and robustness in performance. However, the traditional PID adjustment is
not only time-consuming and laborious, but also unable to adapt to different working
conditions. Therefore, we proposed a novel control strategy of vehicular platooning using
DDPG-based PID to solve this problem. To the best knowledge of the authors, this is
the first reported use of DDPG-based PID for vehicular platooning control. The PID
controller parameters can be automatically adjusted in real-time according to the state by
using a trained DDPG algorithm. Through offline training and learning in a simulation
environment, the PID controller can adapt to different road and vehicular platooning
acceleration and deceleration conditions. The advantage of this scheme is that the PID
controller parameters do not rely on any manual tuning and can better adapt to the change
in working conditions. The DDPG-based PID controller eliminates the drawbacks of the
traditional PID controller, such as insufficient adaptability, and the difficulty of parameter
regulation. In addition, the vehicular platooning system stability is proved by stability
theory to ensure safety. Therefore, compared with the traditional PID controller, the DDPG-
based PID has stronger robustness. This study is the further development of the learning
control method, and provides a new idea for the practical application of DRL algorithm
in the industrial field. However, the HIL simulation simplifies the road environment
conditions. How to carry out real vehicle experiments to further verify the stability and
reliability of a vehicular platoon controller is the focus of the next research in this paper.

The work in this paper is an extension of our previous publication [39]. The remain-
der of this paper is organized as follows. In Section 2, the architecture of the vehicular
platooning control system and a string stability analysis are presented. In Section 3, we
illustrate how the problem of vehicular platoon control is formulated as an MDP model.
The DDPG-based PID control algorithm is trained in Section 4. In Section 5, the experimen-
tal result is presented and in Section 6, the results are analyzed and discussed. Finally, the
conclusions and future work outlook are provided in the last section.

2. Methodology
2.1. Vehicle Platoon Architecture

The information topology has an important impact on the stability of vehicular pla-
tooning. Currently, the main topologies include the predecessor following (PF) topology,
bidirectional (BD) topology, and predecessor-leader following (PLF) topology [40]. In
addition, the vehicle spacing control strategies consist of the constant spacing (CS) policy,
constant time-gap (CT) policy, and variable time-gap (VT) policy [41]. The PLF topology
and CT policy frameworks are applied in this paper to realize the vehicular longitudinal
tracking control, as shown in Figure 1.
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hicular platooning control framework is shown in Figure 2. In our system, we assume that 
the leading vehicle can be maneuvered in real time by automatic or manual driving, and 
that each vehicle is equipped with a global positioning system (GPS) and on-board sen-
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Figure 1. PLF topology structure diagram.

Based on the hierarchical control structure [42], the upper-level controller receives the
state information (such as vehicle position, speed, and acceleration) through communica-
tion technology and on-board sensors, and calculates the desired longitudinal acceleration.
Then, the lower-level controller controls the gas/brake pedal to accurately track the desired
acceleration and speed, with feedforward and feedback control logic. This paper focuses
on the upper-level controller; meanwhile, the dynamic models of the vehicle powertrain
system and braking system are handled by the lower-level controller. The vehicular pla-
tooning control framework is shown in Figure 2. In our system, we assume that the leading
vehicle can be maneuvered in real time by automatic or manual driving, and that each
vehicle is equipped with a global positioning system (GPS) and on-board sensors, and has
V2V communication technology.
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2.2. Vehicle Platoon Control
2.2.1. Upper-Level Controller

Using DDPG-based PID, the upper-level controller can adjust the PID controller pa-
rameters in real-time according to the state of the vehicular platooning. For a homogeneous
vehicle platoon, the longitudinal model of the ith vehicle is obtained by considering the
delay characteristic of the vehicle actuator as [43]:

.
xi(t) = vi(t).
vi(t) = ai(t).

ai(t) = 1
τ [ui(t)− ai(t)]

(1)
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where xi(t), vi(t), ai(t), ui(t) represent the position, velocity, acceleration, and desired acceler-
ation of the center of gravity, respectively; τ is the first-order lag of the vehicle actuator. The
platoon consists of N vehicles (or nodes), i.e., a leader (indexed as 1) and N − 1 followers
(indexed by i accordingly).

