

Electronics 2021, 10, 2562. https://doi.org/10.3390/electronics10212562 www.mdpi.com/journal/electronics

Article

An Anomaly-Based Intrusion Detection System for Internet
of Medical Things Networks
Georgios Zachos 1,2,*, Ismael Essop 2, Georgios Mantas 1,2, Kyriakos Porfyrakis 2, José C. Ribeiro 1
and Jonathan Rodriguez 1,3

1 Instituto de Telecomunicações, 3810-193 Aveiro, Portugal; gimantas@av.it.pt (G.M.);
jcarlosvgr@av.it.pt (J.C.R.); jonathan@av.it.pt (J.R.)

2 Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK;
i.a.essop@greenwich.ac.uk (I.E.); k.porfyrakis@greenwich.ac.uk (K.P.)

3 Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK
* Correspondence: g.zachos@av.it.pt

Abstract: Over the past few years, the healthcare sector is being transformed due to the rise of the
Internet of Things (IoT) and the introduction of the Internet of Medical Things (IoMT) technology,
whose purpose is the improvement of the patient’s quality of life. Nevertheless, the heterogenous
and resource-constrained characteristics of IoMT networks make them vulnerable to a wide range
of threats. Thus, novel security mechanisms, such as accurate and efficient anomaly-based intrusion
detection systems (AIDSs), considering the inherent limitations of the IoMT networks, need to be
developed before IoMT networks reach their full potential in the market. Towards this direction, in
this paper, we propose an efficient and effective anomaly-based intrusion detection system (AIDS)
for IoMT networks. The proposed AIDS aims to leverage host-based and network-based techniques
to reliably collect log files from the IoMT devices and the gateway, as well as traffic from the IoMT
edge network, while taking into consideration the computational cost. The proposed AIDS is to rely
on machine learning (ML) techniques, considering the computation overhead, in order to detect
abnormalities in the collected data and thus identify malicious incidents in the IoMT network. A set
of six popular ML algorithms was tested and evaluated for anomaly detection in the proposed
AIDS, and the evaluation results showed which of them are the most suitable.

Keywords: Internet of Medical Things (IoMT); intrusion detection system (IDS); machine learning
algorithms; anomaly-based intrusion detection; IoT datasets

1. Introduction
The rise of the Internet of Things (IoT) is transforming the healthcare sector, intro-

ducing the Internet of Medical Things (IoMT) technology, whose aim is to improve the
patient’s quality of life by enabling personalized e-health services without limitations on
time and location [1–3]. However, the wide range of different communication technolo-
gies (e.g., WLANs, Bluetooth, Zigbee) and types of IoMT devices (e.g., medical sensors,
actuators) incorporated in IoMT edge networks are vulnerable to various types of security
threats, raising many security and privacy challenges for such networks, as well as for the
healthcare systems relying on these networks [4–6]. For instance, an adversary could in-
trude into the IoMT network in order to intercept transmitted medical data and/or gain
unauthorized access to sensitive information [2]. In addition, attackers may compromise
IoT-based healthcare systems through their IoMT networks in order to manipulate the
sensing data (e.g., by injecting fake data) and cause malfunctions (e.g., by flooding the
resource-constrained IoMT network with a large amount of requests) to the compromised
IoT-based healthcare systems that, in turn, will jeopardize the integrity or the availability
of the healthcare services provided by these systems. Consequently, security solutions

Citation: Zachos, G.; Essop, I.;

Mantas, G.; Porfyrakis, K.; Ribeiro,

J.C.; Rodriguez, J. An Anomaly-

Based Intrusion Detection System

for Internet of Medical Things

Networks. Electronics 2021, 10, 2562.

https://doi.org/10.3390/

electronics10212562

Academic Editor: Constantinos

Kolias

Received: 18 September 2021

Accepted: 18 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Electronics 2021, 10, 2562 2 of 26

protecting IoMT networks from adversaries are critical for the acceptance and wide adop-
tion of such networks in the coming years.

Nevertheless, the high resource requirements of complex and heavyweight conven-
tional security mechanisms cannot be afforded by (a) the resource-constrained IoMT edge
devices with limited processing power, storage capacity, and battery life, and/or (b) the
constrained environment in which the IoMT edge devices are deployed and intercon-
nected using lightweight communication protocols [7]. Therefore, it is clear that there is
an urgent need for novel security mechanisms to address the pressing security challenges
of IoMT networks in an effective and efficient manner, taking into consideration their in-
herent limitations due to their resource-constrained characteristics, before IoMT networks
gain the trust of all involved stakeholders and reach their full potential in the healthcare
market [5,8–12]. Taking a step toward this direction, anomaly-based intrusion detection is
currently foreseen by the industry and research community as a promising security solu-
tion that can play a significant role in protecting IoT networks, as long as novel light-
weight anomaly-based intrusion detection systems (AIDSs) are developed [13]. However,
so far, and to the best of our knowledge, there is only one related work on AIDSs for IoMT
presented in [14], demonstrating the lack of proper works of AIDSs for IoMT networks.
Therefore, our aim is to fill this significant research gap by developing a novel hybrid
AIDS tailored to the resource-constrained characteristics of IoMT edge networks [7]. Thus,
in this paper, we present the system architecture for a novel hybrid AIDS for IoMT net-
works, leveraging host-based and network-based techniques to reliably monitor and col-
lect log files from the IoMT devices and the gateway, as well as traffic from the IoMT edge
network, while simultaneously considering the computational cost. The detection process
of the proposed AIDS is to be implemented by the detection engine running on the gate-
way of the IoMT edge network and relying on machine learning (ML) techniques, consid-
ering the computation overhead, in order to detect abnormalities in the collected data and
thus identify malicious incidents in the IoMT network. Besides that, in order to evaluate
potential detection ML algorithms and identify the most appropriate ones, among the
most popular ML algorithms (e.g., naïve Bayes, the decision tree (DT), random forest (RF)
and k-nearest neighbor (KNN)), for the proposed AIDS, we used (i) the network part of
the “TON_IoT Telemetry dataset” [15], as it is the most recent and representative data-
driven IoT/IIoT-based dataset, and (ii) the dataset that was produced according to the ap-
proach of the authors in [7] and that includes information related to the behavior of the
IoT devices that is not included in the “TON_IoT Telemetry dataset” [15], but is very crit-
ical for building effective ML-based detection models for AIDSs. We used these two da-
tasets to evaluate potential detection ML algorithms because, to the best of our knowledge,
there is no publicly available IoMT-specific dataset containing all of this useful infor-
mation other than the above mentioned two datasets. The evaluation results demonstrate
that the decision tree (DT), random forest (RF), and k-nearest neighbor (KNN) algorithms
are more suitable to be used as the core of the detection component. The proposed system
design and the evaluation results constitute the basis for the next step of our work, which
is the development of the proposed AIDS in an IoMT testbed consisting of a Raspberry Pi
4 device, playing the role of the gateway, and a set of MTM-CM5000-MSP sensors.

Following the introduction, this paper is organized as follows. Section 2 reviews re-
lated work on existing AIDSs for IoMT and ML algorithms employed in AIDSs for IoT
networks. Section 3 gives the metrics for evaluating the performance of ML algorithms for
intrusion detection. Existing datasets used to perform training and evaluation of AIDSs
for IoMT networks are described in Section 4. Section 5 presents the scenario architecture
(i.e., perception domain) where the proposed AIDS will be deployed. In Section 6, the
proposed AIDS is introduced, and its different components are presented. In Section 7,
the results of the performance evaluation of different ML algorithms (i.e., decision tree,
naïve Bayes, linear regression, random forest, k-nearest neighbor, and support vector ma-
chines) are presented and discussed. In Section 8, challenges and future work are dis-
cussed. Finally, Section 9 concludes the paper.

Electronics 2021, 10, 2562 3 of 26

2. Related Work
This section initially discusses existing IDSs for IoMT. Then, a set of the most popular

ML algorithms for IoT AIDS, tested and evaluated for anomaly detection in our case, are
presented, followed by the metrics based on which their performance is evaluated. Fi-
nally, we discuss available IoT datasets and the datasets that we considered in our exper-
iments.

2.1. Anomaly-Based Intrusion Detection Systems (AIDSs) for IoMT
To the best of our knowledge, the AIDS presented in [14] is the only existing AIDS

specifically designed for IoMT networks. The authors designed and developed a ML-
based intrusion detection solution utilizing mobile agent technology in order to protect
the network, which comprises connected medical IoT devices. The proposed attack detec-
tion mechanism in connected medical devices is hierarchical and distributed using auton-
omous mobile agents. Every node in the network acts as a computing node, while mobile
agents migrate, learn, and collaboratively perform attack detection. Three types of agents
are employed. The first type, named as a sensor agent (SA), is spawned by the cluster-
head (CH) of a WBAN cluster and traverses a set of sensor nodes specified by the CH (i.e.,
itinerary parameters) in order to locally detect a specific category of attack on sensor
nodes, based on the aggregated logs accumulated over a period of time, and generate an
alert based on the detection results. The second type, called the cluster-head agent (CA)
functions in a more distributed manner than the SAs and is responsible for detecting
anomalies among the CHs of multiple interconnected WBAN clusters. A CA may be static,
residing on only one CH and performing intrusion detection at regular intervals, or it can
be mobile, traversing several CHs, based on its specified itinerary parameters, and per-
forming intrusion detection on each CH. The third type, named as a detective agent (DA),
is spawned by a CH only in the case where the SA cannot classify the network behavior
as normal or malicious. Then, the DA traverses the entire cluster, collecting network ac-
tivity data, which are sent back to its CH. The CH utilizes the collected data by the DA
and employs a conflict resolution detection algorithm for the specific cluster. The result of
the conflict resolution detection algorithm triggers an appropriate alarm. In order to detect
network level intrusions, as well as anomalies in the sensor data, ML algorithms and re-
gression algorithms are employed, respectively. The authors simulated a hospital network
topology and experimented with several subsets of wireless body area networks and con-
nected medical devices. The performance of various ML algorithms (i.e., support vector
machines, decision trees, naïve Bayes, k-nearest neighbor, and random forests) was eval-
uated in order to distinguish the best algorithm for network level intrusion detection. Sim-
ilarly, polynomials of various orders (i.e., regression algorithms) were evaluated in order
to find the optimal order value for the case of device intrusion detection. Their simulation
results demonstrate that the proposed IDS is able to achieve a high detection accuracy
with minimal energy consumption overhead. However, the datasets produced and used
by the authors in [14] do not include a wide variety of attacks and cannot be easily con-
sidered as the most representative dataset reflecting the attacks targeting IoMT networks.

