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Abstract: This paper deals with a wireless power transfer system where a novel structure of transmit-
ting/receiving double DD coils is applied. This system uses two identical double D (DD) transmitter
coils stacked on each other to transfer power to two stacked receiver coils. The power is transmitted
simultaneously and independently through both transmitter coils to the receiving coils. The magnetic
field of the first coil does not interfere with the second coil. Both transmitter and receiver coils are
placed on each other and occupy the same footprint, so there is no need for increased space. This
can lead to an interesting wireless power transfer system—from single load to double the load and
higher power transfer density.

Keywords: inductive-wireless power transfer; double DD coils; half-bridge inverter structure; double
increased power rate

1. Introduction

Research regarding wireless power transfer (WPT) has gained more interest due to
the increase in the development of electric vehicles and portable mobile devices. Wireless
power transfer can be used to charge and supply electric devices with different power
ranges wirelessly, — from a couple of watts used to power up portable electronics such as
medical equipment [1] and cell phones [2] to kilowatt ranges for use in charging electric
vehicles [3–6]. Wireless power is transferred via an electromagnetic field. Methods for
wireless power transmission differ from each other in the technology used to transfer
power and in the distance the power should be transferred [7]. The distance of wireless
power transfer is classified as near-field and far-field based on the wavelength (λ) of the
electromagnetic radiation in comparison to the antenna dimensions (transmitter). Wireless
charging of consumer electronics and electric vehicles is classified under near-field wireless
power transfer [8]. The air gap between the transmitter and receiver is usually around a
couple of centimeters to a couple of decimeters. The two main technologies used in near-
field wireless transfer are Capacitive-wireless Power Transfer (CPT) and Inductive-wireless
Power Transfer (IPT). While both technologies provide the opportunity to transfer a wide
range of power (W to kW range), the IPT is more suitable for larger gaps and allows higher
power density, while CPT is more suitable for smaller air gaps in the range of mm [7]. The
main challenge of designing an IPT system is overall system efficiency. The transmitter and
receiver coils are loosely coupled magnetically, so the coupling coefficient between coils is
usually low. The system efficiency can be increased by increasing the operating frequency.
In electrical vehicle applications, the operating frequency of the wireless power transfer
is usually 85 kHz, which follows the resolution of the SAE International J2954 Taskforce
about Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment
Methodology [9]. Maximum wireless charger power is limited by physical constraints of the
lithium battery, such as the battery over-voltage and over-temperature. Battery modeling,
observation, and the use of models in fast-charging algorithms are presented in [10,11]. The
coupling coefficient is dependent on the distance and horizontal misalignment between
the transmitter and receiver coils. The traditional coupler structure is unipolar and has
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poor horizontal misalignment tolerance [5,12]. Reference [13] proposed a new coupler
structure called double D, or DD, which improves the horizontal misalignment tolerance.
The DD coil is named after its shape compared to the classic spiral planar coil. It consists of
two D-shaped coils, placed back-to-back. The DD coupler structure includes a polarized
coil and mimics a polarized flux-pipe coil structure, without the double-sided magnetic
field [14]. According to [13], horizontal misalignment tolerance along the y-axis is better
than tolerance along the x-axis. To improve the design, another quadrature Q coil was
added to the receiving DD coil. This resulted in a DDQ receiver coil with better horizontal
misalignment tolerance along the x-axes. Reference [15] proposed a layered DD coupler
structure (LDD), which improves the magnetic field and increases the power density. The
DD coils in the LDD are positioned in a way so that the magnetic field adds up to a larger
magnetic field constructively.

This paper presents a double DD coupler topology with a layered coil structure. Each
transmitter and receiver includes two DD coils that are rotated by 90◦ around the z-axis.
Due to the rotation between the two DD coils on the transmitter side, the coils are not
coupled magnetically and can transfer power independently to their counterparts on the
receiving side. This results in higher power density and uniform misalignment tolerance
compared to a single DD coil. After the Introduction, Section 2 describes novel double DD
coils that can be used in the same way as single-coil applications. Small-scale functional
models are designed and evaluated to prove the feasibility of the double DD coils. Section 3
presents the IPT system structure. Section 4 describes the design process of a coupling
coefficient measurement system and small-scale IPT system for experimental verification.
Section 5 is divided into two parts: the first includes the measurements of inductance and
the coupling coefficient of single and double DD coil structures in the x, y and z directions.
The second includes the comparison of WPT systems based on single and double DD coil
structures. Section 6 contains a discussion about the experimental results. Finally, Section 7
serves as a conclusion relating to the novelties described in this paper.

2. The Proposed Double DD Coil Design

This section describes novel double DD coils and their physical implementation on a
small-scale test system. Both transmitter and receiver coils have the same design and the
same parameters. The single DD coil structure and the proposed double DD coil structure
are presented in Figure 1a,b, respectively. The coil structure in Figure 1a consists of a ferrite
plate and a single DD coil with two terminals. The proposed double DD coil structure in
Figure 1b consists of a ferrite plate, the first planar DD coil is noted as DD1, and the second
planar DD coil is noted as DD2. Coils DD1 and DD2 are rotated 90◦ to each other. Each of
the DD coils has two terminals; therefore, the proposed double DD coil has four terminals.

The DD coils in the single DD coil structure and DD coils in the proposed double DD
coil structure have the same dimensions and the same parameters. The DD-shaped coils,
shown in Figure 1a,b, have a polarized magnetic field; similar to but unlike the flux-pipe,
the magnetic field is only radiated on the one side [15] (the side that is not shielded by the
ferrite plate)—similar to ordinary non polarized planar spiral coils. This removes the need
for other shielding and magnetic field cancelation, to follow safety standards, and to shield
other components of the system.
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Figure 1. Exploded transmission pad: (a) With single DD coil; (b) with double DD coils.

When excited, the DD coil generates a polarized magnetic field. The main aspects
of the magnetic fields of both single DD and double DD coil structures are presented in
Figure 2a,b, respectively. Figure 2a presents the magnetic flux lines between the transmitter
and receiver pad in the case of a single DD coil structure. The single DD transmitter coil
generates the field marked with flux lines (yellow) and induces a voltage in the single
receiver coil. Figure 2b presents the magnetic flux lines between the transmitter and
receiver pad in the case of the double DD coil structure. DD1 generates the field marked
with DD1 flux lines (yellow), and DD2 generates the field marked with DD2 flux lines
(red). The main part of the DD1 field is perpendicular to the DD2 field. Due to the
perpendicular nature of the DD coils’ fields, these are not linked magnetically. Similar cases
are reported in [16,17], where magnetically uncoupled coils are used as a part of a resonator
compensation structure. The DD1 field does not induce a voltage in the DD2 coil and vice
versa. The DD1 coil would induce the voltage only in a coil that is not perpendicular to it.
The coupling coefficient between the transmitter DD coil and receiver DD coil is maximized
if both coils are aligned along the same axis.

