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Abstract: The dual active bridge (DAB) is a dc/dc converter frequently employed in multiple
applications due to its advantages of isolation, power flexibility, and input and output voltage defined
by design. Different multi-phase modulations have been reported to increase DAB efficiency and
reduce components stress but, certainly, the control and implementation complexity increases with
every displacement angle added because of the multiple variable measurements. This paper presents
two-stage modulations based on the single phase-shift (SPS), which allows maintaining simplicity
while improving the efficiency of the DAB converter depending on the design conditions. The paper
also gives a direction for selecting the proper modulation to achieve the best efficiency for each
situation. The different two-stage modulations are described, analyzed, and experimentally tested.
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1. Introduction

The dual active bridge (DAB) is a dc/dc converter which, due to its flexibility,
is employed for different applications, such as solid-state transformers [1–3], transportation
applications [4–6], and renewable energy [7,8]. The converter, shown in Figure 1, comprises
two inverters and a high-frequency transformer (HFT). This topology provides isolation
between the input and output but also reduces the volume and space. Additionally,
the output voltage and power level may be selected by design.
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Figure 1. Dual active bridge (DAB) converter.
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The DAB converter is operated traditionally as two dc/ac converters, where its voltage
outputs are square or quasi-square waveforms, with a phase shift between them. Depend-
ing on the number of displacement angles used, the classification might be as a single-
phase-shift (SPS) modulation, which uses only one displacement angle, or multi-phase
solutions such as dual-phase-shift (DPS), extended-phase-shift (EPS), or triple-phase-shift
(TPS), as shown in [9]. All the previously mentioned modulations should be derived from
the TPS, making them special cases when one or two displacement angles remain constant
or are equal to each other.

These modulation techniques focus, generally, on reducing losses by implementing
different operating modes and increasing the soft-switching power range [10–16]. In [10],
a modulation-based algorithm to control the DAB power flow is proposed; mainly to
minimize the total power losses of the DAB converter. A similar method is proposed in [11],
which is focused on assuring soft switching in the whole power range, by changing the
modulation technique. Different modes of operation are proposed in [12] to increase the
efficiency, the burst mode and frequency change are considered. In [13], a proportional
value modulation is proposed to reduce the reactive current at different operating points.
The double quasi-square output operation is analyzed in [14,15] and proposes a method to
reduce the reactive current for losses reduction, resulting in a complex system.

The work in [17] is focused on incorporating soft switching to the DAB converter
through a resonant topology. Resonant topologies have the soft switching advantage;
however, more components and the resonant tank tuning are drawbacks to consider.

In [18], a cooperative TPS, as it was named, was presented. This modulation allows
zero current switchings (ZCS) during an extended power range and low RMS current,
at the expense of more complex calculus.

In [19,20], different SPS modulations are presented. However, the modulations ana-
lyzed are like the EPS, where two-phase displacement angles are equal, which is a special
case of the DPS modulation. In [21,22], the studies of EPS and TPS modulations are shown.
To obtain the best efficiency is the main goal of these studies.

The main idea of this work is to study a different scheme, entitled two-stage modula-
tion, that keeps the simple operation. The work also tries to give directions for selecting
the most efficient modulation depending on the DAB converter conditions, which consider
power factor, RMS current, and soft switching regions. The different modulations are
described, analyzed, and experimentally validated.

The paper is organized as follows: in Section 2 the traditional DAB converter operation
is discussed, this will permit to derive the different two-stage modulations. In Section 3,
one modulation is analyzed in detail, but providing information for the different modula-
tions to be addressed. The experimental results are presented in Section 4. Finally, some
conclusions are drawn.

2. Dual Active Bridge Converter

The simplified circuit considered for the DAB converter is shown in Figure 2, where
two square or quasi-square voltage sources are considered plus the inductive element [23].
VDC or V1 is the amplitude of the input source (VT1); VOUT is the output voltage, then the
second source (VT2) has an amplitude of V2 or nVOUT, where the transformer ratio is n:1.
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The voltage V2 may be higher or lower than V1, then two operating modes occur [11].
When V2 is higher than V1, the boosting mode happens; but when V2 is lower than V1,
the converter operates in bucking mode.

Traditional Single-Phase-Shift Modulation

The simplest modulation for a DAB converter is the SPS modulation since only one
angle is employed to regulate the output voltage. The typical steady-state waveforms of
the DAB converter, for this operation, are shown in Figure 3. The upper current waveform
corresponds to the boosting mode operation (V2 > V1), the lower current waveform cor-
responds to the bucking mode operation (V2 < V1). The whole waveform occurs in four
stages, but only two are described due to the symmetry:

1. From 0 < θ < δ. The output of VT1 is positive (VDC), but the output of VT2 is negative
(-nVOUT). During this time, the inductor current will increase.