2.2. Machine Learning Algorithms for IoT Intrusion Detection
In this section, we review the following most popular ML algorithms for IoT AIDS:

decision tree (DT), naïve Bayes (NB), linear regression (LR), random forest (RF), support
vector machines (SVM), and k-nearest neighbor (KNN). As mentioned in [13], each of
these ML algorithms has been frequently used in the design of various AIDS for IoT. The
authors in [15] also state that support vector machines (SVM), k-nearest neighbor (KNN),
naïve Bayes (NB), decision-tree-based methods (i.e., random forest (RF)), and logistics re-
gression (LR) are suitable ML algorithms for the design of an AIDS. Additionally, at the
end of the section, Table 1 presents a summary of the six ML algorithms, along with their

Electronics 2021, 10, 2562 4 of 26

advantages and drawbacks when applied for anomaly detection and associated studies
mentioned in each of the subsections.

2.2.1. Decision Tree (DT)
A decision tree (DT) is a ML algorithm that functions by extracting features of the

instances of a training dataset and then constructing an ordered tree based on the values
of the extracted features. In a DT, a node corresponds to a feature and the branches of that
node correspond to the values of that feature. The construction of the DT starts from the
origin node of the tree. The feature, which will be the origin node of the tree, is selected
among those features that optimally split the tree in two. In order to identify the feature
that optimally divides the tree, various metrics are employed, including the Gini index
and information gain. DTs carry out the induction and inference processes [16].

The induction process involves the construction of a DT by combining unoccupied
nodes and branches. Initially, based on the information gain or other measures, the most
suitable feature is selected as the origin node of the DT. Then, the induction process con-
tinues and, in each subsequent step, features are selected as tree nodes. The selection of
features is performed in such a way that the overlapping among the different classes of
the training dataset can be kept to a minimum. In the end, the leaves of each sub-DT are
identified and classified according to their corresponding classes.

The inference process occurs in a constructed DT. During this process, unknown in-
stances are classified through an iterative comparison with the created DT. The classifica-
tion process regarding the new sample is finished when a matching leaf node is found
[16]. In our experiments, the Gini index was used as a measure to select both the origin
node of the DT and the rest of the tree nodes. In addition, the minimum number of sam-
ples per leaf node was set to 10 in order to end up with a pruned tree and to avoid over-
fitting, as it is suggested in [17].

2.2.2. Random Forest (RF)
A random forest (RF) is a supervised ML algorithm consisting of multiple DTs that

are used to perform more accurate and error resistant classifications [18]. During the train-
ing of the model, DTs are constructed randomly and are then are trained to classify in-
stances according to majority voting [18]. RFs are trained in a different way compared to
DTs. Whereas in a DT, a ruleset is created during training based on the training dataset,
in a RF, the various DTs are generated with every DT using randomly picked instances
from the training dataset as an input.

Due to the inherent randomness of the training process, the output of an RF model
becomes more robust and accurate, and the RF model is more resistant to overfitting.
Moreover, it requires significantly less inputs and does not require the process of feature
selection. The authors in [19] showed that a RF classifier can perform a better detection of
DDoS attacks in IoT networks than KNN, an artificial neural network (ANN), and SVM
classifiers [13].

As in the case of DTs, in our experiments, the Gini index was used to construct the
DT components, and the minimum number of samples per leaf node was set to 10 in order
to avoid over fitting, as suggested in [17]. The RF consists of 10 DTs based on the work in
[15].

2.2.3. Naïve Bayes (NB)
This algorithm utilizes Bayes’ theorem to calculate the probability of occurrence of

an event (either normal or abnormal) according to previous observations of similar events
[20]. The NB classifier operates on a strong feature independence assumption. In other
words, the NB model considers that the values of one feature do not affect the values of
another feature at all. In ML scenarios, this assumption can be made in order to classify
normal and abnormal behaviors, taking into account the previous observations in a

Electronics 2021, 10, 2562 5 of 26

supervised learning mode. The NB classifier is a commonly employed supervised classi-
fier known for its simplicity and ease of implementation. It computes posterior probability
and, based on that, unlabeled instances can be classified as normal or abnormal. Its train-
ing does not require many samples and it can be employed in both binary and multi-label
classification problems. Nevertheless, due to its feature independence assumption, the NB
classifier fails to perceive interdependencies among the features of a dataset, which can
negatively impact its accuracy [13]. In our experiments, the Gaussian variant of the naïve
Bayes algorithm was employed in particular, where the likelihood of the features is as-
sumed to be Gaussian.

2.2.4. Logistic Regression (LR)
A logistic regression (LR) algorithm can estimate the probability of a particular in-

stance belonging to a specific class, and, for that reason, is frequently employed in classi-
fication problems regarding intrusion detection and spam filtering [21]. Furthermore, the
study in [22] designed and implemented a security solution based on a LR algorithm and
showed that it is possible to secure an IoT-based production line against DDoS attacks by
using ML algorithms and commonly available tools for network traffic analysis and eval-
uation.

The LR algorithm utilizes a predetermined probability threshold in order to classify
the instances. For example, in the case of binary classification, a threshold of 50% would
mean that an instance is normal if its estimated probability is less than 50%. If the esti-
mated probability is greater than 50%, then the algorithm (i.e., LR classifier) will decide
that this is an attack instance. LR estimates the probability using the following equation:

hθ(x) = σ(θΤ × x) (1)

where hθ is the hypothesis function, which outputs the estimated probability, x is the fea-
ture vector of the instance, θ is the model’s parameter, θT is the transpose of θ, and σ(.) is
a sigmoid (i.e., logistic) function that defines the threshold. The equation of σ(.) is the fol-
lowing:

σ(z) = 1/(1 + e(−z)) (2)

z = (θΤ × x) (3)

The sigmoid function outputs a number between 0 and 1. A value that is closer to 0
signifies a normal observation and a value closer to 1 indicates an attack observation. The
model’s parameter θ is calculated during the training phase [15].

2.2.5. Support Vector Machine (SVM)
The SVM algorithm functions by creating a hyperplane in the feature set of two or

more classes. This hyperplane splits the instances into groups and is determined by cal-
culating a maximum distance of the nearest data point of each compared class. The best
use case for SVMs is when the classification problem relates to classes with large feature
sets and fewer data instances [13].

Due to its simplicity, a SVM classifier is highly scalable. Moreover, it can perform
tasks such as anomaly-based intrusion detection in real-time, including real-time learning.
In addition, a SVM classifier does not require much storage or memory to implement. As
a result of their scalability and low requirements, SVMs are suitable for use in IDSs that
are implemented in a resource-constrained IoT system. However, when the data are not
linearly separable, it is crucial to carefully consider and select which kernel function the
SVM algorithm will use to split the data. When finding the best kernel function to achieve
a specific classification, its speed has always been a challenge [13]. In our experiments, a
SVM classifier with a Gaussian radial basis function (RBF) kernel was utilized.

Electronics 2021, 10, 2562 6 of 26

2.2.6. K-Nearest Neighbor (KNN)
The K-nearest neighbor (KNN) algorithm is simple to use and utilizes a distance

function, which is typically the Euclidean distance function, in order to decide the class of
an object based on its distance from its closest neighbors. The parameter K refers to the
number of nearest neighbors that are used during the classification process. The value of
K may change the classification result. Therefore, it is necessary for the accuracy of the
KNN algorithm to find the optimal value of K. The value is found through testing, and
this can be extremely time-consuming in some cases [13]. In our experiments, the value of
K was set to 5, and the Euclidean distance was selected as the distance metric based on
[15].

Table 1. Summary of ML algorithms along with their advantages and drawbacks and associated
studies.

ML
Algorithm Advantages Drawbacks Studies

Decision
Tree

Simple to use.
Performance is not different for line-
arly and non-linearly separated pa-

rameters.

Vulnerable to overfitting.
Unstable (i.e., small data variation
may result in the construction of

extremely different DTs).

[16,17]

Random For-
est

Resistant to overfitting.
Feature selection is performed inher-

ently.
Fewer inputs required.

Fast only in the case of a small
number of trees.

May require large datasets.

[13,15,17–
19]

Naïve Bayes

Can be used in both binary and
multi- class classification.

Simple to use.
Few samples required to train.

The assumption about features in-
dependence can lead to low classi-

fication accuracy.
“Zero frequency” problem. In the
case where a class does not appear
during training, it will be assigned

a probability of zero.

[13,20]

Logistic
Regression

Simple to use.
Easy to implement.

Difficult to perform classification
in case of non-linearly separable

classes.
[15,21,22]

Support Vec-
tor

Machine

Better performance in datasets with
few classes and many instances per

class.
Scalable.

Reduced storage requirements.

Finding the most appropriate
kernel function is a challenge.

[13]

K-Nearest
Neighbor

Simple to use.
Easy to implement.

Difficult to find the optimal k.
The computational speed decreases
as the number of the k variable, the
number of data points, or the num-

ber of classes increases.