Because transmitter coils DD1 and DD2 are magnetically uncoupled, they can be
excited separate from each other, with different phases, different frequencies, and different
currents. The transmitted magnetic fields do not interfere with each other. However, on
the secondary, receiver side, the magnetic field does not interact if only the receiving pad is
aligned correctly with the transmitting pad. Therefore, if the transmitter coils are excited
separately, the receiver is dependent on rotation around the z-axis. Normally, in static
WPT applications, in which the transmitter and receiver do not move, that should not be a
problem, because the pads have the same orientation.

Practical implementation and measurements are needed to conform to the theory and
working principles behind the proposed coil structure of double DD pads. A small-scale
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model was built to verify the principle of feasibility in a practical application. Figure 3a,b
show the structure of the single and double DD coils. The size of the transmission pads
was limited by the dimensions of the commercially available ferrite plates, which were
square 100 by 100 mm. An ELECTROSOLA Litz wire with a nominal diameter of 0.071 mm
and 50 strands was used to reduce the skin and proximity effects.

Figure 2. Magnetic flux lines between the transmitter and the receiver pad: (a) with single DD coil
structure; (b) with double DD coil structure.

Implementation of the Layered Double DD Pads

A wound square transmission pad with a single DD coil structure is presented in
Figure 3a. It consists of a single DD coil with two terminals and a ferrite plate. The wound
square transmission pad with a double DD coil structure is presented in Figure 3b. It
consists of two electrically separated DD coils with two terminals each.

Figure 3. (a) Conventional structure of a single DD coil; (b) proposed double DD coil structure.

The physical dimensions and properties of the small-scale testing coils are given in
Table 1. The inductances of the DD coils were measured with an LRC meter at the frequency
of 100 kHz. The coils were designed with an operating frequency of 85 kHz in mind. The
DD1 and DD2 coils on the transmitting and receiving side had the same dimensions and
same self-inductance. The difference in inductance between DD1 and DD2 came from the
addition of the ferrite plate. The DD2 coil was positioned on the top of the DD1 coil. This
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resulted in lower self-inductance of the DD2 coil. If the DD1 and DD2 coils are nearly the
same shape, and are positioned correctly perpendicularly, the coupling coefficient between
them is zero. Practical tests show that the DD1 coil induced a negligible voltage level in the
DD2 coil.

Table 1. Transmission pad parameters.

Parameter Value

Ferrite pad dimensions 100 mm × 100 mm
DD1 number of turns 18 (9 per D coil)
DD2 number of turns 18 (9 per D coil)
DD1 inductance (µH) 45
DD2 inductance (µH) 45

DD1 DC resistance (mΩ) 42
DD1 DC resistance (mΩ) 42

3. System Structure

The above-described double DD coil structure was evaluated in two stages. Both
stages are presented in Figure 4. The first stage was a coupling coefficient measurement
(evaluation) in the 3D space, illustrated with the block diagram in Figure 4a. The second
stage was an evaluation of the IPT using the double DD coils, illustrated with the block
diagram in Figure 4b. The IPT system was used to evaluate the inverter to rectifier power
transfer and system efficiency. The double DD coil system was evaluated along with the
single DD coil system. In both stages, the single and double DD coils were mounted on
the mechanism of a repurposed 3D printer. This mechanism enabled the exact positioning
of IPT transfer pads in a 3D space using proper hardware and software reconstructions.
The primary transmitting side was mounted on the bottom platform, and the secondary
receiving side was mounted on the top platform.

Figure 4. Block diagram of: (a) the coupling coefficient measurement system; (b) the IPT system.

3.1. The Coupling Coefficient Measurement System

The coupling coefficient measurement system consisted of a high-frequency voltage
source, a switch-manipulator for different mutual inductance evaluations, and a 3D posi-
tioning mechanism for positioning the transmitter and receiver pads. The measurement
system is described further in more detail in Section 5.1.
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3.2. The IPT System

An IPT system that uses double DD coils is similar to the basic IPT transfer system
analyzed in [5,6] (Figure 4b). It is divided into two parts:

• A primary circuit on the transmitter side;
• A secondary circuit on the receiver side.

The primary side includes DC input voltage and a high-frequency inverter (transforms
the DC input voltage to high-frequency AC voltage) that is used to drive the transmitter
(TX) with a compensation circuit.

The secondary side includes the receiver (RX) coil and a compensation circuit. The
RX coil receives the high-frequency AC voltage over the magnetic field. The AC voltage is
afterward converted to DC voltage with the rectifier to supply DC voltage to the load. An
important part of the circuit is a compensation circuit, which resonates with the inductor
(transfer coil) and determines the resonant frequency of the IPT. The compensation circuit
usually consists of a capacitor that is parallel (P) or in series (S) to the coil, so the capacitors
CTi and CRi (i = 1,2) are added, as shown in Figure 5. Series–series compensation (SS) was
used due to the necessity of a constant operating frequency [18].

Figure 5. Circuit of a wireless power transfer system.

4. The Experimental Set Benches

To test the IPT system concept, two experimental set-benches were fabricated and are
shown in Figure 6a,b. The first one shown in Figure 6a stands for the setup for a coupling
coefficient measurement between two transfer pads in a 3D space. The measurement
set-bench included two coils and an inductance measurement circuit. The measurement
circuit was based on an auto-balancing circuit [19]. The second one is shown in Figure 6b
and stands for the setup for measuring the performance of the IPT system. In both
cases, the transmitter and receiver coil were mounted on the previously mentioned 3D
positioning mechanisms. The highlighted items in Figure 6a,b represent the measuring
circuits, converters, and other parts of the systems. The primary and secondary sides of the
IPT system relate to the TX and RX transmission pads. The transmission pads can have a
single DD or double DD structure, as described in Section 2.
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Figure 6. Experimental set bench: (a) the coupling coefficent measurement set bench; (b) the IPT system set bench.

The parts of the IPT system that were mounted on the positioning mechanism are
presented in Figure 6b. The inverter and auxiliary circuits of the synchronous rectifiers
were powered by the controlled DC voltage source. The position of the 3D positioning
mechanism and the output of the inverter were controlled by the PC application.

4.1. IPT System Parameters

A small-scale experimental IPT model was built to test the proposed double DD
structure under the IPT application. The parameters of the IPT system are presented in
Table 2. The system was designed with a resonant frequency of approximately 85 kHz.
As stated before, the inductances of the DD1 and DD2 coils that compose the double
DD coil structure differ from each other. Because of the differences in induction, series
compensation capacitors CTi and CRi must have different values for the system to resonate
at the same resonant frequency. Two resonators are formed via the magnetically linked
transmitter LTi and LRi coils with their respective compensation circuits CTi and CRi (i = 1,2).
To protect the system from exceeding the current limit, the DC power source was current
limited to 2 A. To reduce the hard switching losses of the inverter, the Zero Voltage
Switching (ZVS) technique could be applied [20,21]. In the ZVS region, the IPT system must
work with a frequency above the resonant frequency the resonator circuit was designed for.
The resonator shows inductive load properties and the current lags the voltage. This is the
condition that enables ZVS.