For the ith vehicle, we can define the distance εi,i−1(t) and distance error ei,i−1(t)
between the ith and (i−1)th (preceding) vehicle as:{

εi,i−1(t) = xi−1 − xi
ei,i−1(t) = εi,i−1(t)− xd

(2)

where xd represents the desired distance between neighboring vehicles with xd = vih + L;
h is the constant-time headway; and L is the safety distance, which contains the length of
the vehicle body.

Similarly, we can also obtain:{
εi,1(t) =x1 − xi
ei,1(t) =εi,1(t)− (i− 1)xd

(3)

where εi,1(t), ei,1(t) denote the distance and distance error between the ith vehicle and the
leading vehicle, respectively.

For the PLF topology, the distance error of the ith vehicle consists of two parts, i.e.,

δi(t) = λ1ei,i−1(t) + λ2ei,1(t) (4)

where λ1, λ2 are weight coefficients of ei,i−1(t) and ei,1(t), which are bounded with λ1 + λ2 = 1,
0 < λ1 < 1 and 0 < λ2 < 1.

The controllers are distributed in each vehicle, and each controller can use information
for the preceding vehicle and leading vehicle. Based on (4), we can obtain ui(t) as:

ui(t) = Kp
.
δi(t) + Ki

∫ .
δi(t) + Kd

..
δi(t) (5)

where Kp, Ki, and Kd are the weight parameters of the PID controller.
Then, the output of the upper-level controller of the ith (i ≥ 2) vehicle is expressed as:

ui = λ1
[
Kp(vi−1 − vi) + Ki(εi − xd) + Kd(ai−1 − ai)

]
+ λ2

[
Kp(v1 − vi) + Ki(εi,1 − (i− 1)xd) + Kd(a1 − ai)

]
(6)

2.2.2. Lower-Level Controller

The output of the lower controller is throttle opening or brake pressure, which can
accurately track the desired acceleration and speed. According to the desired acceleration
calculated by (5), the desired speed at the next moment can be expressed as follows:

v∗(t + 1) = v(t) + ui(t)Ts (7)

where v*(t + 1), v(t) are desired speed at time t + 1 and actual speed at time t, respectively;
ui(t) is desired acceleration; and Ts denotes the sampling period. The lower controller
adopts a feedforward plus feedback control scheme. The feedforward value ulf(t) is ob-
tained from the longitudinal inverse dynamics model [44], and the feedback value is
calculated by the PID feedback control method of speed error. Therefore, the output of the
lower-level controller is as follows:

ul(t) = ul f (t) + K1ve(t) + K2

∫ t

0
ve(t)dt + K3

dve(t)
dt

(8)

where ve(t) is the deviation between the expected speed and the actual speed; K1, K2, and
K3 are positive parameters of controller.
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2.2.3. Transfer Function of Distance Error

Based on Equation (1), the longitudinal dynamics of the ith and (i−1)th vehicles can
be described by: { .

ai(t) = 1
τ [ui(t)− ai(t)].

ai−1(t) = 1
τ [ui−1(t)− ai−1(t)]

(9)

The time derivative of Equation (2) can be written as:

...
e i,i−1(t) =

.
ai−1(t)−

.
ai(t) (10)

Based on Equations (9) and (10), following equation can be expressed:

τ
...
e i,i−1(t) + ai−1(t)− ai(t) =λ1Kp[(vi−2 − vi−1)− (vi−1 − vi)] + λ2Kp[(v1 − vi−1)− (v1 − vi)]

+Ki[δi−1(t)− δi(t)] + λ1Kd[(ai−2 − ai−1)− (ai−1 − ai)] + λ2Kd[(a1 − ai−1)− (a1 − ai)]
(11)

Then, combining Equations (9)–(11), we can obtain:

τ
...
e i,i−1(t)+(kd + 1)

..
ei,i−1(t)+[Kp + hKi(λ1 + (i− 1)λ2)]

.
ei,i−1(t) + Kiei,i−1(t) = λ1Kd

..
ei−1,i−2(t) + λ1Kp

.
ei−1,i−2(t) + λ1Kiei−1,i−2(t) (12)