[13,15]

3. Evaluation Metrics
Various metrics are used to evaluate the performance of ML algorithms based on

testing datasets. In order to calculate the evaluation metrics, the first step is the calculation
of the values of the confusion matrix. The confusion matrix is generated when a trained
ML model is used to classify the instances of a testing dataset. The confusion matrix com-
pares values regarding the actual labels of the instances of the testing dataset and the cor-
responding labels predicted by the ML model. Table 2 shows the 2-by-2 confusion matrix
regarding a classification problem with two classes (normal and attack).

Electronics 2021, 10, 2562 7 of 26

Table 2. Confusion matrix for binary classification problems.

Predicted Label

Positive (Attack) Negative (Normal)

Actual Label
Positive (Attack) True Positive (TP) False Negative (FN)

Negative (Normal) False Positive (FP) True Negative (TN)

The true positive (TP) and true negative (TN) relate to the correctly classified attack
instances and normal instances, respectively. The false positive (FP) and false negative
(FN) refer to the incorrectly classified normal instances and attacks instances, respectively.
Based on these values, it is possible to compute several evaluation metrics, as shown in
[13,23–25]. In our case, the metrics of accuracy, precision, recall, and F1-score were used,
and each metric is shortly presented below, along with its equation.
• Accuracy: shows the overall success of the model by comparing the amount of the

correctly classified attack and normal instances to the total amount of instances.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (4)

• Precision: estimates the overall effectiveness of the model by calculating the percent-
age that an observation recognized as an attack is actually an attack observation.

Precision = TP/(TP + FP) (5)

• Recall: shows the overall success of the model by computing the percentage that an
actual attack observation is correctly classified.

Recall = TP/(TP + FN) (6)

• F1-score: is calculated by the precision and recall metrics as their harmonious mean.
It is a statistical function for estimating the accuracy of the model. As the precision
and recall of a model approach the value of 100%, the F1-score and accuracy are max-
imized, and every instance is classified correctly.

F1-score = 2 × (Recall × Precision)/(Recall + Precision) (7)

4. Datasets for AIDS in IoT
In this subsection, the following six existing datasets for the training and evaluation

of IoT AIDSs are reviewed: (i) the LWSNDR dataset [26], (ii) the dataset presented in [27]
for classifying IoT devices using network traffic characteristics, (iii) the “Bot-IoT” dataset
[28], (iv) the dataset presented in [29] for detecting DoS attacks on IoT devices using net-
work traffic traces, (v) the “TON_IoT Telemetry” dataset [15], which is the most recent
and representative data-driven IoT/IIoT-based dataset [30], and (vi) the dataset generated
as described in [7], which includes information related to the behavior of the IoT devices
and the IoT network traffic based on a simulated benign scenario and a simulated mali-
cious scenario. In this work, we utilized a part of the “TON_IoT Telemetry” dataset [15]
and a part of the dataset generated as presented in [7] for the training and evaluation of
the ML algorithms.

4.1. LWSNDR Dataset
The authors in [26] created two wireless sensor networks (WSNs) in order to serve as

testbeds for the simulation of a single-hop sensor-data collection scenario and a multi-hop
sensor-data collection scenario, respectively. In both scenarios, Crossbow TelosB motes
were used as sensor nodes, and real humidity–temperature sensor data were collected.

In the single-hop scenario, four motes are used as sensor nodes and one mote as the
base station node. The four sensor nodes were split into two sets of two nodes, and the
first set of nodes collected indoor data, whereas the other set of nodes collected outdoor
data. Both sets of sensor nodes transmitted the gathered data to the base station node. In

Electronics 2021, 10, 2562 8 of 26

addition, anomalies were introduced to one sensor node in each set (i.e., indoor and out-
door) by utilizing a hot water kettle that alters both the temperature and the humidity
simultaneously.

In the multi-hop scenario, four motes are used as sensor nodes, two motes as router
nodes, and one mote as the base station node. The router nodes exist in the testbed because
the sensor nodes are placed at a distance from where they cannot directly transmit their
data to the base station node. The sensor nodes and the router nodes are split in two sets.
In each set, two sensor nodes are connected to one router node, whereas the router node
connects to the base station node. The two sensor nodes collect humidity–temperature
data and send these data to the router node, which then transmits the data to the base
station node. The sensor nodes of the first set are responsible for gathering indoor sensor
readings, whereas the sensor nodes of the other set collect outdoor sensor readings. Simi-
lar to the single-hop scenario, in the multi-hop scenario, anomalies were also introduced
to one sensor node in each set (i.e., indoor and outdoor) using a hot water kettle, which
leads to an increase in both the temperature and the humidity simultaneously.

In both the single-hop and multi-hop scenarios, real labeled data were generated and
were organized in a labelled dataset in order to be used for the purpose of evaluating
anomaly detection algorithms. However, the produced dataset (i.e., “LWSNDR” dataset)
contains only pure sensor telemetry data, and no information related to either the sensor
behavior (e.g., energy consumption) or the network traffic flowing through the WSN is
included. In addition, the given dataset does not include any specific attack scenarios, as
also mentioned in [15]. Finally, the “LWSNDR” dataset was created in 2010 and cannot be
easily considered as recent and representative regarding the current IoT devices or the
attacks targeting them.

4.2. A Dataset for Classifying IoT Devices Using Network Traffic Characteristics
The authors in [27] designed and developed a robust framework that performs the

classification of IoT devices separately, in addition to one class of non-IoT devices, with
high accuracy, utilizing statistical attributes derived from network traffic characteristics.
One of the authors’ contributions was the creation of a smart environment infrastructure
that served as a testbed in order to gather and synthesize traffic traces from several IoT
devices. The smart environment contains a wide range of IoT devices (i.e., 28 unique IoT
devices), non-IoT devices (e.g., smart phones, laptops) and a WiFi access point (i.e., TP-
Link access point). The WiFi access point enables the IoT devices and non-IoT devices to
communicate with the Internet servers via a gateway [27]. The authors considered the
following types of IoT devices: cameras, controllers/hubs, energy management devices
(e.g., lights, plugs, motion sensors), appliances, and health-monitors.

Using the created smart environment, traffic traces were collected and synthesized
for a period of six months. The traffic traces were collected using the “tcpdump” tool and
were stored as “pcap” files on an external USB hard drive of 1 terabyte (TB) storage at-
tached to the gateway. The captured IoT traffic traces comprise (a) traffic produced by the
IoT devices without any human interaction (e.g., DNS, NTP), and (b) traffic produced be-
cause of the users’ interaction with the IoT devices (e.g., motion sensors, lightbulb color
change upon user request). Next, the traffic traces were analyzed to gain insight on how
to utilize them in order to perform classification of the IoT devices. The analysis of the
authors showed that network traffic characteristics, such as activity cycles, port numbers,
signaling patterns, and cipher suites, can be exploited in order to properly classify each
IoT device.

A subset of these traffic traces was made publicly available as a dataset in order to be
used by the scientific community. However, these traffic traces cannot be used to train
and evaluate anomaly-based intrusion detection mechanisms. They were not generated
based on a specific type of attack scenario, and, as a result, they are not representative
regarding the behavior of IoT devices or the traffic of IoT networks when under attack.

Electronics 2021, 10, 2562 9 of 26

4.3. Bot-IoT Dataset
The authors in [28] generated a dataset, named as the “Bot-IoT” dataset, by incorpo-

rating simulated legitimate IoT network traffic, as well as IoT network traffic related to
several different types of attacks. In order to generate the “Bot-IoT” dataset, a realistic
testbed was developed, with the aim of being representative of an IoT network, and it
comprises three components: (i) the network platforms, (ii) the simulated IoT services,
and (iii) the extracting features and forensics analytics. Initially, as far as the network plat-
forms of the testbed are concerned, both normal and attacking virtual machines (VMs)
with additional network devices (i.e., firewall, tap) were included. Furthermore, the
Node-RED tool [31] was employed in order to simulate certain IoT services (e.g., weather
station, smart fridge). Finally, regarding the extracting features and forensics analytics,
after the authors gathered the normal and attack traffic of the testbed in “pcap” files, they
employed the Argus tool in order to extract the flow data and used a MySQL database in
order to further process the extracted flow data. Then, statistical models were used in or-
der to identify the most important features for discriminating normal and abnormal in-
stances, and ML techniques were trained and evaluated so as to assess the value of the
dataset in comparison to other benchmark datasets [28]. The produced dataset contains
both normal and attack network traffic based on benign scenarios and botnet scenarios,
respectively. The botnet scenarios include probing, DoS, DDoS, data theft, and keylogging
attacks.

The “Bot-IoT” dataset contains over 72 million records of network traffic, and a
scaled-down version of the dataset with roughly 3.6 million records is also provided by
the authors for evaluation purposes. However, the “Bot-IoT” dataset does not include a
variety of attack types (e.g., ransomware and XSS cross-site scripting), as mentioned in
[15]. Additionally, the “Bot-IoT” dataset was made available to the scientific community
in 2018 and, thus, cannot be easily considered as the most recent and representative da-
taset containing information about normal or attack traffic of a current IoT network and
information about the behavior of IoT devices when they function under normal opera-
tion conditions, as well as when they function under attack.

4.4. A Dataset for Detecting DoS Attacks on IoT Devices Using Network Traffic Traces
The authors in [29] created an IoT-based dataset by collecting both normal traffic and

traffic generated when various types of DoS attacks (e.g., TCP SYN flooding, Ping of
Death) are carried out. A testbed was designed and comprises (i) a TPLink gateway with
OpenWrt firmware, (ii) several IoT devices (e.g., WeMo motion sensor, Samsung smart-
camera, Philips Hue bulb), (iii) two attackers, and (iv) two victims. One attacker was
placed locally (inside the LAN) and the other attacker existed remotely (on the Internet).
Moreover, both attackers were capable of attacking both victims. In order to store the net-
work packet traces of all of the network traffic, a 1 TB external hard disk was attached to
the gateway. The packet traces were stored as “pcap” files using the “tcpdump” tool.