Table 2. System parameters.

Parameter Value

Input voltage (max) UDC (V) 25
Input current (max) IDC (A) 2

Load RL (Ω) 20
TX compensation CT1 (nF) 75.8
TX compensation CT2 (nF) 85.9
RX compensation CR1 (nF) 76.9
RX compensation CR2 (nF) 85.6

Resonant frequency f 0 (kHz) 85

4.2. IPT System Description

Typically, an IPT system consists of one transmitting and one receiving coil. Usually,
a half-bridge or a full-bridge transistor inverter is used to drive the TX coil [22]. The
full-bridge inverter has the added capability to control the TX coil voltage using Phase Shift
Pulse Width Modulation (PSPWM), and so, the voltage at the output of the inverter [6].

Double DD coils can be considered as two separated transmission coils, which trans-
form our system from a system with a single transmitter–receiver to a multi transmitter–
receiver system. In a system with multiple coils, each transmitter coil can be driven by a
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separate full-bridge inverter. The full-bridge inverter consists of two half-bridge transistor
legs. Each leg can drive one resonator circuit. The proposed circuit is presented on the left
side in Figure 5.

4.2.1. High-Frequency Inverter

Each coil is driven by a separated half-bridge inverter, powered up from the same DC
voltage source. Each of the two DD coils can be excited by the same frequency, or even
by two different frequencies. The working frequency of the system is determined by the
inductance of the coils and the capacitance of the compensation circuit. The high-frequency
inverter was designed for maximum transfer power around 50 W. The circuit of the high-
frequency inverter consists of four Metal–Oxide–Semiconductor Feld-Effect-Transistors
(MOSFET) (FDS5672, ON Semiconductor) and two isolated bridge drivers (SI8275BBD-
IS1, Skyworks). It also includes input and output current measurement shunt resistors
(Rsh = 20 mΩ) and voltage measurement circuits for use in measuring voltages up to 50 V.

4.2.2. Driving the Inverter MOSFETs

The MOSFETs in a high-frequency inverter are controlled with a control board
(LAUNCHXL-F28379D, Texas Instruments) with a Digital Signal Processor (DSP TMS320F2
8379D). The control card generates 87 kHz phase-shifted PWM signals for transistor drivers.
The frequency of the PWM signal can be changed using a PC application. The DSP unit
also has analog-to-digital converters (12-bit ADC). The digitalized measurement data are
sent through the virtual COM port to the PC for further visualization. The DSP presents
the interface between the computer and the IPT system.

4.2.3. Primary and Secondary Compensation Circuits

The primary and secondary resonators are designed to resonate with IPT transfer
coils at frequencies around 85 kHz. The primary resonator circuit includes two series
resonant capacitors, one for each of the two TX DD coils. On the secondary side, there are
two resonators with a single resonant capacitor. Each one of the secondary resonators is
connected to a synchronous rectifier.

4.2.4. Synchronous Rectifier

The receiving side of the IPT system with double DD coils can be implemented with
two secondary resonator circuits and two rectifiers. On the contrary, the single DD coil
can only implement one secondary resonator circuit and a MOSFET-based synchronous
rectifier. A system with double DD coils can also power up two separate loads. The
proposed receiving side circuit is presented on the right side in Figure 5. Each circuit
consists of a receiver DD coil, a compensation capacitor, a synchronous transistor rectifier,
and load [22]. The synchronous rectifiers were designed for rectification up to 50 W. The
conventional rectier diodes are replaced with four MOSFETs (FDS5672, ON Semiconductor).
The synchronous rectifier achieves higher efficiency compared to a conventional diode
rectifier by replacing the forward voltage drop on diode and diode resistance for a transistor
with smaller RON resistance. The transistors are driven with four synchronous rectifier
drivers (TEA1993TS, NXP Semiconductors), one for each transistor. Each rectifier also has
current and voltage measurement circuits.

5. Simulation and Experimental Results

The simulation and experimental results are presented and a comparison between
single- and double-layered IPT systems is shown. Using equivalent circuits, the coupling
coefficient was analyzed and measured in the 3D space. The magnetic flux density of single
and double DD coils was simulated and compared using the EM Field solver. Finally, the
efficiency evaluation and power transfer measurements of the single DD coil and double
DD coil system are presented. Measurements on the system were performed at different
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distances between the transfer and receiver coils, different system frequencies, and different
loads. The TX and RX pads were positioned using a 3D measurement rig.

5.1. Coupling Coefficient Measurement between Double DD Pads

To evaluate the coupling coefficient between the transmitting and receiving pads,
both pads were mounted on a computerized 3D measurement rig that enabled automated
measurements of mutual inductance in a 3D space. Because the proposed double DD
pad consists of two separated DD coils, every point in the space requires two mutual
induction measurements. A well-known method (from the textbook) [23] was used to
evaluate the mutual inductances between the transfer pads. The measurement schemes
can be simplified, as is shown in Figure 7a−d.

Figure 7. Mutual inductances between transfer pads: (a) between pads’ coils on pads; (b) electrical scheme; (c) measurement
of the inductance of a single DD coil; (d) measurement of the inductance between two DD coils.



Electronics 2021, 10, 2528 10 of 30

The DD coils on the transmitter and the receiver side were connected in series and
two measurements of circuit inductance were performed. Transmitter and receiver coils
could be connected in series in constructive or destructive mutual inductance. In the case
of constructive mutual inductance, the measured value is denoted as L′, and in the case of
destructive mutual inductance, the measured value is denoted as L′′.

Mutual inductance between the transferred pad is presented in Figure 7a and the
electrical scheme of the coils is presented in Figure 7b. The transmitter DD coil can be
divided into two coils with inductance Lt1 (Lt3) and Lt2 (Lt4) (Figure 7c). Similarly, the
receiver DD coil can be divided into two coils with inductance Lr1 (Lr3) and Lr2 (Lr4).
The flowing mutual inductance measurement is presented for the two D coils of the DD1
transmitter coil. In the case of constructive mutual inductance, mutual inductance between
these two parts and their self-inductance adds up to the inductance L′, which can be
measured. Likewise, in the case of destructive mutual inductance, L′′ can be measured.
Using these two measurements, L′ and L′′, the mutual inductance between two parts of a
single transmitter DD coil Lt1 (Lt3) and Lt2 (Lt4) can be evaluated as follows:

L = Lt1 + Lt2 + 2Mt12, (1)

L” = Lt1 + Lt2 − 2Mt12, (2)

and after using (1) and (2), the local transmitter DD coil mutual inductances can be obtained:

Mt12 = Mr12 =
L′ − L′′

4
(3)