2. From δ < θ < π. The output of VT1 is still positive (VDC), but the output of VT2 is now
positive (nVOUT) as well. During this time, the inductor current will increase if the
bucking mode happens or will decrease if the boosting mode occurs.
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Figure 3. Traditional single-phase-shift (SPS) modulation main waveforms.

Four different stages are employed for typical modulation. All the possible switching
states are shown in Figure 4. As can be observed, the stages “c” and “a” are employed for
the positive semi-cycle, and the stages are “g” and “i” for the negative semi-cycle. It can be
observed that stages “c” and “g” are equivalent, but for the opposite semi-cycle the same
happens for stages “a” and “i”. As shown in Figure 4, there are more than four switching
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stages and, therefore, other possibilities are open to analysis but, keeping the simplicity,
only two switching stages are similar to SPS modulation.
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3. Two-Stage Modulations

Different switching stages can be employed for the DAB converter (Figure 4). In this
work, for the positive semi-cycle (considering the high-frequency transformer voltage),
five different switching states are employed to define the complete modulation, since the
others are considered equivalent for the negative semi-cycle (Table 1). Therefore, to obtain
the complete waveforms it is only necessary to consider one semi-cycle and to use Table 1
for the equivalency and determine the waveforms of the complete period.

Table 1. Stages equivalency.

Positive Semi-Cycle Negative Semi-Cycle

Stage a Stage i
Stage b Stage h
Stage c Stage g
Stage d Stage f
Stage e Stage e

The two-stage modulation only employs as the name indicate two switching states
for the positive semi-cycle; to assure the power transfer, the positive voltage of both the
input and output voltage must be included in at least one of the stages, and to provide
good efficiency it is suggested the stage when both are positive (stage “a”) is used.

In Table 2, different two-stage modulations are given. As an example, the stages “b”
and “a” are considered for the positive semi-cycle, which define a different modulation;
we called this boost modulation since have the best characteristics in boosting mode.
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To obtain the complete period the stages “h” and “i” are used for the negative semi-cycle
since they are the equivalent stages (Table 1). The boost modulation is described in detail in
the next sections, but the operation is easily extrapolated to the other two-stage modulations.

Table 2. Two-stage modulations possible states.

Modulation
Switching States

Positive Semi-Cycle Negative Semi-Cycle

SPS c, a g, i
Boost b, a h, i
Buck a, d i, f

Flyback b, d h, f

3.1. Boost Modulation

The steady-state waveforms of the boost modulation are shown in Figure 5. It the
ac voltage sources with their respective phase displacement can be observed, but also the
inductor current is shown. For the direct power transfer, the upper current waveform
corresponds to the boosting mode of operation (V2 > V1), the lower current waveform
corresponds to the bucking mode of operation (V2 < V1).
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The full operation occurs in four stages, but only two are described due to the sym-
metrical behavior (Figure 5a):

1. From 0 < θ < δ. The output of VT1 is positive (VDC), but the output of VT2 is zero.
During this time, the inductor current will be increased.

2. From δ < θ < π. The output of VT1 is again positive (VDC), but the output of VT2 is
now positive (nVOUT). During this time, the inductor current will be increased if the
bucking mode happens or will be decreased if the boosting mode occurs.
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Similarly, then, the aforementioned occurs at the switching period. It can be observed
that stages “b” and “h” are equivalent, but one for the positive, and the other for the
negative semi-cycle. The same happens for “a” and “i”.

3.2. Bidirectional Power

Another characteristic of the DAB converter is the power bidirectionality, which is
considered in different applications. All the two-stage modulations can also be operated
for reversal power transfer, waveforms for boost modulation are shown in Figure 5b; now,
the angle δ, is measured since π/2, not from 0 degrees. The difference with direct power
transfer is that the switching states are now appearing in inverse order.

The full operation occurs in four stages again, but only two are described due to
the symmetry:

1. From 0 < θ < δ. The output of VT1 and VT2 are both positive (VDC and nVOUT). During
this time, the inductor current will be increased if the bucking mode happens or will
be decreased if the boosting mode occurs.

2. From δ < θ < π. The output of VT1 is positive (VDC), but the output of VT2 is now zero.
During this time, the inductor current will be increased.

As can be observed, the current has a polarity change, and then the power flows
oppositely. As with the positive transfer, the angle δ can only take values between 0
and π/2.