In addition, two types of attacks were implemented: (a) direct attacks (i.e., ARP
spoofing, TCP SYN flooding, UDP flooding, and Ping of Death), and (b) reflection attacks
(i.e., SNMP, SSDP, TCP SYN, and Smurf). All of the types of DoS attacks were performed
using different traffic rates (i.e., how many packets were sent to the victim). Furthermore,
the attacks originated from either one of the attackers or both of them and targeted either
one of the victims or both of them.

The authors made their dataset available to the community. The released dataset re-
fers to a one-month period of benign and attack traffic relating to ten IoT devices, and
annotations of those attacks are included. The dataset consists of 30 “pcap” files, and each
file corresponds to a trace collected over a day [29]. Nevertheless, this dataset does not
have a variety of attack types (e.g., ransomware and XSS cross-site scripting), as men-
tioned in [15]. In addition, similarly to the “Bot-IoT” dataset mentioned in the previous
subsection, this dataset was made available to the community in 2018 and, therefore,

Electronics 2021, 10, 2562 10 of 26

cannot be easily considered as the most recent and representative dataset containing in-
formation about normal or attack traffic of a current IoT network and information about
the behavior of IoT devices when they function under normal operation conditions, as
well as when they function under attack.

4.5. ToN_IoT Telemetry Dataset
The “TON_IoT Telemetry” dataset includes events of a variety of IoT-related attacks

and legitimate scenarios, IoT telemetry data collected from heterogeneous IoT/IIoT data
sources, network traffic of the IoT/IIoT network, and audit traces of operating systems.
Each of the classes of the “TON_IoT Telemetry” dataset describes either a normal record
or the related type of attack in the case of an attack record. In [15], the authors presented
the testbed that they developed in order to generate the “TON_IoT Telemetry” dataset
[32]. The authors developed a testbed integrating IoT sensors (e.g., weather and modbus
sensors), physical network components (e.g., switches, routers), several virtual machines
(e.g., VMs of offensive Kali systems, VMs of Windows client systems), hacking platforms,
cloud platforms, and fog platforms, and the testbed components were organized into the
three layers of “Edge”, “Fog”, and “Cloud”. In addition, the testbed employed a software-
defined network (SDN) and network function virtualization (NFV) through the NSX-
VMware platform [33]. The NSX-VMware platform enabled: a) the establishment of a vir-
tualized “Fog” layer and a virtualized “Cloud” layer that simultaneously operated to offer
the IoT/IIoT and network services; b) the emulation and control of multiple virtual ma-
chines (VMs) in the testbed for both hacking and normal operations, and c) the manage-
ment of the interaction between the three layers.

4.5.1. Testbed “Edge” Layer
The “Edge” layer is fundamental in IoT/IIoT applications because its devices measure

real-world physical conditions and transmit the collected information to the “Fog” or
“Cloud” for further analysis [34]. The “Edge” layer of the testbed contains various
IoT/IIoT devices (e.g., weather and light bulb sensors) and physical gateways (i.e., routers
and switches) to the Internet, as well as host systems. Besides, the “Edge” layer includes
the physical host systems “NSX-VMware Server” and “vSphere System” used to deploy
the “Fog” layer and the “Cloud” layer, respectively, by means of virtualization through
the NSX-VMware platform [33] and the NSX-VMware hypervisor platform, respectively.
The “Edge” layer of the testbed is linked to the “Fog” layer through the “vSwitch”.

4.5.2. Testbed “Fog” Layer
The purpose of the “Fog” layer is to extend the Cloud computing and services to the

“Edge” layer of the network in order to provide limited computing capacity and storage
near to the data sources [34]. The “Fog” layer of the testbed consists of the VMs and the
virtualization technology that manages the VMs and their services using the NSX-
VMware platform [15].

4.5.3. Testbed “Cloud” Layer
The general purpose of the “Cloud” layer is to host large-size data centers with a

significant capacity for both computation power and storage in order to support IoT/IIoT
applications and satisfy the resource requirements for big data analysis.

4.5.4. ToN_IoT Datasets
The authors in [15] simulated several different types of attack scenarios (i.e., scan-

ning, DoS, DDoS, ransomware, backdoor, data injection, cross-site scripting (XSS), pass-
word cracking, and man-in-the-middle (MITM)) on their testbed, and collected data from
the different components of their testbed in dataset files. All of the datasets are provided
in files that follow the “csv” (comma separated vector) format. The datasets files are split

Electronics 2021, 10, 2562 11 of 26

into two main folders: (i) the “Processed” datasets folder, and (ii) the “Train_Test” da-
tasets folder.

The “Processed” datasets contain a processed and filtered version of the datasets
with: (a) their standard features, (b) a label feature indicating whether an observation is
normal or malicious, and (c) a type feature indicating the attacks’ sub-classes for multi-
class classification problems [15]. On the other hand, the “Train_Test” datasets contain
selected records of the “Processed” datasets that were used by the authors in [15] as train-
ing and testing datasets for training and evaluating the accuracy and efficiency of various
ML algorithms.

Both the “Processed” datasets and the “Train_Test” datasets consist of four types of
dataset files (i.e., “Network”, “IoT”, “Linux”, “Windows”), with each referring to either
the network traffic or a specific type of device (e.g., sensor, server, desktop) of the testbed,
as also demonstrated in Figure 1. In particular, the “Network” datasets contain the traffic
data that passed through the entire testbed and were captured during the simulations,
whereas the “IoT” datasets contain the data related to each of the seven IoT/IIoT sensors
that were simulated in the testbed. Finally, the “Linux” datasets and the “Windows” da-
tasets contain the data relating to the two Ubuntu systems and the two Windows systems
in the testbed, respectively.

Figure 1. ToN_IoT Telemetry datasets hierarchy.

In our experiments, in order to train and evaluate the selected ML algorithms, we
focused on the “Train_Test Network” datasets containing files with network-related data.
In particular, the “Train_Test Network” datasets contain files with the traffic data that
passed through the entire testbed and were captured during the simulations. Table 3
shows the 45 features of the “Train_Test Network” datasets along with their descriptions.

Table 3. Features and respective descriptions of the “Train_Test Network” datasets.

ID Feature Description
1 ts Timestamp of connection between flow identifiers
2 src_ip Source IP addresses that originate endpoints’ IP addresses
3 src_port Source ports that originate endpoint’s TCP/UDP ports

4 dst_ip
Destination IP addresses that respond to endpoint’s IP

addresses
5 dst_port Destination ports that respond to endpoint’s TCP/UDP ports
6 proto Transport layer protocols of flow connections
7 service Dynamically detected protocols, such as DNS, HTTP, and SSL

Electronics 2021, 10, 2562 12 of 26

8 duration
The time of the packet connections, which is estimated by

subtracting “time of last packet seen” and “time of first
packet seen”

9 src_bytes
Source bytes that are originated from payload bytes of TCP

sequence numbers

10 dst_bytes
Destination bytes that are responded payload bytes from TCP

sequence numbers

11 conn_state
Various connection states, such as S0 (connection without re-

play), S1 (connection established), and REJ (connection
rejected)

12 missed_bytes Number of missing bytes in content gaps

13 src_pkts
Number of original packets that is estimated from source sys-

tems

14 src_ip_bytes
Number of original IP bytes that is the total length of IP

header field of source systems

15 dst_pkts
Number of destination packets that is estimated from

destination systems

16 dst_ip_bytes
Number of destination IP bytes that is the total length of IP

header field of destination systems
17 dns_query Domain name subjects of the DNS queries
18 dns_qclass Values that specify the DNS query classes
19 dns_qtype Value that specifies the DNS query types
20 dns_rcode Response code values in the DNS responses

21 dns_AA
Authoritative answers of DNS, where T denotes server is

authoritative for query

22 dns_RD
Recursion desired of DNS, where T denotes request recursive

lookup of query

23 dns_RA
Recursion available of DNS, where T denotes server supports

recursive queries

24 dns_rejected
DNS rejection, where the DNS queries are rejected by the

server
25 ssl_version SSL version that is offered by the server
26 ssl_cipher SSL cipher suite that the server chose

27 ssl_resumed
SSL flag indicates the session that can be used to initiate new
connections, where T refers to the SSL connection being initi-

ated

28 ssl_established
SSL flag indicates establishing connections between two

parties, where T refers to establishing the connection
29 ssl_subject Subject of the X.509 cert offered by the server

30 ssl_issuer
Trusted owner/originator of SLL and digital certificate

(certificate authority)
31 http_trans_depth Pipelined depth into the HTTP connection
32 http_method HTTP request methods, such as GET, POST, and HEAD
33 http_uri URIs used in the HTTP request
34 http_version The HTTP versions utilized, such as V1.1

35 http_request_body_len
Actual uncompressed content sizes of the data transferred

from the HTTP client

36 http_response_body_len
Actual uncompressed content sizes of the data transferred

from the HTTP server
37 http_status_code Status codes returned by the HTTP server
38 http_user_agent Values of the User-Agent header in the HTTP protocol

39 http_orig_mime_types
Ordered vectors of mime types from source system in the

HTTP protocol

40 http_resp_mime_types
Ordered vectors of mime types from destination system in the

HTTP protocol

41 weird_name
Names of anomalies/violations related to protocols that

happened

Electronics 2021, 10, 2562 13 of 26

42 weird_addl
Additional information is associated to protocol

anomalies/violations
43 weird_notice Indicates if the violation/anomaly was turned into a notice

44 label
Tags normal and attack records, where 0 indicates normal

and 1 indicates attacks

45 type
Tags attack categories, such as normal, DoS, DDoS, and

backdoor attacks, and normal records

4.6. IoT Device Behavior Datasets
Behavior datasets of IoT devices play a significant role in the deployment of a more

accurate and efficient AIDS for IoT networks. However, despite the recent efforts focused
on the generation of IoT-specific datasets, and also mentioned in the previous subsections,
the generated datasets are limited in terms of information related to the behavior of IoT
devices. Therefore, more efforts are required toward datasets including information about
the behavior of IoT devices when they function under normal operation conditions, as
well as when they function under attack. To this direction, and to the best of our
knowledge, a first step is the IoT device behavior datasets generated by the work in [7].
The IoT device behavior datasets include information related to the behavior of the IoT
devices based on a simulated benign scenario and a simulated malicious scenario. The
classes of the IoT device behavior datasets are two (i.e., normal behavior, abnormal be-
havior) corresponding to the case of a binary classification problem. The authors in [7]
utilized the Cooja simulator of the open source Contiki operating system (OS) [35] in order
to simulate a benign IoT network scenario and a malicious IoT network scenario, and gen-
erate corresponding benign and malicious datasets. Each simulated scenario utilized five
UDP-client motes and one UDP-server mote. The type of each mote was the “Tmote Sky”,
which is an ultralow power wireless module for use in sensor networks, monitoring ap-
plications, and rapid application prototyping [36].