This information from (1) to (3) can be used for TX and RX coil design. The earlier
step concludes that the measured inductances between the terminals of the DD coil are
slightly different from the sum of the inductance of both spiral coils that make the DD coil.
For the further analyses, the measured L’ is denoted with L′ = LTi = LRi (i = 1,2), as shown
in Figure 7b. The coupling coefficient between the TX and RX pads can be evaluated as
shown in Figure 7c. The mutual inductances, Mi, can be obtained via the measurement of
LX1 and LX2 and then calculated as follows:

LX1 = LTi + LRi + 2Mi,
LX2 = LTi + LRi − 2Mi,

(4)

where LTi (LRi) (i = 1,2) shows the resulting inductances of both the primary and secondary
sides of the newly established transformer (Figure 7d), LX1 is measured inductance in
the case of constructive mutual inductance between the TX and RX coil, and LX2 is the
measured inductance in the case of destructive mutual inductance between the TX and RX
coil. In the above analysis, it is supposed that the coils Lt1, Lt2, Lt3, Lt4, Lr1, Lr2, Lr3, and Lr4
are designed with the same number of turns, so, after measuring the inductances LX1 and
LX2, both mutual inductances M1 and M2 (because M1 = M2), can be evaluated as:

M1 = M2 =
LX1 − LX2

4
(5)

and the coupling coefficient k1 and/or k2 could be calculated in every x, y and z point as
follows:

k1(x, y, z) = k2(x, y, z) =
Mi(x, y, z)√

LTi(x, y, z)LRi(x, y, z)
(6)

So, three inductances, L′, LX1, and LX2, should be measured to evaluate the coupling
coefficient for single and double DD TX–RX coil structures. The DD coils on the transmitter
side are placed perpendicularly, LT1⊥LT2, and the same on the receiver side, LR1⊥LR2, so,
due to this, the coupling coefficient between them is near to zero, kLT1⊥LT2 ≈ kLR1⊥LR2 ≈ 0,
and is neglected in further analyses.



Electronics 2021, 10, 2528 11 of 30

5.2. Measurement of L′, LX1 and LX2
′ Inductances

The inductance measurement method is based on an auto-balancing circuit, which
converts current through unknown impedance of inductance L into voltage using an
operational amplifier, as presented in Figure 8 [20].

Figure 8a presents a measurement circuit for measuring self-inductance L′ between
terminals 1 and 2 in the case of the DD1 TX coil (between terminals 5 and 6 in the case of
the DD2 TX coil). Figure 8b presents a measuring circuit for the measurement of LX1, and
Figure 8c presents a measurement circuit for measuring LX2. At each x, y and z point, the
coupling coefficient k is evaluated for all three inductances.

The relation between the input and the output voltage can be described as follows:∣∣∣∣VO
Vin

∣∣∣∣ = RF√
RL2 + ω2L2

(7)

where RF is the value of the resistor used for voltage amplification, L is the inductance
of the measured inductor, and RL is the resistance of the measured coil circuit. Under
the assumption that the resistance of the measured coil circuit is near zero (RL ≈ 0),
Equation (7) can be simplified to: ∣∣∣∣VO

Vin

∣∣∣∣ = RF
ωL

(8)

where Vin stands for the high-frequency voltage source of the sinusoidal excitation signal
at the input of the circuit Vin(ωt) = V̂ sin(ωt),ω = 2πf, and f = 100 kHz. Manipulating (8)
the inductance L can be obtained as:

L =
RF

2π f
∣∣∣ Vo

Vin

∣∣∣ (9)

The circuit was designed for measurements of inductance between 2.59 µH to 2.38 mH
at 100 kHz frequency. The induction of the coil circuit measured with this method was up
to 150 µH, which is within the range of the measurement circuit.

Figure 8. Mutual inductance measurement circuit: (a) measurement of coil inductance L′; (b) measurement of inductance
LX1; (c) measurement of inductance LX2.

5.3. Measurement of the Coupling Coefficient on the x-y Plane

Coupling coefficient measurements were performed using a 3D spatial positioning
system. In each position, the inductances of L′, LX1 and LX2 were measured and transferred
to the PC via serial communication. The calculated coupling coefficient was written and
exported to a Comma Separated Value (CSV) file, and afterward visualized in graph form.
The coupling coefficient of the single and double DD pad structure was measured on the
x-y plane at three different z positions. A single DD coil has the same orientation as the
DD1 coil of the double DD coil structure. Therefore, the results for the single DD coil and
the results for the DD1 coil in the double DD coil structure were equal. The results are
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presented in Figures 9 and 10. Measurement was performed on the x-y plane by misaligning
the coils in a 50 mm square around the perfectly aligned position. The single DD and
double DD coil measurement results, considering the coupling coefficients k, k1, and k2 at
three different z distances between the pads, are presented in Figures 9 and 10, respectively.
The coupling coefficient of the DD coil in the single DD coil structure and DD1 coil in the
double DD coil structure is marked with a blue surface, and the coupling coefficient of the
DD2 coil of the double DD coil structure is marked with an orange surface.

The coupling coefficient is the greatest when both coils are aligned perfectly in an
ideal case. Due to the flux-pipe-like magnetic field, the coefficient decreases more in one
horizontal direction than in the other horizontal direction. The direction in which the
coupling coefficient is less impacted by misalignment is the direction parallel to the main
magnetic flux of the coil. In the case of the single DD coil, this direction is along the x-axis.
In the case of the double DD coils, the coupling coefficient of the DD1 coil has a greater
tolerance for change in the x-direction and the coupling coefficient of the DD2 coil has a
greater tolerance for change the y-direction.

Figure 9. Single DD x-y plane coupling coefficient measurements: (a) 15.3 mm distance between the pads; (b) 25.3 mm
distance between the pads; (c) 35.3 mm distance between the pads.

Figure 10. Double DD x-y plane coupling coefficient measurements: (a) 15.3 mm distance between the pads; (b) 25.3 mm
distance between the pads; (c) 35.3 mm distance between the pads.