3.3. Steady-State Analysis

The boost modulation is analyzed in this section. For this, Figure 5a is considered,
then the inductor current may be expressed as:

iL(θ) =

{ V1
ωL θ − I0 0 ≤ θ ≤ δ

V1−V2
ωL θ + V1

ωL δ − I0 0 ≤ θ ≤ π − δ
(1)

where: ω is the angular switching frequency,
I0 is the initial current,
L is the inductance of the topology.
The other semi-cycle of the inductor current is omitted since it is symmetrical, due to

the ac operation. Note that the vertical axis was shifted to determine the second equation,
and this was done for simplification purposes in the analysis.

The value of the inductor current at π − δ is determined by:

iL(π − δ) =
V1 − V2

ωL
(π − δ) +

V1

ωL
δ − I0 = I0 (2)

Then, the initial current value may be determined from (2), and it is given by:

I0 =
1

2ωL
[V1(π)− V2(π − δ)] (3)

The active power can be determined by considering just the first semi-cycle, that is:

P =
1
π

∫ π

0
V1iLdθ (4)

Then considering the intervals of the current, Equation (4) becomes:

P =
1
π

[∫ δ

0
(V1iL)dθ +

∫ π−δ

0
(V1iL)dθ

]
(5)
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Considering (1), (3), (5), and simplifying is obtained:

P =
V1V2

2ωL
δ

(
1 − δ

π

)
(6)

It can be noticed that (6) is half of the typical equation considered for traditional
SPS modulation.

The RMS value of the inductor current is determined by:

I2
Lrms =

1
π

∫ δ

0

(
V1

ωL
θ − I0

)2
dθ +

1
π

∫ π−δ

0

(
V1 − V2

ωL
θ +

V1

ωL
δ − I0

)2
dθ (7)

Solving (7) is obtained by:

iLrms =

√√√√(V2
1 π3 − V1V2(4δ3 − 6πδ2 + 2π3) + V2

2 (2δ3 − 3πδ2 + π3)

12π(ωL)2

)
(8)

The apparent power referred to the input voltage (V1) is determined by:

PVA = V1iLrms (9)

The power factor (PF) for the input voltage is then:

PF =
P

PVA
=

V2

2ωLiLrms
δ

(
1 − δ

π

)
(10)

Table 3 summarizes the equations for the modulations under study.

Table 3. Two-stage modulation equations.

Modulation Inductor Current Output Power ILrms and Power Factor

SPS
iL(θ) =


V1+V2

ωL θ − I0
V1−V2

ωL θ + V1+V2
ωL δ − I0

where: I0 = 1
2ωL [V1(π)− V2(π − 2δ)]

V1V2
ωL δ

(
1 − δ

π

) iLrms =

√(
V2

1 π3−V1V2(8δ3−12πδ2+2π3)+V2
2 π3

12π(ωL)2

)
PF =

V2
ωLiLrms

δ
(

1 − δ
π

)

Boost
iL(θ) =


V1
ωL θ − I0
V1−V2

ωL θ + V1
ωL δ − I0

where: I0 = 1
2ωL [V1(π)− V2(π − δ)]

V1V2
2ωL δ

(
1 − δ

π

) iLrms =√(
V2

1 π3−V1V2(4δ3−6πδ2+2π3)+V2
2 (2δ3−3πδ2+π3)

12π(ωL)2

)
PF =

V2
2ωLiLrms

δ
(

1 − δ
π

)
Buck

iL(θ) =


V1−V2

ωL θ − I0
−V2
ωL θ + V1−V2

ωL δ − I0

where: I0 = 1
2ωL [V1(π)− V2(π)]

V1V2
2ωL δ

(
1 − δ

π

) iLrms =

√(
V2

1 (3πδ2−2δ3)+V1V2(4δ3−6πδ2)+V2
2 π3

12π(ωL)2

)
PF =

V2
2ωLiLrms

δ
√

π
δ

(
1 − δ

π

)
Flyback

iL(θ) =


V1
ωL θ − I0

− V2
ωL θ + V1

ωL δ − I0

where: I0 = 1
2ωL [V1(δ)− V2(π − δ)]

V1V2
2ωL δ

(
1 − δ

π

) iLrms =

√(
V2

1 (3πδ2−2δ3)+V2
2 (2δ3−3πδ2+π3)

12π(ωL)2

)
PF =

V2
2ωLiLrms

δ
√

π
δ

(
1 − δ

π

)

3.4. Soft-Switching

The DAB converter may operate at soft-switching depending on the operating con-
ditions. Each branch of the two bridges may have a different condition. For the boost
modulation, both input bridge branches have the next condition:

V2

V1
<

π

π − δ
(11)
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But the output bridge branches have the following two conditions:

V2

V1
>

π

π − δ
(12)

V2

V1
>

π − 2δ

π − δ
(13)

Condition (12) is for the left branch and (13) for the right branch. Notice that (11)
and (12) are exactly opposite conditions, then the soft-switching operation cannot be
guaranteed for all the branches at the same time.