The “benign” scenario utilized only “benign” motes and produced the “benign” da-
tasets, which include only normal events. The ”malicious” scenario utilized four “benign”
UDP-client motes, one “malicious” UDP-client mote, and one “benign” UDP-server mote,
and produced the “malicious” datasets, which contain both attack and normal events.
Both the “benign” datasets and the “malicious” datasets are further divided into their re-
spective “powertrace” datasets and “network traffic” datasets. The “powertrace” datasets
includes information collected every 2 s on the energy consumption (i.e., behavior-related
information) of the motes (i.e., IoT devices) of the simulated IoT network, whereas the
“network traffic” datasets contain records related to the IoT network traffic features, such
as the source/destination IPv6 address, packet size, and communication protocol [7]. In
our experiments, we needed IoT device behavior datasets so as to train and test ML algo-
rithms for the proposed AIDS, and, thus, we utilized both the “benign powertrace” da-
taset and the “malicious powertrace” dataset. Table 4 shows the features of the “benign
powertrace” dataset and the “malicious powertrace” dataset, along with their descrip-
tions.

Table 4. Features and respective descriptions of the “benign powertrace” dataset and the “mali-
cious powertrace” dataset.

Feature Description
sim time simulation time

clock_time() clock time (i.e., by default, 128 ticks/second)
ID Mote ID
P label

rimeaddr rime address
seqno sequence number

all_cpu accumulated CPU energy consumption during the simulation

Electronics 2021, 10, 2562 14 of 26

all_lpm
accumulated low power mode energy consumption during the

simulation
all_transmit accumulated transmission energy consumption during the simulation

all_listen accumulated listen energy consumption during the simulation

all_idle_transmit
accumulated idle transmission energy consumption during the

simulation
all_idle_listen accumulated idle listen energy consumption during the simulation

cpu CPU energy consumption for this cycle of 2 s
lpm LPM energy consumption for this cycle of 2 s

transmit transmission energy consumption for this cycle of 2 s
listen listen energy consumption for this cycle of 2 s

idle_transmit idle transmission energy consumption for this cycle of 2 s
idle_listen idle listen energy consumption for this cycle of 2 s

5. Scenario Architecture
The proposed AIDS is designed for the IoMT edge network of IoT-based healthcare

systems, as shown in Figure 2. The IoMT edge network interacts with objects, such as
physical things (i.e., patient’s body and patient’s environment), through the IoMT devices
of the IoMT edge network. Specifically, the IoMT edge network integrates:
• “bio-sensors”, a type of IoMT sensor, whose purpose is to collect vital signs (e.g.,

blood pressure, body temperature) of the patient;
• “context-aware sensors”, another type of IoMT sensor, for gathering context infor-

mation (e.g., air pressure, humidity, or room temperature) from the patient environ-
ment;

• “IoMT actuators”, for supporting the real-time provisioning of medical treatment
(e.g., an insulin pump, which may be controlled remotely to inject the patient with
insulin).
In other words, the main purpose of the IoMT edge network is to measure, collect,

and handle the information provided by the monitored physical things (i.e., patient’s body
and patient’s environment), as well as to transmit the collected information through the
IoMT gateway to the application layer, where the cloud-based healthcare platform of the
IoT-based healthcare system is located, for processing, analysis, storage, and decision
making. Furthermore, the IoMT edge network facilitates the reception of the appropriate
control commands from the application layer to the actuators again through the IoMT
gateway.

Figure 2. IoT-based health monitoring system perception domain.

Electronics 2021, 10, 2562 15 of 26

6. Proposed Anomaly-Based IDS
6.1. System Description

The purpose of the proposed AIDS is to protect the IoMT edge network and its IoMT
devices and gateway from internal and external threats that may exploit the inherent se-
curity vulnerabilities of IoT technology, by taking into consideration not only all of the
current known IoT attack vectors but also unknown ones that may both appear in the
future at all four layers of the ITU-T IoT reference model [37] and target the IoMT edge
network, its IoMT devices, or the gateway. The proposed AIDS consists of (a) a set of
distributed monitoring and data acquisition (MDA) components (i.e., a monitoring and
data acquisition component runs on each IoMT device deployed and interconnected in
the IoMT edge network), and (b) a central detection (CD) component (i.e., detection en-
gine) running on the gateway, as illustrated in Figure 3.

Figure 3. The MDA components and the CD component of the proposed AIDS in the IoMT edge
network.

At this point, it is important to mention the requirements that the gateway and the
IoMT devices have to meet in order to support the proposed AIDS. First of all, the gateway
is required to: (a) be capable of accessing behavior data about itself (e.g., energy consump-
tion); (b) be capable of capturing packets and network-related information regarding the
IoMT devices of the IoMT edge network; and (c) have enough resources (e.g., Raspberry
Pi 4 Model B) to support both the standard operations as a relay node and the functions
of the CD component running on it. On the other hand, each IoMT device is essential to:
(a) be capable of accessing behavior data about themselves (e.g., energy consumption);
and (b) have enough resources to handle both its normal operation as a sensor or actuator
and the functions of the MDA component running on it.

6.2. Monitoring and Data Acquisition (MDA) Component
The monitoring and data acquisition (MDA) component runs on each IoMT device

(i.e., IoMT sensor and IoMT actuator) connected to the gateway. Its aim is to monitor the
behavior of the IoMT device hosting it and to collect relevant device behavior data, such
as the CPU energy consumption, during a specific MDA period (i.e., sampling period).
Furthermore, the MDA component is responsible for sending the collected data to the

Electronics 2021, 10, 2562 16 of 26

gateway as an MDA report. The MDA component consists of the following modules,
whose relations are shown in Figure 4.

Figure 4. The monitoring and data acquisition (MDA) component.

“Data Collection” module: Collects data on run-time for the set of features summa-
rized in Table 5, during the sampling period (i.e., a specific MDA period), and creates a
record in CSV format;

“Data Recording” module: Writes the records created by the “data collection” mod-
ule in log files in CSV format. Each log file contains a specific number of records defined
by the maximum size of the log file;

“Data Reporting” module: Constructs reports including the log files created by the
“data recording” module. Each report can contain a specific number of log files defined
by the maximum number of log files for the given report. In principle, the “data reporting”
module accumulates the continuously produced log files by the “data recording” module,
and, when the number of the accumulated log files reach a certain value (i.e., maximum
number of log files for the given report), they are grouped into a report together with the
IoMT device ID. Finally, the report is transmitted to the gateway. To reduce the required
bandwidth for reports transmission, the “data reporting” module may perform compres-
sion on the report if the host IoMT device has enough resources.

Table 5. Summary of features collected by the data collection module of the MDA component and
their descriptions.

Feature Description
CPU usage Amount/percentage of used CPU resources

CPU processes Amount of active CPU processes
MEM usage Amount/percentage of used internal memory resources
Disk usage Amount/percentage of used external storage resources
Wi-Fi usage Amount of bandwidth used by the Wi-Fi interface

Set of energy con-
sumption
features

Set of features (e.g., “powertrace” features in [7]) regarding energy consump-
tion during the different modes of the IoMT device

6.3. Central Detection (CD) Component
The central detection (CD) component runs on the gateway of the IoMT edge net-

work. The aim of the CD component is to:

Electronics 2021, 10, 2562 17 of 26

• Monitor the behavior of the gateway hosting it and collect relevant behavior data,
such as the accumulated CPU energy consumption, during a specific monitoring pe-
riod (i.e., sampling period);

• Monitor the network traffic passing through the gateway and gather relevant net-
work traffic data, such as source IP address, destination IP address, connection status
information, and packet content information, during a specific monitoring period
(i.e., sampling period);

• Receive the reports transmitted by the MDA components running on the IoMT de-
vices that are connected to the gateway;

• Leverage the aforementioned data in order to identify whether an attack incident has
occurred in the IoMT edge network, and trigger a corresponding security alert.
The CD component consists of the following modules, whose relations are shown in

Figure 5.

Figure 5. The central detection (CD) component.

“Gateway Data Collection” module: Collects behavior data, regarding the gateway,
on the run-time for the set of features summarized in Table 6, during the sampling period,
and creates a record in CSV format;

“Gateway Data Recording” module: Writes the records created by the “gateway data
collection” module in log files in CSV format. Each log file contains a specific number of
records defined by the maximum size of the log file;

“Gateway Dataset Generation” module: Utilizes the log files created by the “gateway
data recording” module and generates a gateway dataset in CSV format. Each gateway
dataset is generated based on a specific number of log files defined by the maximum num-
ber of log files for the given gateway dataset. The value of the maximum number of log
files for the given gateway dataset highly depends on the requirements of the detection
engine (i.e., detection module);

Table 6. Summary of features collected by the gateway data collection module of the CD compo-
nent and their descriptions.