To differentiate between the measurements of the DD (DD1) and DD2 coils, the
measurements of L′, LX1 and LX2 are marked with additional indexes. Self-inductance L′

of the transmitter coil is marked as LT1 for the DD1 coil and LT2 for the DD2 coil. Self-
inductance of the receiver coil is marked as LR1 for DD1 coil and LR2 for DD2 coil. In the
case of the evaluation of mutual inductance between the two DD (DD1) coils, the value of
LX1 is denoted by LX11. Similarly, the value of LX2 is denoted by LX21. When the mutual
inductance between the two DD2 coils is evaluated, the value of LX1 is denoted by LX12
and the value of LX2 is denoted by LX22. The measurement data for the DD (DD1) and
DD2 coils when misaligned along the x-axis at y = 0 and z = 25.3 mm are presented in
Table 3. The measurement data for the DD (DD1) and DD2 coils when misaligned along
the y-axis at x = 0 and z = 25.3 mm are presented in Table 4. In Tables 3 and 4, the values
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of LT1, LT2, LR1, LR2, LX11, LX12, LX21 and LX22 were measured using the auto-balancing
circuit. Coupling coefficient k1 was calculated from M1 and self-inductance LT1 and LR1,
and coupling coefficient k2 was calculated from M2 and self-inductances LT2 and LR2.
Compared to a single DD coil (k1 or just k), the double DD coil has two coupling coefficients
(k1 and k2) independent of each other. This allows for the possibility of transmitting power
independently through each of the DD coils in the double DD coil structure. Theoretically,
this allows the double DD coil structure to send twice as much power on the same surface
as the single DD coil. Figures 11 and 12 present a slice of a 3D graph with data from
Tables 3 and 4 for single and double DD coils at z = 25.3 mm. The DD coil of the single
DD coil structure is the same as the DD1 coil in the double DD coil structure. Figure 11a
presents the coupling coefficient of a single coil when the coil is perfectly aligned along
the y-axis (y = 0 mm), and Figure 10b presents the coupling coefficient of a double DD
coil when the coil is perfectly aligned along the y axis (y = 0 mm). Figure 11a presents the
coupling coefficient variation of the single DD coil when the coil is perfectly aligned along
the x-axis (x = 0 mm). Figure 11b presents the coupling coefficient variation of the double
DD coil when the coil is perfectly aligned along the x-axis (x = 0 mm).

Table 3. Coupling coefficient measurements of the DD (DD1) and DD2 coils in the x-axis at y = 0 and z = 25.3 mm.

Parameter Value

x (mm) −25 −22 . . . −2 0 2 . . . 22 25

DD and DD1

LT1 (µH) 47.86 47.95 . . . 48.13 48.12 48.12 . . . 47.93 47.87
LR1 (µH) 47.88 47.96 . . . 48.13 48.13 48.12 . . . 47.94 47.89
LX11 (µH) 116 117.3 . . . 121.3 121.4 121.4 . . . 117.9 117.1
LX21 (µH) 75.48 74.52 . . . 71.22 71.10 71.08 . . . 73.84 74.42
M1 (µH) 10.13 10.70 . . . 12.52 12.58 12.58 . . . 11.02 10.67

k1 0.21 0.22 . . . 0.26 0.26 0.26 . . . 0.23 0.22

DD2

LT2 (µH) 44.06 44.27 . . . 44.75 44.76 44.76 . . . 44.35 44.22
LR2 (µH) 43.59 43.8 . . . 44.26 44.26 44.26 . . . 43.79 43.66
LX12 (µH) 94.03 98.45 . . . 114.1 114.3 114.3 . . . 100.2 97.27
LX22 (µH) 81.27 77.69 . . . 63.92 63.74 63.74 . . . 76.08 78.49
M2 (µH) 3.19 5.19 . . . 12.55 12.64 12.64 . . . 6.03 4.70

k2 0.07 0.12 . . . 0.28 0.28 0.28 . . . 0.14 0.11

Table 4. Coupling coefficient measurements of the (DD) DD1 and DD2 coils in the y-axis at x = 0 and z = 25.3 mm.

Parameter Value

y (mm) −25 −22 . . . −2 0 2 . . . 22 25

DD and DD1

LT1 (µH) 47.39 47.58 . . . 48.12 48.13 48.14 . . . 47.75 47.63
LR1 (µH) 47.44 47.64 . . . 48.11 48.12 48.11 . . . 47.69 47.57
LX11 (µH) 101.6 105.9 . . . 121.2 121.4 121.4 . . . 106.8 104
LX21 (µH) 88.06 84.54 . . . 71.26 71.1 71.1 . . . 84.08 86.4
M1 (µH) 3.39 5.34 . . . 12.49 12.58 12.58 . . . 5.68 4.40

k1 0.07 0.11 . . . 0.26 0.26 0.26 . . . 0.12 0.09

DD2

LT2 (µH) 44.62 44.7 . . . 44.95 44.96 44.96 . . . 44.86 44.81
LR2 (µH) 44.07 44.16 . . . 44.38 44.38 44.38 . . . 44.24 44.2
LX12 (µH) 108.5 109.7 . . . 114 114.1 114.1 . . . 110.8 110.1
LX22 (µH) 68.88 68.02 . . . 64.66 64.58 64.58 . . . 67.4 67.92
M2 (µH) 9.91 10.42 . . . 12.34 12.38 12.38 . . . 10.85 10.55

k2 0.22 0.23 . . . 0.28 0.28 0.28 . . . 0.24 0.24
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It is difficult to obtain relevant results from the 3D diagrams in Figures 9 and 10,
so it is better to extract the relevant information from the 2D diagrams, as shown in
Figures 11 and 12. On the diagrams, the data calculated from the measurement points
are marked with dots. Quadratic function approximations of the coupling coefficient are
marked with a full line. The dashed lines stand for the average coupling coefficient of the
DD coils in the single DD and double DD coil structures. In Figure 11b, the DD1 coil in
the double DD coil structure has the same misalignment tolerance as the coil in the single
DD coil structure. The DD2 coil of the double DD coil structure had a worse horizontal
tolerance along the x-axis compared to the DD1 coil. This also reflects in the lower average
coupling coefficient k2 of the DD2 (orange dashed line) when compared to the average
coupling coefficient k1 of the DD1 coil (blue dashed line). On the other hand, in Figure 12b,
the DD2 coil of the double DD coil structure performed better than the DD coil in the single
DD coil structure along the y-axis. Similarly, it also performed better than the DD1 coil
of the double DD coil structure. This reflects in the lower average coupling coefficient k1
of the DD1 (blue dashed line) when compared to the average coupling coefficient k2 of
the DD2 coil (red dashed line). The DD1 coil of the double DD coil structure performed
the same as the DD coil in the single DD coil structure. From Figures 11a and 12a, it can
be concluded that the horizontal misalignment along the x-axis had less impact on the
coupling coefficient of the single DD coil. On the other hand, the coupling coefficient of the
single DD coil was reduced drastically when the coil was misaligned along the y-axis. The
two DD coils in the double DD coil structure also showed the same properties as the single
DD coil, although along two different axis directions.

Figure 11. Coupling coefficient measurement along the x-axis at z = 25.3 mm: (a) single DD coil; (b) double DD coil.