According to the Laplace transform on Equation (12), the transfer function of the
distance error between neighboring vehicles can be derived as:

G(s) =
ei,i−1(s)

ei−1,i−2(s)
=

λ1(Kps + Ki + Kds2)

τs3 + (Kd + 1)s2 + [Kp + hKi(λ1 + (i− 1)λ2)]s + Ki
(13)

2.3. String Stability

According to the definition of string stability, the platoon can be said to be stable when
the distance error between neighboring vehicles will not be amplified by the increase in the
number of vehicles, i.e., [45]:

|G (jω)| =
∣∣∣∣ ei,i−1(jω)

ei−1,i−2(jω)

∣∣∣∣ < 1, ∀ω > 0 (14)

Proof. Substituting s = jω into Equation (14), we have:

|G(jω)|2 =

∣∣∣∣ ei,i−1(jω)

ei−1,i−2(jω)

∣∣∣∣2 =
A

A + B
< 1 (15)

where

A = λ1
2[Kd

2ω4 + (Kp
2 − 2KiKd)ω

2 + Ki
2 ]

B = τ2ω6 +
{

1 + 2Kd + (1− λ2
1)K

2
d − 2τ

[
Kp + hKi(λ1 + (i− 1)λ2)

]}
ω4

+
{[

Kp + hKi(λ1 + (i− 1)λ2)
]2 − 2(1 + Kd)Ki + λ2

1(2KiKd − K2
p)
}

ω2 + (1− λ2
1)K

2
i

If the condition of Equation (15) is fulfilled, we have B > 0. Let x = ω2, then x > 0.
Considering τ2ω6 > 0, the rest of B can be described by:

f (x) =
{

1 + 2Kd + (1− λ2
1)K

2
d − 2τ[Kp + hKi(λ1 + (i− 1)λ2)]

}
x2

+
{
[Kp + hKi(λ1 + (i− 1)λ2)]

2 − 2(1 + Kd)Ki + λ2
1(2KiKd − K2

p)
}

x + (1− λ2
1)K

2
i

(16)

Then the function f (x) can be rewritten as:

f (x) = ax2 + bx + c (17)
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where
a = 1 + 2Kd + (1− λ2

1)K
2
d − 2τ

[
Kp + hKi(λ1 + (i− 1)λ1)

]
b = [Kp + hKi(λ1 + (i− 1)λ2)]

2 − 2(1 + Kd)Ki + λ2
1(2KiKd − K2

p)

c = (1− λ2
1)K

2
i

For a single-variable quadratic function, if given any x > 0, there exists f (x) > 0, which
can be divided into the following two cases. Defining γ = λ1 + (i−1) λ2, we can compute
the sufficient and unnecessary conditions for stability of the platoon as follows:

Case A: 
f (0) > 0
−b/2a ≤ 0
a > 0

(18)

Then we can derive that:
(1− λ2

1)K
2
i > 0

(Kp + hKiγ)
2 ≤ 2(1 + Kd)Ki + λ2

1(2KiKd − K2
p)

(1 + Kd)
2 > 2τ(Kp + hKiγ) + λ2

1K2
d

(19)

Case B: 
f (−b/2a) > 0
−b/2a > 0
a > 0

(20)

Here, the following equation is obtained from Equation (20):
4K2

i (1− λ2
1)[(1 + Kd)

2 − λ2
1K2

d − 2τ(Kp + hKiγ)] > [(Kp + hKiγ)
2 − 2(1 + Kd)Ki + λ2

1(2KiKd − K2
p)]

2

(Kp + hKiγ)
2 > 2(1 + Kd)Ki + λ2

1(2KiKd − K2
p)

(1 + Kd)
2 > 2τ(Kp + hKiγ) + λ2

1K2
d

(21)

If given any parameters Kp, Ki, and Kd meet the requirements of Equation (19) or (21),
then the stability of the platoon can be guaranteed. �

3. Design of DDPG-Based PID Vehicle Platoon Controller
3.1. MDP Model for Vehicle Platoon Control

The problem of vehicular platoon control is formulated as an MDP model in this
section. In our system, we assume that the environment is fully observable. The states,
actions, and the reward function of the MDP are defined as follows.