Feature Description
CPU usage Amount/percentage of used CPU resources

CPU processes Amount of active CPU processes

Electronics 2021, 10, 2562 18 of 26

MEM usage Amount/percentage of used internal memory resources
Disk usage Amount/percentage of used external storage resources
Wi-Fi usage Amount of bandwidth used by the Wi-Fi interface

Set of energy con-
sumption
features

Set of features regarding energy consumption during the different modes of the
gateway

“Network Data Collection” module: Collects data, regarding the traffic passing
through the gateway, on the run-time for the set of features summarized in Table 7, during
the sampling period, and creates a record in CSV format;

“Network Data Recording” module: Writes the records created by the “network data
collection” module in log files in CSV format. Each log file contains a specific number of
records defined by the maximum size of the log file;

“Network Dataset Generation” module: Uses the log files created by the “network
data recording” module and generates a network dataset in CSV format. Each network
dataset is generated based on a specific number of log files defined by the maximum num-
ber of log files for the given network dataset. The value of the maximum number of log
files for the given network dataset highly depends on the requirements of the detection
engine (i.e., detection module);

Table 7. Summary of features collected by the network data collection module of the CD compo-
nent, and their descriptions.

Feature Description
Source IP address Source IP address of the sender endpoint

Destination IP address Destination IP address of the sender endpoint
Packet size Length of packet in bytes

Communication protocol
information features

Features related to the protocol used for the transmission of the
packet

“Report Receiving” module: Receives the reports sent by the MDA components run-
ning on every IoMT device that is connected to the gateway. Each received report contains
the device ID in order to know the device from which it originates;

“Data Extraction” module: Extracts the log files that are included in each report that
was received by the “report receiving” module. All of the log files extracted from a given
report originate from the same IoMT device and are associated with the ID of the given
IoMT device;

“IoMT Device Dataset Generation” module: Utilizes the log files that originate from
a specific IoMT device and that were produced by the “data extraction” module in order
to generate an IoMT device dataset in CSV format. The IoMT device dataset is generated
based on a specific number of log files defined by the maximum number of log files for
the given IoMT device dataset. The value of the maximum number of log files for the
given IoMT device dataset highly depends on the requirements of the detection engine
(i.e., detection module). In the case where there are multiple IoMT devices connected to
the gateway, their corresponding IoMT device datasets are generated separately;

“Feature Normalization” module: Receives a gateway dataset, a network dataset,
and one or multiple IoMT device datasets, and performs normalization on the features of
the datasets. Each dataset is normalized independently from the other datasets and, thus,
the module creates the following three different types of normalized datasets in CSV for-
mat: normalized gateway dataset, normalized network dataset, and normalized IoMT de-
vice dataset;

“Detection” module: Receives the three types of normalized datasets and detects
whether or not an intrusion has occurred on the network consisting of the gateway and
its connected IoMT devices. In the case of an intrusion incident, an alarm is triggered. In
principle, this is the core module of the proposed AIDS and leverages ML algorithms in

Electronics 2021, 10, 2562 19 of 26

order to identify known, as well as still unknown, attacks that may target the IoMT edge
network, its IoMT devices, or the gateway. Additionally, since different normalized da-
tasets are provided to the “detection” module, it can perform detection operations for each
one of the different devices (i.e., gateway and connected IoMT devices) and, thus, can
identify from where an attack originates or which device (i.e., IoMT device or gateway) is
compromised.

7. Performance Evaluation
In this section, we focus on the performance evaluation of the following most popular

ML algorithms for IoT AIDS [13,15], when they are applied for anomaly detection in the
proposed AIDS: decision tree (DT), naïve Bayes (NB), linear regression (LR), random for-
est (RF), k-nearest neighbor (KNN), and support vector machines (SVM). Using four-fold
cross validation, we trained and tested these algorithms over the same datasets consisting
of (a) a specific part of the “Train_Test Network” dataset of the “TON_IoT Telemetry”
dataset [32], and (b) the “benign powertrace” dataset and the “malicious powertrace” da-
taset produced following the approach in [7].

It is worthwhile to mention that, from the “Train_Test Network” dataset of the
“TON_IoT Telemetry” dataset, we kept only the network records related to the edge layer
of the testbed where the IoT devices are deployed, as described in [15]. For this reason,
the desired network records were isolated from the “Train_Test_Network” dataset based
on the IP address of the sender node and the destination node, and a record was kept only
if the IP address of the sender node or the destination node belonged to the IP address
range of the edge layer. Then, the isolated network records were merged into a new da-
taset, which will be referred to as the “Train_Test edge network” dataset.

Moreover, regarding the “benign powertrace” dataset and the “malicious power-
trace” dataset from [7], we merged the two datasets into a new dataset by adding the
records of the second dataset to the end of the records of the first dataset, as both datasets
have the same features. The generated new dataset will be referred to as the “all_power-
trace” dataset.

In our experiments, the Python language version 3.8.2 was used, along with the
Scikit-Learn [38] library. We utilized specific functions of the Scikit-Learn library and a
Python script was created utilizing these functions in order to perform the training and
testing of the ML algorithms. Table 8 presents the functions that we utilized from the
Scikit-Learn package, along with an explanation of how these functions were used.

Table 8. Utilized functions of the Scikit-Learn package, along with a brief explanation of how they
were used.

Function Explanation of Usage
OrdinalEncoder() Pre-processing of the data of the datasets

ColumnTransformer() Pre-processing of the data of the datasets
MinMaxScaler() Normalization of the data of the datasets
train_test_split() Split of a dataset into training and testing parts

DecisionTreeClassifier() Implementation of a decision tree algorithm to train and evaluate

RandomForestClassifier()
Implementation of a random forest algorithm to train and

evaluate
LogisticRegression() Implementation of a logistic regression algorithm to train and evaluate

GaussianNB() Implementation of a naïve Bayes algorithm to train and evaluate

SVC()
Implementation of a support vector machine algorithm to train and

evaluate
KNeighborsClassifier() Implementation of a k-nearest neighbor algorithm to train and evaluate

StratifiedKFold()
Split of a training part of a dataset into k-folds to perform k-fold cross

validation
cross_validate() Performing k-fold cross validation

Electronics 2021, 10, 2562 20 of 26

7.1. Dataset Pre-Processing and Normalisation
It is necessary to prepare the datasets before they are utilized to train and test the ML

algorithms. The preparation of the data includes data pre-processing and data normaliza-
tion. In our case, the pre-processing step involved the removal of unnecessary features
and the conversion of the nominal values of the categorical features to numeric values.

7.1.1. Dataset Pre-Processing
Initially, the feature “ts” was omitted from all records of the “Train_Test edge net-

work” dataset because this feature may cause some ML algorithms to overfit the training
data, as also highlighted by the authors in [15].

As far as the “all_powertrace” dataset is concerned and similar to the feature “ts” of
the “Train_Test edge network” dataset, the feature “clock_time” was filtered out. In addi-
tion, the features related to the simulation time (i.e., “sim time” feature) or the simulation
duration (i.e., “all_cpu”, “all_lpm”, “all_transmit”, “all_listen”, ”all_idle_transmit”,
“all_idle_listen”, and “seqno” features) were filtered out from the “all_powertrace” da-
taset. Additionally, the “P” feature was omitted, because it only has a fixed value through-
out all of the collected records of the “all_powertrace” dataset.

Finally, the nominal values of the categorical features of the “Train_Test edge net-
work” dataset and the “all_powertrace” dataset were converted to numeric values to fa-
cilitate their use by the ML algorithms. For example, if a feature possessed the values of
“on” and “off”, these values were converted to “1” and “0”, respectively. This was
achieved by employing a label-encoding method [17].

7.1.2. Normalization
After the conversion of the values of all nominal features was completed in the pre-

processing step, the data normalization step was then performed to the numeric values of
each feature. If the values of a feature are significantly larger compared to the values of
other features, this may lead to inaccurate results. Thus, data normalization helps to en-
sure that features with significantly large values do not outweigh features with smaller
values. To achieve this, all of the features’ values are scaled within the range of [0.0, 1.0]
by performing a min–max normalization process on each feature. This normalization pro-
cess is described by the following equation:

z = (x − xmin)/(xmax − xmin) (8)

where z is the normalized value (i.e., after scaling), x is the value before scaling, and xmax
and xmin are the maximum and minimum values of the feature, respectively.

7.2. Training Process of ML Algorithms
The selected ML algorithms were trained and tested separately over (a) the

“Train_test edge network” dataset, and (b) the “all_powertrace” dataset. Initially, each of
the two datasets was split into two parts: the train part and the test part. The train part
consisted of 80% of the dataset and the ML algorithms were trained and evaluated with
this part. On the other hand, the test part consisted of 20% of the dataset and was held
back for further evaluation of the models with unseen data. The percentage split of 80%
train–20% test was determined according to [17] as the best ratio to avoid the overfitting
problem. After that, the training process of each ML algorithm over each dataset was per-
formed using the four-fold cross validation method. According to this method, the train-
ing dataset is divided into four subsets of equal size and the records of each subset are
randomly selected. The training process is repeated four times. Each time, three of the
four subsets are utilized for the training of the ML algorithm and the remaining subset is
used for validation. The final performance results are produced by averaging the results
of the four folds [17]. Table 9 presents a summary of the hyperparameters of each of the
six ML algorithms when the ML algorithm requires a hyperparameter to be set.

Electronics 2021, 10, 2562 21 of 26

Table 9. Summary of the hyperparameters of each ML algorithm when the ML algorithm requires
a hyperparameter to be set.