Figure 12. Coupling coefficient measurement along the y-axis at z = 25.3 mm: (a) single DD coil; (b) double DD coil.
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In the case of misalignment along the x-axis, the DD1 coil performed better than
the DD2 coil (Figure 12b). In the case of misalignment along the y-axis, the DD2 coil
performed better than the DD1 coil (Figure 12b). Because efficiency is dependent on the
coupling coefficient, the IPT system with the single DD coil performed better when it
was misaligned along the x-axis compared to the system with the double DD coil. In
the case of misalignment along the y-axis, the IPT system with the double DD coil kept
higher efficiency compared to the single DD coil system. The coupling coefficients from
Figures 11 and 12 can be approximated using quadratic functions (two sets of equations
for each of the two DD coils):

k1(x, y = 0 mm, z = 25.3 mm) = −7.084 · 10−5x2+2.159 · 10−4x + 0.2602 (10)

k1(x = 0 mm, y, z = 25.3 mm) = −2.92 · 10−4y2+3.759 · 10−4y + 0.2567 (11)

k2(x, y = 0 mm, z = 25.3 mm) = −3.164E · 10−4x2+4.7019 · 10−4x + 0.2787 (12)

k2(x = 0 mm, y, z = 25.3 mm) = −7.586 · 10−5y2+2.67 · 10−4y + 0.2757 (13)

5.4. Simulation of Magnetic Flux Density

The FEM simulation software Ansys Maxwell was used to test the proposed IPT pad
design. The transmitter and receiver pads were modeled in a 3D space and had the same
dimensions and design as the manufactured coils of the experimental system. The distance
between the pads was set to 15.3 mm (in the z-axis, x = 0 and y = 0), and the excitation
current for each of the DD coils was set to 1 A. The simulation was used to compare the
magnetic flux density of the single and double DD coils.

Figure 13a,c,e present the calculated magnetic flux density of the single DD coil in
three vertical planes. Figure 13b,d,f present the magnetic flux density of the layered double
DD coils, also in three vertical planes. The magnetic flux density for the single DD coil in
the x-z, y-z, and y-x plane are shown in Figure 13a,c,e, respectively. Figure 13b,d,f show the
magnetic flux density in the x-z, y-z, and x-y planes for the double DD coils, respectively.
From the simulation results, it can be concluded that the magnetic flux density of the
double DD coil in the x-z plane is like the magnetic flux density of the double DD coil in the
y-z plane. The double DD coil therefore also generates symmetrical magnetic flux density
in both the x-z and y-z planes. So, the flux densities are symmetrical when horizontal
misalignment is applied across the x and y axes.

Figure 13. Cont.
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Figure 13. Simulated magnetic flux density of the single and double DD coil structures: (a) magnetic flux density of the
single DD in the x-z plane; (b) magnetic flux density of the single DD in the y-z plane; (c) magnetic flux density of the double
DD in the x-z plane; (d) magnetic flux density of the double DD in the y-z plane; (e) magnetic flux density of the single DD
in the x-y plane; (f) magnetic flux density of the double DD in the x-y plane.

In the case of the single DD coil, the magnetic flux density was not symmetrical.
Therefore, a parallel can be seen between the magnetic flux density simulation results and
the coupling coefficient measurement in the 3D space. Due to the asymmetrical magnetic
field of the single DD coil, the coupling coefficient was also not symmetrical. On the other
hand, the magnetic flux density of the double DD coil showed symmetry along the x-z
and y-z planes, which was also the case with the average coupling coefficient value. The
biggest difference in magnetic flux density between the single DD and double DD coil is on
the x-y plane, as shown in Figure 13e,f. The magnetic flux density generated by the single
DD coil is weaker than the one generated by the double DD coil. The magnetic flux density
of the double DD coil also cancels itself out in the top left and bottom right coil quadrant.
The receiver coils of the double DD coil structure receive two different components of the
generated magnetic field. The DD1 coil receives the y component and the DD2 coil receives
the x component. In the case of the single DD coil, the receiver coil only captures the y
component of the magnetic field.

5.5. Measurement of the Coupling Coefficient in the z Direction

The vertical z-axis measurement was performed at distances between 15.3 mm and
95.3 mm with 2 mm steps. Examples of the measurement results are presented in Table 5.
The measurement was performed in the same way as in the case of coupling coefficient
measurement in the x-y plane. The values of coupling coefficients in relation to the distance
between the transfer coils are presented in Figure 14. The coefficient k of the single DD
coil is shown in Figure 14a, and the coupling coefficients k1 and k2 of the double DD coil
structure are shown in Figure 14b. The evaluated maximum coupling coefficient between
coils was k ∼= 0.5 at the first distance of 15.3 mm. The DD2 coil in the double DD structure
had a slightly better coupling coefficient when compared to the DD1 coil, because it was
placed on top of the DD1 coil, and, therefore, the distance between the two DD2 coils was
shorter than the distance between the two DD1 coils.

The coupling coefficient of both the single DD and double DD coil structures was
highly dependent on the z distance between the coils. Therefore, the efficiency of the IPT
system reduced drastically with increased distance between the coils.
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Figure 14. z-axis coupling coefficient measurement: (a) single DD coil stucture; (b) double DD coil structure.

Table 5. Coupling coefficient measurement of the DD1 and DD2 coils in the z axis at x = 0 and y = 0.

Parameter Value

z (mm) 15.3 17.3 19.3 21.3 23.3 25.3 27.3 . . .

DD and DD1

LT1 (µH) 54.27 52.64 51.37 50.44 48.92 48.32 47.87 . . .
LR1 (µH) 53.47 51.91 50.68 49.84 47.67 47.23 46.86 . . .
LX11 (µH) 156.90 148.20 140.90 135.40 125.60 121.80 118.70 . . .
LX21 (µH) 58.58 60.90 63.20 65.16 67.58 69.30 70.76 . . .
M1 (µH) 24.58 21.83 19.43 17.56 14.51 13.13 11.99 . . .

k1 0.46 0.42 0.38 0.35 0.30 0.27 0.25 . . .

DD2 - - - - - - - -

LT2 (µH) 50.34 48.78 47.52 46.59 45.9 44.52 44.08 . . .
LR2 (µH) 49.95 48.39 47.15 46.22 44.73 44.15 43.74 . . .
LX12 (µH) 150 141.2 134 128.3 118.7 114.7 111.6 . . .
LX22 (µH) 50.58 53.14 55.34 57.32 62.56 62.64 64.04 . . .
M2 (µH) 50.34 48.78 47.52 46.59 45.9 44.52 44.08 . . .

k2 0.50 0.45 0.42 0.38 0.31 0.29 0.27 . . .

Using the measured data and polynomial approximation, equations to calculate the
coupling coefficient between each DD coil at x = 0 and y = 0 can be calculated as:

k1(x = 0, y = 0, z) = 1.823 · 10−8z4 − 5.826 · 10−6z3 + 7.131 · 10−4z2 − 4.048 · 10−2z + 0.9327 (14)

k2(x = 0, y = 0, z) = 2.474 · 10−8z4 − 7.478 · 10−6z3 + 8.669 · 10−4z2 − 4.689 · 10−2z + 1.04 (15)

where the coupling coefficient between the two DD1 coils is noted as k1, the coupling
coefficient between the two DD2 coils is noted as k2, and z is the distance between the coils
in mm. Equations (14) and (15) can be used to calculate the coupling coefficients of the
IPT system.