Choosing an appropriate state space is critical to the convergence of the reinforcement
learning algorithm. The selected state information should be related to the motion state
of the platoon. According to PLF topology, the state space includes the relative position,
relative speed, and relative acceleration between the host vehicle, the preceding vehicle, and
the leading vehicle, respectively. At time step t, a set of states st consists of six elements, i.e.,

st = {∆ai,i−1, ∆vi,i−1, ∆xi,i−1, ∆ai,1, ∆vi,1, ∆xi,1} (22)

where ∆ai,i−1, ∆vi,i−1, ∆xi,i−1 are relative acceleration, relative speed, and relative position
of the host vehicle and the preceding vehicle. ∆ai,1, ∆vi,1, ∆xi,1, denote relative acceleration,
relative speed, and relative position of the host vehicle and the leading vehicle, respectively.

In the upper controller, the DDPG algorithm adjusts PID controller parameters in
real-time, so the action space is:

at =
{

Kp, Ki, Kd
}

(23)

The goal of reinforcement learning is to find the optimal strategy to maximize the
cumulative reward. The design of the reward function needs to consider the following
aspects. Firstly, it is necessary to ensure that there is no collision between vehicles, when
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the vehicular platoon system is traveling. Secondly, the stability of the platoon should be
guaranteed, i.e., the relative position among vehicles should be maintained at a reasonable
distance. Thirdly, the host vehicle needs to respond quickly, which can follow the motion
state of the preceding vehicle. Through the above analysis, the reward functions designed
in this paper include the following parts:

R = R1 + R2 + R3 + R4

R1 =

{
0 ∆xi,i−1 ≥ L
−100 ∆xi,i−1 < L

R2 = −ω1|∆vi,i−1|
R3 = ω2(|ei,i−1(t− 1)|−|ei,i−1(t)|)−ω3(|ei,i−1(t)|)

R4 =


0 −3.5 ≤ ai ≤ 2

ω4(2− |ai|) ai > 2
ω4(3.5− |ai|) ai < −3.5

(24)

where ω1, ω2, ω3, ω4 are the positive weight coefficients of the reward function.

3.2. Structural Design of DDPG Algorithm

In this paper, there is no image as input, so we use a full connection network to
construct the DDPG network. The overall structure of the neural network is shown in
Figure 3. There are 4 layers in the actor network, including 1 input layer, 1 output layer,
and 2 hidden layers. There are 150 and 100 neurons in the hidden layers, which use the
rectified linear unit (ReLU) activation function, because it has the advantage of accelerating
convergence [46]. The input to the actor network is the state st and the output is the action
at, which is a set of PID controller parameters. The final output layer of the actor network
uses 3 sigmoid activation functions to generate continuous action values with a limit of
(0, 1).
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Figure 3. Actor-critic neural network structures for DDPG.

The critic network takes the state st and the action at as input, and outputs a scalar
Q-value Q(st, at). The critical network consists of 2 input layers, 1 output layer, and
3 hidden layers containing 150, 200, and 100 hidden units. The ReLU activation function is
used in the first and third hidden layers, and linear activation function is used to sum the
variable values. It should be noted that the values vary greatly due to the different units of
input state variables. In order to eliminate the dimensional influence between the data and
improve the training effect, batch normalization is utilized, which can transform the input
data into a normal distribution. In addition, the Ornstein–Uhlenbeck process noise is used
to explore in order to improve the efficiency of exploration in the inertial system. Other
training parameters are listed in Table 1.
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Table 1. Training parameter settings.