ML Algorithm Hyperparameters

Decision Tree
(1) The Gini index was used to select tree nodes.

(2) Minimum samples per leaf node set to 10

Random Forest
(1) The Gini index was used to select tree nodes.

(2) The minimum samples per leaf node was set to 10.
(3) The random forest consisted of 10 decision trees.

Naïve Bayes The Gaussian variant of the NB algorithm was used.
Logistic Regression -

Support Vector Machine
The Gaussian radial basis function (RBF) was set as the kernel

function.

K-Nearest Neighbor
(1) The value of K was set to 5.

(2) The Euclidean distance was set as the distance metric.

7.3. Performance Evaluation Results
The selected ML algorithms were trained and tested on the “Train_Test edge net-

work” dataset and the “all_powertrace” dataset for binary classification, using the four-
fold cross validation method. The performance of the selected ML algorithms was evalu-
ated by the evaluation metrics of accuracy, precision, recall, and F1-score. The numerical
results of the evaluation metrics for the selected ML algorithms, when applied to the
“Train_Test edge network” dataset, are shown in Table 10 and Figure 6.

Table 10. Evaluation metrics for binary classification for the “Train_Test edge network” dataset.

ML Algorithm Accuracy Precision Recall F1-Score
DT 0.9997 0.9997 0.9991 0.9994
NB 0.3444 0.2791 0.9997 0.4364
LR 0.9870 0.9552 0.9955 0.9750
RF 0.9996 0.9989 0.9995 0.9992

KNN 0.9998 0.9995 0.9997 0.9996
SVM 0.9873 0.9530 0.9993 0.9756

Figure 6. Evaluation metrics for binary classification for the “Train_Test edge network” dataset.

It can be easily observed that almost all of the ML algorithms demonstrate a high
performance for the “Train_Test edge network” dataset. The DT, RF, and KNN algorithms
show an almost perfect accuracy score (i.e., 0,99), followed by the LR and SVM methods

Electronics 2021, 10, 2562 22 of 26

(i.e., 0,98). The same trend can be seen in the precision, recall, and F1-score, which are
extremely high. However, the NB classifier performs significantly worse than the rest of
the algorithms in almost all evaluation metrics. In particular, although the NB method
achieves a very high recall (0,99), it demonstrates a low accuracy (i.e., 0.34), precision (i.e.,
0,28), and F1-score (i.e., 0,44) due to dependencies among the features of the “Train_Test
edge network” dataset.

Furthermore, the “all_powertrace” dataset was also used to train and test the selected
ML algorithms for binary classification, using the four-fold cross validation method. The
performance of the selected ML algorithms was also evaluated by the evaluation metrics
of accuracy, precision, recall, and F1-score. The numerical results of the evaluation metrics
for the selected ML algorithms are shown in Table 11 and Figure 7.

Table 11. Evaluation metrics for binary classification for the “all_powertrace” dataset.

ML Algorithm Accuracy Precision Recall F1-Score
DT 0.9889 0.9742 0.9587 0.9664
NB 0.9613 0.8218 0.9805 0.8942
LR 0.9785 0.9378 0.9326 0.9352
RF 0.9900 0.9718 0.9684 0.9701

KNN 0.9887 0.9752 0.9566 0.9658
SVM 0.9785 0.9375 0.9333 0.9354

Figure 7. Evaluation metrics for binary classification for the “all_powertrace” dataset.

Similarly to the results related to the “Train_Test edge network” dataset, all of the
ML algorithms demonstrated an extremely high accuracy, with the lowest accuracy value
being 0.96. The DT, RF, and KNN classifiers showed an almost perfect precision that was
close to 0.99, whereas the NB, LR, and SVM classifiers demonstrated a high precision that
was between 0.82 and 0.94. Moreover, all of the ML algorithms showed a high recall and
high F1-score, with the lowest values being 0.93, and 0.89 respectively. It is noteworthy to
mention that the performance of NB has improved due to reduced dependencies among
the features of the “all_powertrace” dataset.

The evaluation results demonstrate that the DT, RF, and KNN algorithms are more
suitable to be used as the core of the detection component (i.e., CD component). Based on
the above tables and figures, the DT, RF, and KNN algorithms presented high values re-
garding all of the evaluation metrics (i.e., accuracy, precision, recall, F1-score) while being
trained and testing using either the “Train_Test edge network” dataset or the

Electronics 2021, 10, 2562 23 of 26

“all_powertrace” dataset. In both cases, the lowest values for all of the three algorithms
(i.e., DT, RF, KNN) regarding the accuracy, precision, recall, and F1-score were 0.99, 0.97,
0.96, and 0.97, respectively. Therefore, it is evident that, among the six selected popular
ML algorithms, the DT, RF, and KNN algorithms are the three best algorithms based on
their performance.

8. Challenges and Future Work
As future work, we intend to develop a prototype of the proposed AIDS in order to

evaluate its performance in terms of computational overhead on the gateway and the sen-
sors. In particular, the next first step is the implementation of the central detection (CD)
component of the proposed AIDS, relying on DT, RF, and KNN algorithms for anomaly
detection, on a Raspberry Pi 4 device that plays the role of the gateway in an IoMT net-
work. The DT, RF, and KNN will be implemented to run on the Raspberry Pi 4 device,
and their computational overhead will be evaluated. In addition, the monitoring and data
acquisition (MDA) component is planned to be implemented for an IoMT sensor (i.e.,
MTM-CM5000-MSP sensor) that will be connected to the gateway (i.e., Raspberry Pi 4
Model B device). The developed MDA component will be evaluated in terms of its com-
putational overhead.

Another direction of our future work is the usage of our proposed AIDS for the case
of multi-class classification. In our work, we have considered binary classification, mean-
ing that the proposed AIDS is capable of identifying whether there is an attack incident
or not. However, as the proposed AIDS is able to distinguish between normal and mali-
cious incidents (i.e., binary classification), the next step is the improvement of the AIDS to
support multi-class classification by integrating the ability of discerning which type of
attack correlates to a specific malicious incident in the detection engine of the CD compo-
nent, while, at the same time, considering the computational overhead.

In addition, more ML algorithms will be implemented and evaluated in order to
identify those that achieve a high accuracy, precision, recall, and F-score, while, at the
same time, not introducing a high computational cost. It is also worthwhile to mention
that the selection of the appropriate values of the hyperparameters of all ML algorithms
under study will be properly investigated, while simultaneously taking into consideration
the computational cost. The values of the hyperparameters may affect both the perfor-
mance of the ML algorithms and their computational overhead. Therefore, extensive sim-
ulations will be carried out as future work in order to identify the appropriate hyperpa-
rameter(s) of the ML algorithms and achieve a balance between the performance and com-
putational cost.

Finally, it is noteworthy to mention that, since the proposed AIDS is designed to be
deployed in resource-constrained devices, deep learning techniques, which are complex,
heavyweight, and are characterized by a high computational overhead, have not been
considered. However, deep learning techniques, such as those mentioned in [39,40], could
be considered, as future work, in the extension of the autonomous and lightweight pro-
posed AIDS to a cloud-based AIDS for IoMT edge networks.

9. Conclusions
This paper proposed a new AIDS adapted to the constraints of IoMT networks so as

to constitute an efficient and effective security solution for this type of networks. The pro-
posed AIDS is to leverage host-based and network-based techniques to reliably monitor
and collect log files from the IoMT devices and the gateway, as well as traffic from the
IoMT edge network, taking into account the computational cost. The detection process of
the proposed AIDS is to be implemented by the detection engine running on the gateway
of the IoMT edge network and relying on machine learning (ML) techniques, considering
the computation overhead, in order to detect abnormalities in the collected data and thus
identify malicious incidents in the IoMT network. To evaluate potential detection ML

Electronics 2021, 10, 2562 24 of 26

algorithms and identify the most appropriate algorithms for the proposed AIDS, we used
(i) the network part of the “TON_IoT Telemetry dataset” [15] and (ii) a dataset that was
produced according to the approach of the authors in [7] to train and test the following
most popular ML algorithms for IoT AIDS: DT, NB, LR, RF, SVM, and KNN. The evalua-
tion results demonstrate that the DT, RF, and KNN algorithms are more suitable to be
used for the central detection (CD) component of the proposed AIDS. In addition, it is
worthwhile to highlight that the performance of NB demonstrated better results when it
was trained and tested on the “all_powertrace” dataset due to the reduced dependencies
among the features of this dataset.

Author Contributions: Conceptualization and methodology, G.Z., I.E., G.M., K.P., and J.C.R.; soft-
ware, G.Z., I.E., and J.C.R.; validation, G.Z., I.E., J.C.R., and G.M.; investigation, G.Z., I.E., J.C.R., and
G.M.; resources, G.Z., I.E., J.C.R., and G.M.; writing—original draft preparation, G.Z. and I.E.; writ-
ing—review and editing, I.E., G.M., K.P., and J.R.; visualization, G.Z., J.C.R., and I.E.; supervision,
G.M., P.K., and J.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The research work leading to this publication has received funding through the
Moore4Medical project under grant agreement H2020-ECSEL-2019-IA-876190 within ECSEL JU in
collaboration with the European Union’s H2020 Framework Programme (H2020/2014-2020) and
Fundação para a Ciência e Tecnologia (ECSEL/0006/2019).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rodrigues, J.J.P.C.; Segundo, D.B.D.R.; Junqueira, H.A.; Sabino, M.H.; Prince, R.M.I.; Al-Muhtadi, J.; De Albuquerque, V.H.C.

Enabling Technologies for the Internet of Health Things. IEEE Access 2018, 6, 13129–13141, https://doi.org/10.1109/ac-
cess.2017.2789329.