5.6. Experimental Evaluation of the IPT System

To evaluate and highlight the advantages of the proposed double DD coil structure,
the IPT system using double DD coils was compared to the IPT system using single DD
coils. The proposed DD coils were not compared to two completely overlapping DD
coils, stacked on top of each other. The overlapping DD coils do not show the same
uncoupled characteristics, as two perpendicular DD coils. The two overlapping coils on
the TX and RX pad have a high coupling coefficient between them and cannot transfer
power independently of each other, which can also present problems in system control.
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The efficiency of the experimental system was compared to simulation with similar
parameters under the same conditions. Efficiency was evaluated at three different transfer
frequencies: 80 kHz, 87 kHz, and 90 kHz, and the coupling coefficient was varied between
0.16 and 0.5. The simulated and measured efficiency of the single DD coil system is pre-
sented in Figure 15a. At coupling coefficients larger than 0.3, the efficiency of the measuring
system is almost the same as the efficiency of the simulated system. At coupling coefficients
smaller than 0.3, the difference between simulated and measured results is larger.

A simulated system has overall greater efficiency when compared to the measurements
on the proposed system. The simulated and measured efficiency of the proposed double
DD coil system is presented in Figure 15b. The efficiency of the double DD coil is similar to
a single DD coil. Simulation results have higher efficiency than the measured results. In the
case of the single DD and double DD coil system, both systems exhibit the highest efficiency
at an operating frequency around 87 kHz, which is close to the resonant frequency of the
IPT system.

Figure 15. Comparison of the simulated and measured results: (a) single DD coil structure; (b) double DD coil structure.

Experimental evaluation was performed for both single and double DD IPT systems.
The proposed double DD pad structure and the same parameters were used in both systems
for the sake of simplicity. In the case of the single DD IPT system, the DD2 coil of the
double DD transmission pad was disconnected from the inverter. Therefore, the single DD
IPT system only used the DD1 coil. In the case of the double DD IPT system, both DD1
and DD2 coils of the double DD transmission pad were used. The single and double DD
IPT systems were evaluated at the same voltages from a controlled DC voltage source.

In the case of both coil structures, the impact of distance between power transfer pads
on the DC–DC efficiency of the IPT system and the transferred power was measured. The
measurement was performed at five different operating frequencies, under and above the
resonant frequency of the systems. Tests were performed under 10 Ω load.

To evaluate the impact of the load change on the system efficiency and transferred
power, the load was varied between 1 Ω and 30 Ω at three different distances. The operating
frequency of systems was set to 87 kHz. Finally, the impact of horizontal x and y-axis
misalignment on the DC–DC efficiency and transferred power was performed to showcase
the difference in horizontal misalignment tolerance between the two coil structures.

The single DD coil system presented baseline performance compared to the double
DD coil system. The distance between transfer pads varied between 15.3 mm and 95.3 mm.
System efficiency and transferred power were evaluated at each measurement point. The
initial evaluation was performed at five different operating frequencies. The first frequency
was at 80 kHz, which is under the resonant frequency the system was designed for. The
second frequency was 87 kHz, which is near the resonant frequency of the system. The
other three evaluated frequencies were above the resonant frequency, at 90 kHz, at 95 kHz,
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and at 100 kHz. In the above resonant frequency range, the resonator circuit showed
inductive load properties.

The results of the single DD IPT structure at different frequencies are shown in
Table 6. Parameter z varied between 15.3 mm and 95.3 mm. The coupling coefficient k
was calculated using the approximated Equation (14). Voltage UDC and current IDC were
measured at the input of the high-frequency inverter. Voltage Uout was measured at the
output of the rectifier. Output power Pout was calculated and further used to calculate the
system efficiency η.

The results of the double DD IPT structure at different frequencies are given in Table 7.
Parameter z varied between 15.3 mm and 95.3 mm. Coupling coefficient k1 was calculated
using the approximated Equation (14), and coupling coefficient k2 was calculated using
the approximated Equation (15). Voltage UDC and current IDC were measured at the input
of the high-frequency inverter. Voltages Uout1 and Uout2 were measured at the output of
the rectifiers. Output power Pout was calculated and further used to calculate the system
efficiency η.

Tables 6 and 7 include data for five different frequencies. At each frequency, 8 points
between 15.3 mm and 35.3 mm are given. When distance z was greater than 35.3 mm,
the coupling coefficient reduced to under 0.16. The efficiency of the system was drasti-
cally reduced to under 60% and was not significant for the evaluation of overall system
performance.

The efficiency of the single DD system is presented in the graph in Figure 16a,b. The
efficiency of the double DD system is presented in the graph in Figure 17a,b. There was
a small difference in efficiency between the operating points of the systems. The highest
efficiency was around 84%. The different resonant frequencies do not show a significant
impact on efficiency. Overall, at 90 kHz, both systems showed the best efficiency during
the entire distance interval. When further increasing the frequency to 95 kHz and 100 kHz,
the efficiency of both IPT systems decreased. In both cases, the efficiency was lowest when
the transmitter coils were excited at 100 kHz. Figure 16b or Figure 17b present the average
system efficiency and the maximum deviation from the average efficiency of the single
DD and double DD IPT systems, respectively. In both cases, the largest deviation occurred
under coupling coefficient 0.2.

Figure 16. Efficiency of IPT using the single DD coil structure: (a) at different frequencies; (b) average system efficiency.
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Figure 17. Efficiency of the IPT using the double DD coil structure: (a) at different frequencies; (b) average system efficiency.

Table 6. Single DD IPT system at different resonant frequencies.

f (kHz) z (mm) k UDC (V) IDC (A) Uout (V) Pout (W) η (%)

8000 15.3 0.46 25 0.32 8.58 6.88 86
17.3 0.42 25 0.43 9.81 8.99 83.67
20.3 0.36 25 0.57 11.27 11.87 83.3
22.3 0.32 25 0.78 13.08 15.99 82
25.3 0.28 25 1 14.45 19.51 78.06
27.3 0.25 25 1.2 15.1 22.48 74.94
30.3 0.21 25 1 12 13.46 69.02
35.3 0.16 25 0.9 10.93 11.46 59.21

... . . . . . .

8700 15.3 0.46 25 0.32 8.52 6.78 84.8
17.3 0.42 25 0.43 9.92 9.2 85.55
20.3 0.36 25 0.54 11.01 11.33 83.92
22.3 0.32 25 0.41 12.53 14.67 82.66
25.3 0.28 25 0.87 13.65 17.41 80.06
27.3 0.25 25 1.08 14.99 21 77.78
30.3 0.21 18.85 0.98 12.04 13.55 73.34
35.3 0.16 13.85 0.97 9.65 8.7 64.78

...
...

...
...

...
...

...

9000 15.3 0.46 25 0.37 8.94 7.47 80.75
17.3 0.42 25 0.46 10.29 9.9 86.05
20.3 0.36 25 0.58 11.21 11.74 81
22.3 0.32 25 0.7 12.44 14.46 82.65
25.3 0.28 25 0.81 12.96 15.7 77.52
27.3 0.25 25 0.9 13.64 17.39 77.28
30.3 0.21 24.45 0.92 13.06 15.94 70.87
35.3 0.16 24.75 0.92 12.52 14.65 64.34

...
...