Parameter Meaning Value

LRA Learning rate for actor network 0.0001
LRC Learning rate for critic network 0.001

Update rate Update rate of target network tau 0.001
BUFFER_SIZE Reply memory size 100,000
BATCH_SIZE Batch size 64
ω1, ω2, ω3, ω4 Reward function weight 0.1, 5, 0.05, 1

γ Discount factor 0.9

4. Training of DDPG-Based PID Control Algorithm
4.1. Training Environment-SUMO

As is shown in Figure 4, a deep reinforcement learning training platform based
on SUMO is designed in this paper, which is mainly composed of a SUMO simulator
and an external controller Jetson TX2. The vehicle kinematics model and simulation
scene are provided by SUMO. Meanwhile, the DDPG-based PID algorithm is written in
Python language, stored in the Jetson TX2, and trained according to the simulation data.
Considering the vehicle platoon communication structure and actual test conditions, three
vehicles are set up to form a platoon driving along the straight road in the SUMO simulator.
The first, second, and third vehicles are the leading vehicle, preceding vehicle, and host
vehicle (red vehicle in Figure 4), respectively.
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During the training process, the dynamic states of the three vehicles in SUMO are
transmitted to the DDPG algorithm through traffic control interface (Traci) communication.
After data processing, the state st is input to both the actor and the critical network, and
three PID parameters are output. The movement of the leading vehicle is planned in
advance. The preceding vehicle can follow the speed change of the leading vehicle by
manually adjusting the PID controller. The whole training process is iterative and cyclic.

4.2. Vehicle Platoon Control Policy Algorithm

The training process of the DDPG-based PID algorithm is divided into two cycles to
learn the policy of vehicle platoon longitudinal control, as shown in Algorithm 1. Firstly, the
parameters of the actor network and the critical network and replay buffer are initialized.
Next, when the external cycle starts to run, the SUMO simulation environment needs
to be initialized to obtain the initial state s1. In the inner cycle, the action at is output
according to the state st, which is the three parameters of the PID controller. Then, the
desired acceleration ades is calculated and implemented in the simulation environment. The
reward rt and new state st+1 are observed and saved into the replay buffer. Finally, the
training samples are randomly selected from the replay buffer to update the parameters of
the actor and critical network.

Algorithm 1. DDPG-based PID algorithm for vehicle platoon longitudinal control

1 Randomly initialize critic network and actor network
2 Initialize target networks and replay buffer
3 for episode = 1, to M do
4 Initialize SUMO simulation environment;
5 Receive initial observation state s1;
6 for step = 1 to T do
7 Select action at based on current actor network and calculate the desired acceleration of host vehicle ades;
8 Execute desired acceleration ades in SUMO simulator and observe reward rt, new state st+1;
9 Save transition (st, at, rt, st+1) into replay buffer;
10 Sample a random batch size of N transitions from replay memory;
11 Update critic by minimizing the loss;
12 Update actor policy using the sampled gradient;
13 Update the target networks;
14 end for
15 end for
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4.3. Algorithm Training Results

The scene of algorithm training should be representative, so the driving cycle including
acceleration, cruise, and deceleration is designed in this paper. In this study, the simulation
of the dynamic performance of the platoon at different speeds is achieved by setting the
speed profile in the leading vehicle. Figure 5 shows the speed and acceleration changes of
the leading vehicle. The parameters λ1 and λ2 in (4) are 0.5, and the training results are
shown in Figure 6.
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Figure 6. Vehicle platoon tracking performance in training conditions. (a) Vehicle speed vi(t)
(i = 1, 2, 3). (b) Vehicle acceleration ai(t) (i = 1, 2, 3). (c) Inter-vehicle distance between consecu-
tive vehicles εi,i−1(t) (i = 2, 3). (d) The distance error with the desired distance ei,i−1(t) (i = 2, 3).

From Figure 6a–d, we can see that the vehicle using the DDPG-based PID controller
can track the leading and preceding vehicle well in the entire movement process. The speed
and acceleration change smoothly without overshoot. At the same time, when the leading
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vehicle begins to accelerate, the platoon takes about 15 s to reach steady state. When the
leading vehicle returns to uniform speed, the platoon can reach steady state in about 5 s.
The maximum distance error of the vehicle platoon is 0.38 m and the following vehicles
can track the changes of the leading vehicle in time.