The soft switching occurs only when a small capacitor is placed in parallel with the
MOSFET (drain-source), otherwise, all the devices will be operating at hard switching.
In order to calculate the capacitor value, the following formula may be used:

Czvs << Imin
td

Vczvs
(14)

where: CZVS is the capacitor value,
Imin is the minimum inductor current at each transition;
td is the blanking time; and
VCZVS is the capacitor voltage.
For the boost modulation, the best operation is when three branches can operate at

soft-switching conditions, then a small capacitor should be added to respective branches.
Table 4 shows the conditions for all the modulations studied. As can be derived from

Table 4, the traditional SPS may operate all the branches at soft switching at the same
time; the boost and buck modulations only three branches at the same time; and finally the
flyback modulation only two branches may operate at soft switching at the same time.

Table 4. Soft switching conditions.

Modulation Input Bridge Output Bridge

SPS V2
V1

< π
π−2δ

V2
V1

> π−2δ
π

Boost
V2
V1

< π
π−δ

V2
V1

> π
π−δ , V2

V1
> π−2δ

π−δ

Buck
V2
V1

< δ
π , V2

V1
> δ

π−2δ
V2
V1

> δ
π

Flyback
V2
V1

< δ
π−δ , V2

V1
< δ

δ−π
V2
V1

> δ
π−δ , V2

V1
> δ

δ−π

3.5. Discussion on Two-Stage Modulation

Different graphs were obtained for the different two-stage modulations to evaluate its
performance under different conditions, and this is based on the previous analysis which
considers the equations in Table 3.

Figure 6 shows the PF of the different modulations at different gains (M = V2/V1),
gains 0.5, 1, and 2 were selected, a power normalization was made considering the max-
imum power of the traditional SPS modulation. For just the traditional modulation,
the power can reach the maximum power, but for the others, only half of the power can
be reached in correspondence with the theory (Table 3). As can be observed in Figure 6a,
for M = 0.5, the buck modulation offers the best PF, and this modulation is suggested for
M < 0.55. For M = 1, the traditional SPS modulation offers the best power PF (Figure 6b)
and, indeed, this is the best PF that can be achieved for all cases. For M = 2, the boost
modulation has the best PF (Figure 6c), and this technique is suggested for M > 1.45.
The higher the PF, the fewer conduction losses that are expected and, therefore, the higher
the efficiency.
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Depending on the applications and consequently the operating conditions, the best
two-stage modulation should be selected according to the designed M. Since the best PF
possible is obtained with a gain M = 1, the converter should be worked in this condition,
when possible, and using the traditional SPS modulation.

On the other hand, Figure 7 shows the regions where soft switching can be obtained.
In Figure 7a can be observed the soft-switching region for the traditional SPS; Figure 7b
shows the soft switching region for the boost modulation; while in Figure 7c the region
where the buck modulation has soft switching is illustrated; finally, Figure 7d depicts the
soft switching area for the flyback modulation. Each modulation has its best operating
region. It is observable that the soft switching is dependent on the respective displacement
angle and the voltage gain (M). However, some modulations are not viable for achieving
soft switching in all its devices, as was explained in Section 3.4.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 13 
 

 

region. It is observable that the soft switching is dependent on the respective displace-
ment angle and the voltage gain (M). However, some modulations are not viable for 
achieving soft switching in all its devices, as was explained in section 3.4.  

  
(a) (b) 

  
(c) (d) 

Figure 7. Soft switching regions: (a) traditional SPS modulation, (b) boost modulation, (c) buck 
modulation, and (d) flyback modulation. 

For the traditional SPS, the best region to operate is near M = 1 for both PF and 
soft-switching conditions; for the boost modulation it is M > 1 for soft switching condi-
tions and also the best PF; the best conditions for the buck modulation are M < 0.6 for PF, 
and low angles for soft switching conditions; the flyback modulation has the worst PF in 
all cases, and the worst soft-switching scenario. 

Efficiency depends on two factors: conduction losses and switching losses. The first 
one is related to the PF and the second can be eliminated if the soft-switching conditions 
are satisfied. The best two-stage modulation should be selected depending on the oper-
ating conditions but considering the PF and the soft switching region. 