2. Papaioannou, M.; Karageorgou, M.; Mantas, G.; Sucasas, V.; Essop, I.; Rodriguez, J.; Lymberopoulos, D. A Survey on Security
Threats and Countermeasures in Internet of Medical Things (IoMT). Trans. Emerg. Telecommun. Technol. 2020, 4049,
https://doi.org/10.1002/ett.4049.

3. Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.-S. The Internet of Things for Health Care: A Comprehensive Sur-
vey. IEEE Access 2015, 3, 678–708, https://doi.org/10.1109/access.2015.2437951.

4. Makhdoom, I.; Abolhasan, M.; Lipman, J.; Liu, R.P.; Ni, W. Anatomy of Threats to the Internet of Things. IEEE Commun. Surv.
Tutor. 2019, 21, 1636–1675, https://doi.org/10.1109/comst.2018.2874978.

5. Zhang, M.; Raghunathan, A.; Jha, N.K. Trustworthiness of Medical Devices and Body Area Networks. Proc. IEEE 2014, 102,
1174–1188, https://doi.org/10.1109/jproc.2014.2322103.

6. Karageorgou, M.; Mantas, G.; Essop, I.; Rodriguez, J.; Lymberopoulos, D. Cybersecurity attacks on medical IoT devices for
smart city healthcare services. In IoT Technologies in Smart Cities: From Sensors to Big Data, Security and Trust; Institution of Engi-
neering and Technology (IET): London, UK, 2020; pp. 171–187.

7. Essop, I.; Ribeiro, J.C.; Papaioannou, M.; Zachos, G.; Mantas, G.; Rodriguez, J. Generating Datasets for Anomaly-Based Intrusion
Detection Systems in IoT and Industrial IoT Networks. Sensors 2021, 21, 1528, https://doi.org/10.3390/s21041528.

8. Gope, P.; Hwang, T. BSN-Care: A Secure IoT-Based Modern Healthcare System Using Body Sensor Network. IEEE Sens. J. 2016,
16, 1368–1376, https://doi.org/10.1109/jsen.2015.2502401.

9. Alsubaei, F.; Abuhussein, A.; Shiva, S. Security and Privacy in the Internet of Medical Things: Taxonomy and Risk Assessment.
In Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops), Singapore, 9
October 2017; pp. 112–120.

10. Ribeiro, J.; Saghezchi, F.B.; Mantas, G.; Rodriguez, J.; Abd-Alhameed, R.A. HIDROID: Prototyping a Behavioral Host-Based
Intrusion Detection and Prevention System for Android. IEEE Access 2020, 8, 23154–23168, https://doi.org/10.1109/ac-
cess.2020.2969626.

11. Ribeiro, J.; Saghezchi, F.B.; Mantas, G.; Rodriguez, J.; Shepherd, S.J.; Abd-Alhameed, R.A. An Autonomous Host-Based Intru-
sion Detection System for Android Mobile Devices. Mob. Netw. Appl. 2019, 25, 164–172, https://doi.org/10.1007/s11036-019-
01220-y.

12. Ribeiro, J.; Mantas, G.; Saghezchi, F.B.; Rodriguez, J.; Shepherd, S.J.; Abd-Alhameed, R.A. Towards an Autonomous Host-Based
Intrusion Detection System for Android Mobile Devices. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, LNICST; Springer: Cham, Switzerland, 2018; Volume 263, pp. 139–148.

Electronics 2021, 10, 2562 25 of 26

13. Asharf, J.; Moustafa, N.; Khurshid, H.; Debie, E.; Haider, W.; Wahab, A. A Review of Intrusion Detection Systems Using Ma-
chine and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions. Electronics 2020, 9, 1177,
https://doi.org/10.3390/electronics9071177.

14. Thamilarasu, G.; Odesile, A.; Hoang, A. An Intrusion Detection System for Internet of Medical Things. IEEE Access 2020, 8,
181560–181576, https://doi.org/10.1109/access.2020.3026260.

15. Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A.N. TON-IoT Telemetry Dataset: A New Generation Dataset of IoT
and IIoT for Data-Driven Intrusion Detection Systems. IEEE Access 2020, 8, 165130–165150, https://doi.org/10.1109/ac-
cess.2020.3022862.

16. Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2011, 39, 261–283, https://doi.org/10.1007/s10462-011-9272-4.
17. Géron, A. Hands-On Machine Learning with Scikit-Learn and Tensor Flow: Concepts, Tools, and Techniques to Build Intelligent Systems;

O’Reilly Media: Sebastopol, CA, USA, 2017.
18. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32, https://doi.org/10.1023/a:1010933404324.
19. Doshi, R.; Apthorpe, N.; Feamster, N. Machine Learning DDoS Detection for Consumer Internet of Things Devices. In Proceed-

ings of the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24 May 2018; pp. 29–35,
https://doi.org/10.1109/SPW.2018.00013.

20. D’Agostini, G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Inst. Methods Phys. Res. A 1995, 362, 487–
498, https://doi.org/10.1016/0168-9002(95)00274-X.

21. Subba, B.; Biswas, S.; Karmakar, S. Intrusion Detection Systems using Linear Discriminant Analysis and Logistic Regression. In
Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015.

22. Huraj, L.; Horak, T.; Strelec, P.; Tanuska, P. Mitigation against DDoS Attacks on an IoT-Based Production Line Using Machine
Learning. Appl. Sci. 2021, 11, 1847, https://doi.org/10.3390/app11041847.

23. Moustafa, N.; Hu, J.; Slay, J. A holistic review of Network Anomaly Detection Systems: A comprehensive survey. J. Netw. Com-
put. Appl. 2019, 128, 33–55, https://doi.org/10.1016/j.jnca.2018.12.006.

24. Verma, A.; Ranga, V. Machine Learning Based Intrusion Detection Systems for IoT Applications. Wirel. Pers. Commun. 2020, 111,
2287–2310, https://doi.org/10.1007/s11277-019-06986-8.

25. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. Network Anomaly Detection: Methods, Systems and Tools. IEEE Commun. Surv.
Tutor. 2013, 16, 303–336, https://doi.org/10.1109/surv.2013.052213.00046.

26. Suthaharan, S.; Alzahrani, M.; Rajasegarar, S.; Leckie, C.; Palaniswami, M. Labelled data collection for anomaly detection in
wireless sensor networks. In Proceedings of the 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks
and Information Processing, ISSNIP 2010, Brisbane, QLD, Australia, 7–10 December 2010; pp. 269–274.

27. Sivanathan, A.; Gharakheili, H.H.; Loi, F.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Classifying IoT Devices
in Smart Environments Using Network Traffic Characteristics. IEEE Trans. Mob. Comput. 2019, 18, 1745–1759,
https://doi.org/10.1109/tmc.2018.2866249.

28. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of
Things for network forensic analytics: Bot-IoT dataset. Futur. Gener. Comput. Syst. 2019, 100, 779–796, https://doi.org/10.1016/j.fu-
ture.2019.05.041.

29. Hamza, A.; Gharakheili, H.H.; Benson, T.A.; Sivaraman, V. Detecting Volumetric Attacks on IoT Devices via SDN-Based Mon-
itoring of MUD Activity. In Proceedings of the 2019 ACM Symposium on SDN Research, San Jose, CA, USA, 3–4 April 2019;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 36–48.

30. Zachos, G.; Essop, I.; Mantas, G.; Porfyrakis, K.; Ribeiro, J.C.; Rodriguez, J. Generating IoT Edge Network Datasets based on the
TON_IoT Telemetry Dataset. In Proceedings of the 2021 IEEE International Workshop on Computer Aided Modeling and De-
sign of Communication Links and Networks, Virtual Event, 25–27 October 2021.

31. Node-RED. Available online: https://nodered.org/ (accessed on 13 August 2021).
32. ToN_IoT datasets | IEEE DataPort. Available online: https://ieee-dataport.org/documents/toniot-datasets (accessed on 19

October 2021).
33. What is VMware NSX? Network Security Virtualization Platform AU. Available online: https://www.vmware.com/au/prod-

ucts/nsx.html (accessed on 13 August 2021).
34. Stojmenovic, I.; Wen, S. The fog computing paradigm: Scenarios and security issues. In Proceedings of the 2014 Federated Con-

ference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; pp. 1–8.
35. Österlind, F.; Dunkels, A.; Eriksson, J.; Finne, N.; Voigt, T. Cross-Level Sensor Network Simulation with COOJA. In Proceedings

of the 2006 31st IEEE Conference on Local Computer Networks, Tampa, FL, USA, 14–16 November 2006; pp. 641–648.
36. Moteiv Corporation Tmote Sky—Ultra Low Power IEEE 802.15.4 Compliant Wireless Sensor Module. Available online:

http://www.crew-project.eu/sites/default/files/tmote-sky-datasheet.pdf (accessed on 6 September 2021).
37. International Telecommunications Union—Telecommunication Standardization Sector (ITU-T). Recommendation ITU-T

Y.2060: Overview of the Internet of Things. Available online: https://www.itu.int/ITUT/recommendations/rec.aspx?rec=y.2060
(accessed on 19 October 2021).

38. Scikit-Learn. Available online: https://scikit-learn.org/stable/ (accessed on 20 August 2021).
39. Latif, S.; Zou, Z.; Idrees, Z.; Ahmad, J. A Novel Attack Detection Scheme for the Industrial Internet of Things Using a Light-

weight Random Neural Network. IEEE Access 2020, 8, 89337–89350, https://doi.org/10.1109/access.2020.2994079.

Electronics 2021, 10, 2562 26 of 26

40. Huma, Z.E.; Latif, S.; Ahmad, J.; Idrees, Z.; Ibrar, A.; Zou, Z.; Alqahtani, F.; Baothman, F. A Hybrid Deep Random Neural
Network for Cyberattack Detection in the Industrial Internet of Things. IEEE Access 2021, 9, 55595–55605,
https://doi.org/10.1109/access.2021.3071766