The DRL agent is trained using the DDPG algorithm for 600 episodes, where each
episode starts with the same initial state and lasts for 5600 steps. The total reward per
episode and reward per step are shown in Figure 7. The greater the value of the total
reward per episode, the better the training performance.
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As can be seen from Figure 7a, the cumulative reward per episode value increases
with time of training. The algorithm converges after training for 320 episodes and the
cumulative reward is about −500. According to Figure 7b and the definition of the reward
function, it can be concluded that the maximum reward per step whose value is 0 occurs
when the speed and distance deviation between the controlled vehicle and the front vehicle
is 0, and the speed changes smoothly. That is to say, when the leading vehicle travels
at a constant speed, the whole platoon keeps stable and the reward value is the largest.
Due to the CT policy strategy, when the preceding vehicle speed changes, the host vehicle
cannot accurately track the desired speed and distance at the same time. Then the reward
inevitably appears to be a negative value. In addition, the larger the acceleration, the
smaller the reward value will be. However, it can be seen from Figure 7b that the minimum
reward value in the training episode is −0.32, which indicates that the model using on the
DDPG-based PID platoon control algorithm can reduce the tracking error between the host
vehicle and the preceding vehicle as much as possible.

5. Experimental Results
5.1. Design of Hardware-in-the-Loop (HIL) Platform

To validate the effectiveness of the proposed method more realistically, the vehicle
dynamic model is introduced to carry out the HIL test, which makes the system closer
to the real environment. The platform is mainly composed of TruckSim software, Mat-
lab/Simulink software, external controller Jetson TX2, NI-PXI real-time system, and the
host computer, etc. In the simulations, a platoon consists of three trucks with the same
structural parameters. The truck model LCF Van model is adapted, whose main dynamic
parameters are listed in Table 2.
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Table 2. Main parameters of vehicle LCF Van dynamics.

Parameter Meaning Value

m Mass (kg) 5762
hcg Height of C.G (m) 1.1
L Safe distance (m) 5
A Frontal area (m2) 6.8

Lf/Lr Front/rear track width (m) 2.030/1.863

The vehicular dynamic software Trucksim provides dynamic models of the platoon.
The leading vehicle and the preceding vehicle are controlled by Matlab/Simulink in the
host computer. The platoon controller obtains the state information through a CAN bus
and outputs the control signal to control the host vehicle in NI-PXI. The overall architecture
of the HIL platform is shown in Figure 8.
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5.2. Experimental Setup and Parameter Settings

The proposed control method was compared with a conventional PID on the HIL
platform under three scenarios. The parameters of the experimental conditions are shown
in Table 3. The influence factors of the initial speed, road slope, road adhesion coefficient,
time headway, and acceleration are considered. By setting the leading vehicle movement,
the dynamic performance of the platoon at different speeds is tested. Among the three
scenarios, the first involves the scenario where there are 3% and 4% uphill sections. The
second scenario has −3% and −4% downhill sections. In addition, in order to test the
effects of the platoon controller in rainy and snowy weather, the road adhesion coefficient
is set to 0.85 and 0.3, respectively, in the third scenario.

Table 3. Experimental condition parameter settings.

Parameters Scenario 1 Scenario 2 Scenario 3

Initial speed (m/s) 15 25 10
Road slope (%) 3 & 4 −3 & −4 0

Road adhesion coefficient 0.85 0.85 0.3 & 0.85
Desired time headway (s) 2 2 1.5

Maximum acceleration (m/s2) 0.5 −0.5 1

• Scenario 1

The initial speed of the platoon is 15 m/s and the desired time headway is 2 s.
After traveling at a constant speed for 30 s, the leading vehicle starts to accelerate at
an acceleration of 0.5 m/s2 for 10 s, and then the speed changes to 20 m/s. The first
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experimental scene of the leading vehicle movement and the road slope is shown in
Figure 9.
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Figure 9. Profiles of leading vehicle movement and road slope in scenario 1. (a) Leading vehicle
movement. (b) Road slope.

• Scenario 2

The initial speed of the platoon is set to 25 m/s. When t = 30 s, the leading vehicle
starts to decelerate to 20 m/s with a deceleration of 0.5 m/s2. Then, the platoon keeps a time
headway of 2 s and travels at a constant speed. Figure 10 shows the second experimental
scene of the leading vehicle movement and the road slope.