4. Experimental Results 
A power converter was designed and experimentally tested. The parameters are 

summarized in Table 5. To evaluate the performance of the system, different tests were 
carried out. The performance of each operating condition was evaluated, and the effi-
ciency and the RMS current of the inductor were measured. All the tests were carried out 
in hard-switching conditions. 

Table 5. Experimental test parameters. 

Parameter M = 0.5 M = 2 M = 1 
Output power 200 W 
Input voltage 200 V 100 V 100 V 

Output voltage 100 V 200 V 100 V 
Switching frequency 25 kHz 

Series inductor 244 μH 114 μH 

Figure 7. Soft switching regions: (a) traditional SPS modulation, (b) boost modulation, (c) buck modulation, and (d)
flyback modulation.



Electronics 2021, 10, 2561 10 of 13

For the traditional SPS, the best region to operate is near M = 1 for both PF and
soft-switching conditions; for the boost modulation it is M > 1 for soft switching conditions
and also the best PF; the best conditions for the buck modulation are M < 0.6 for PF,
and low angles for soft switching conditions; the flyback modulation has the worst PF in
all cases, and the worst soft-switching scenario.

Efficiency depends on two factors: conduction losses and switching losses. The first
one is related to the PF and the second can be eliminated if the soft-switching conditions are
satisfied. The best two-stage modulation should be selected depending on the operating
conditions but considering the PF and the soft switching region.

4. Experimental Results

A power converter was designed and experimentally tested. The parameters are
summarized in Table 5. To evaluate the performance of the system, different tests were
carried out. The performance of each operating condition was evaluated, and the efficiency
and the RMS current of the inductor were measured. All the tests were carried out in
hard-switching conditions.

Table 5. Experimental test parameters.

Parameter M = 0.5 M = 2 M = 1

Output power 200 W
Input voltage 200 V 100 V 100 V

Output voltage 100 V 200 V 100 V
Switching frequency 25 kHz

Series inductor 244 µH 114 µH
Transformer ratio n = 1

4.1. Steady-State Waveforms

Figure 8 shows the waveforms for the different two-stage modulations. The ac voltage
sources with their respective phase displacement can be observed, but also the inductor
current is shown. In Figure 8a the traditional SPS modulation is shown when M = 1.
In Figure 8b, the boost modulation occurs when the DAB operates in boosting mode
(M = 2). Figure 8c,d show the DAB waveforms (M = 0.5) for the buck and flyback modu-
lations, respectively. As can be observed, the waveforms correspond with the described
operation and effectively two stages are employed to define the DAB operation.

4.2. Efficiency

Figure 9 shows the efficiency for the different two-stage modulations. Figure 9a
illustrates the efficiency operating in boosting mode, while in Figure 9b the bucking mode
efficiency might be observed; and, in Figure 9c, the efficiency when M = 1 is depicted.
It can be observed that traditional SPS have better efficiency when M = 1, as is expected
due to the behavior described in the power factor section. However, better performance is
observed for the boost and buck modulations when the converter operates in the bosting
or bucking mode, respectively. This is the boost modulation that is better for M = 2,
and the buck modulation is best for M = 0.5.

4.3. RMS Inductor Current

The inductor RMS currents are shown in Figure 10 and, as can be observed, each
two-stage modulation has an optimal operating region. Figure 10a corresponds to M = 0.5,
Figure 10b to M = 1, and Figure 10c to M = 2. Again, it can be seen that the traditional SPS
has better performance when M = 1; the boost modulation is better for M = 2; and the buck
modulation is best for M = 0.5, because of the values of the RMS current.
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Figure 9. Efficiency results for: (a) M = 0.5, (b) M = 1, (c) M = 2.
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5. Conclusions

The DAB converter is a widely used converter due to its design flexibility. Single-
phase shift is the simplest modulation technique used for the converter. In this paper,
different two-stage modulations based on the SPS were analyzed where only two stages are
needed to transfer power. The best modulation technique may be selected depending on
the operating conditions based on the gain, but considering the PF and the soft switching
region since the different modulation offers better performance than the others depending
on the operating conditions. Traditional SPS is suggested when gain near one is employed,
but when boosting or bucking modes are used, the boost or the buck modulation may be a
better option. One of the advantages of the studied modulations is the simplicity of the
modulation; only one displacement angle is in fact needed.

The buck modulation operates best when the converter works in bucking mode, while
the boost modulation shows better performance when the converter is driven in boosting
mode. To validate the analysis, experimental results were conducted, which illustrated the
performance of each modulation.
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