• Scenario 3

At the initial moment, the platoon travels at a speed of 10 m/s for 10 s. Then, the
leading vehicle generates an acceleration with the maximum value of 1 m/s2, and the
speed reaches 20 m/s. When t = 50 s, the leading vehicle generates a deceleration with the
maximum value −1 m/s2, and the speed returns to 10 m/s. The road adhesion coefficient
is 0.3 for the section from 200 m to 800 m, and the remaining is 0.85. The third experimental
scene of the leading vehicle movement and the road slope is shown in Figure 11.
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Figure 10. Profiles of leading vehicle movement and road slope in scenario 2. (a) Leading vehicle
movement. (b) Road slope.
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Figure 11. Profiles of leading vehicle movement and road adhesion coefficient in Scenario 3. (a)
Leading vehicle movement. (b) Road adhesion coefficient.

In the simulations, the upper controller parameters based on conventional PID are
adjusted manually. Through Equation (4), the controller parameters of the preceding
vehicle and the host vehicle are different due to the different input. The lower controller
has different values according to the driving and braking modes. Table 4 shows the values
of conventional PID controller parameters. The control parameters are determined by the
empirical knowledge from experts. The initial state of the platoon is set as the desired state,
i.e., the initial distance errors and initial speed errors are all equal to 0.

Table 4. The conventional PID controller parameters.

Parameters
Upper Controller Lower Controller

Preceding Vehicle Host Vehicle Driving Mode Braking Mode

Kp 1 0.5 8000 5
Ki 0.5 0.5 3500 1
Kd 0.2 0.5 850 0.5

5.3. Validation Results

Scenario 1 is the experimental condition of the vehicle platoon accelerating uphill and
Scenario 2 is the experimental condition of the vehicle platoon decelerating downhill. These
two test scenarios verify the influence of the road slope, initial speed, and acceleration
on the controller. The purpose of setting Scenario 3 is to test the influence of the road
adhesion coefficient and time headway on the performance of the platoon controller. The
speed, speed error, distance, and distance error performance of the host vehicle under three
experimental conditions are shown in Figure 12.
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Figure 12. Simulation results of host vehicle. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

As shown in Figure 12a, the maximum speed error and distance error of the host
vehicle appear at the simulation time of 40 s. The maximum speed errors of DDPG-based
and traditional PID are 0.88 m/s and 0.91 m/s. In addition, when the simulation time is
67–71 s, the curve vibrates rapidly due to the change of road slope. The speed error of the
traditional control method is 0.15 m/s, while the speed error of DRL is less than 0.05 m/s,
only 1/3 of the former. The maximum spacing errors of the DDPG-based and conventional
PID are −0.87 m and −0.92 m, respectively. Similarly, the absolute value of the maximum
distance error of the DDPG-based PID is 0.08 m in 67–71 s, while that of the conventional
PID is 0.27 m.

From Figure 12b, the maximum speed errors of the DDPG-based and conventional
PID are −0.95 m/s and −0.97 m/s. Compared with the uphill test scenario, the difference
in distance error is more pronounced when driving on downward slopes. The maximum
distance error of the DDPG-based controller is 0.85 m, while that of the conventional
method is 0.93 m. In addition, due to the influence of road slope, the error curve fluctuates
obviously in 8–14 s.
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In the third experiment, there are obvious peaks and troughs in the curves of speed
error and distance error where the road adhesion coefficient changes suddenly. In the
third experiment, there are obvious peaks and troughs in the curves of velocity error and
distance error where the road adhesion coefficient changes suddenly, as seen in Figure 12c.
Due to the low adhesion coefficient of the road and the tire skids, the vehicle speed curve
overshoots. The maximum speed error of the DDPG-based PID is 1.38 m/s, and the
absolute value of the maximum distance error is 0.77 m. The maximum speed error and the
absolute value of the maximum distance error of the conventional PID are 1.46 m/s and
0.90 m, respectively. Owing to its predefined PID control structure, the training process
for the agent in the DRL-based PID control converges significantly faster than that in the
DRL control [47]. The DRL-based PID control achieves a significant improvement over the
traditional PID control by optimizing the controller parameters continuously [48,49]. It is
strongly robust for system disturbances, which is better than that of a conventional PID
controller [50].

6. Discussion
6.1. Stability Analysis

This section focuses on the stability analysis of homogeneous vehicular platoon control.
The tendency of PID parameters (i.e., Kp, Ki, Kd) to change in the proposed method is shown
in Figure 13. There are two kinds of stability for the platoon that need to be analyzed:
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Internal stability. From the above experimental results, when the leading vehicle
travels at a constant speed, the distance error between the host vehicle and the preceding
vehicle gradually approaches 0, i.e., lim

t→∞
ei(t) = 0, which means that internal stability can

be guaranteed [40].
String stability. In the experiment, the values of parameters λ1, λ2, and τ are 0.5, 0.5,

and 0.3 s, respectively. Based on (17), for the univariate function f (x) = ax2 + bx + c, we can
calculate the results of coefficients a and −b/2a, as shown in Figure 14.

It can be seen that in the whole simulation process a > 0, which means that the
parabola opens upward. In addition, −b/2a < 0 means the axis of symmetry is located on
the negative half of the coordinate axis. According to the parameter λ1 = λ2 = 0.5 and Ki > 0,
the minimum value of quadratic function f (0) = (1− λ1)K2

i > 0 always holds. Therefore,
we will obtain |G(jω)|<1, which can satisfy the string stability condition of Equation (19)
(see Section 2.3 Case A). In other words, the distance error of the vehicle platooning system
is not amplified when transmitted to the following vehicles.
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In summary, the vehicular platoon controller based on DDPG-based PID can meet the
requirements of internal stability and string stability.

6.2. Control Effect Analysis

The performances of the two controllers are analyzed from the two indexes of the
maximum speed error and the maximum distance error. The maximum speed error
is the maximum value of the speed deviation between the host vehicle and the leading
vehicle. The maximum distance error is the actual and desired distance maximum deviation
between the host vehicle and the preceding vehicle. The comparison results are listed in
Table 5.

Table 5. Comparison of experimental results.

Scenario
Maximum Speed Error (m/s)

Improvement (%)
Maximum Distance Error (m)

Improvement (%)
Conventional PID DDPG-PID Conventional PID DDPG-PID

1 0.91 0.88 3.30 −0.92 −0.87 5.43
2 −0.97 −0.95 2.06 0.93 0.85 8.60
3 1.46 1.38 5.48 0.90 0.77 14.44

It is seen from Table 5 that the maximum speed error of the vehicular platoon based on
the conventional PID controller is 1.46 m/s, while that of the DDPG-based PID controller is
1.38 m/s, which improves the performance by more than 5.48%. From the point of view of
the maximum distance error, the DDPG-based PID controller is 0.13 m less than that of the
conventional PID controller, and the maximum platoon stability time is reduced by 14.44%.
In summary, comparing with the conventional PID, the DDPG-based PID not only has a
better performance of tracking, but can also guarantee the string stability under different
working conditions.

7. Conclusions

In this paper, we have proposed a DDPG-based PID learning control method, which
uses a DDPG algorithm to automatically tune the PID weights for a vehicle platooning sys-
tem. This method combines the offline learning ability of DRL with the advantages of the
simple structure and easy implementation of a traditional controller PID, without relying
on any manual tuning. Thus, the problem of insufficient adaptability of the traditional con-
troller is solved. Moreover, compared with a single DRL algorithm, the proposed method
has stronger interpretability and stability. The results of three experimental conditions
show that the DDPG-based PID controller can meet the requirements of string stability
under different road and vehicular platooning acceleration and deceleration conditions. In
terms of the maximum speed error, the DDPG-based PID controller is 0.02–0.08 m/s less
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than the conventional PID controller, with a maximum reduction of 5.48%. In addition, the
maximum distance error of the DDPG-based PID controller is 0.77 m, which is 14.44% less
than that of the conventional PID controller. It can be seen from the above analysis that the
DDPG-based PID controller has stronger robustness.

The future work would be focused on the optimization design of the neural network
structure to improve the speed of convergence effectively and has better performance than
the DRL algorithm. Besides, the HIL simulation simplifies the road environment conditions.
The following research can carry out real vehicle experiments to further verify the stability
and reliability of a vehicular platoon controller using DDPG-based PID.
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