...
...

...
...

...
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Table 6. Cont.

f (kHz) z (mm) k UDC (V) IDC (A) Uout (V) Pout (W) η (%)

9500 15.3 0.46 25 0.45 10 9.35 83.11
17.3 0.42 25 0.52 10.81 10.92 84.00
20.3 0.36 25 0.6 11.48 12.32 82.13
22.3 0.32 25 0.62 11.54 12.45 80.32
25.3 0.28 25 0.6 11.08 11.47 76.47
27.3 0.25 25 0.56 10.48 10.26 73.29
30.3 0.21 25 0.48 9.44 8.33 69.42
35.3 0.16 25 0.35 7.58 5.37 61.37

...
...

...
...

...
...

...

10,000 15.3 0.46 25 0.51 10.67 10.64 83.45
17.3 0.42 25 0.54 10.91 11.12 82.4
20.3 0.36 25 0.52 10.49 10.28 79.11
22.3 0.32 25 0.47 9.8 8.98 76.39
25.3 0.28 25 0.38 8.59 6.9 72.59
27.3 0.25 25 0.32 7.73 5.58 68
30.3 0.21 25 0.25 6.6 4.07 45.14
35.3 0.16 25 0.16 4.65 2.02 50.52

...
...

...
...

...
...

...

Table 7. Double DD IPT system at different resonant frequencies.

f (kHz) z (mm) k1 k2 UDC (V) IDC (A) Uout1 (V) Uout2 (V) Pout (W) η (%)

8000 15.3 0.46 0.50 25 0.6 8.05 8.34 12.56 83.7
17.3 0.42 0.45 25 0.88 10.04 9.76 18.32 83.2
20.3 0.36 0.39 25 1.1 10.82 11.39 23.07 83.8
22.3 0.32 0.35 25 1.58 13.37 12.93 32.33 81.85
25.3 0.28 0.30 25 1.91 13.85 14.61 37.88 79.32
27.3 0.25 0.27 20.6 2 13.34 12.38 30.96 75.13
30.3 0.21 0.23 19.5 2 12.23 12.18 27.73 71.1
35.3 0.16 0.17 20.95 2 12.26 11.23 25.83 61.66

...
...

...
...

...
...

...
...

...

8700 15.3 0.46 0.50 25 0.67 8.49 8.79 13.96 83.33
17.3 0.42 0.45 25 0.89 10.16 9.7 18.44 82.88
20.3 0.36 0.39 25 1.11 10.98 11.41 23.43 84.45
22.3 0.32 0.35 25 1.44 13.03 12.27 29.94 83.16
25.3 0.28 0.30 25 1.79 13.56 14.26 36.19 80.87
27.3 0.25 0.27 22.35 2 13.92 13.24 34.49 77.16
30.3 0.21 0.23 18.85 2 11.79 12.65 27.95 74.13
35.3 0.16 0.17 13.85 2 9.4 10.37 18.31 66.09

...
...

...
...

...
...

...
...

...

9000 15.3 0.46 0.50 25 0.73 8.98 9.24 15.52 85.02
17.3 0.42 0.45 25 0.95 10.57 10.09 19.96 84.03
20.3 0.36 0.39 25 1.2 11.4 11.79 25.14 83.79
22.3 0.32 0.35 25 1.45 13.03 12.24 29.87 82.4
25.3 0.28 0.30 25 1.73 13.26 13.91 34.52 79.8
27.3 0.25 0.27 25 1.89 14.32 13.57 36.37 76.98
30.3 0.21 0.23 24.45 2 13.31 14.38 35.88 73.38
35.3 0.16 0.17 24.75 2 12.31 13.83 32.04 64.72

...
...

...
...

...
...

...
...

...
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Table 7. Cont.

f (kHz) z (mm) k1 k2 UDC (V) IDC (A) Uout1 (V) Uout2 (V) Pout (W) η (%)

9500 15.3 0.46 0.50 25 0.91 10.15 9.99 18.96 83.32
17.3 0.42 0.45 25 1.08 11.36 10.72 22.80 84.45
20.3 0.36 0.39 25 1.27 12.23 11.44 26.21 82.55
22.3 0.32 0.35 25 1.32 12.37 11.55 26.77 88.12
25.3 0.28 0.30 25 1.3 12.2 11.12 25.47 78.36
27.3 0.25 0.27 25 1.19 11.36 10.58 22.52 75.70
30.3 0.21 0.23 25 1.06 10.57 9.53 18.93 71.43
35.3 0.16 0.17 25 0.76 7.93 7.66 11.36 59.79

...
...

...
...

...
...

...
...

...

10,000 15.3 0.46 0.50 25 1.04 11.15 10.55 22.02 84.7
17.3 0.42 0.45 25 1.13 11.6 10.84 23.56 83.39
20.3 0.36 0.39 25 1.11 11.48 10.42 22.46 80.95
22.3 0.32 0.35 25 1 10.73 2.85 19.83 79.31
25.3 0.28 0.30 25 0.81 9.46 8.62 15.31 75.6
27.3 0.25 0.27 25 0.66 7.88 7.77 11.45 69.37
30.3 0.21 0.23 25 0.52 6.92 6.62 8.19 63,01
35.3 0.16 0.17 25 0.35 5.23 4.55 4.49 51.27

...
...

...
...

...
...

...
...

...

The output power capability of the single DD system is presented in Figure 18a,b.
The output power capability of the double DD system is presented in Figure 19a,b. The
average power output of both systems is presented in Figures 18b and 19b for the single
DD IPT and double DD IPT systems, respectively. In both cases, the deviation from average
output power was significantly larger compared to the deviation from the average system
efficiency in Figures 16b and 17b. The capability of the double DD system is presented in
Figure 19a,b. In the case of the double DD system, the input current was limited to 2 A DC.
The double DD system had higher transfer power compared to the single DD system. The
highest power transfer capability of the double DD system was around 36.4 W at 90 kHz.
At the same frequency and distance, the single DD system transferred 17.4 W, around half
as much. The output power of both systems decreased significantly at 95 kHz and 100 kHz.

Figure 18. Output power of the IPT using the single DD coil structure: (a) at different frequencies; (b) average output power.
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Figure 19. Output power of the IPT using the double DD coil structure: (a) at different frequencies; (b) average output power.

To evaluate the performance of the double DD system further, a direct comparison
between the efficiency and output power is presented in Figures 20 and 21. The results in
Figure 20 are at the frequency of 87 kHz, and the results in Figure 21 are at the frequency of
90 kHz. Both the single DD and double DD IPT systems had remarkably similar efficiency.
The biggest difference was in the transmitted power at the output of the system. Because
the IPT system with double DD transmits power using two, uncoupled and independent
coils, it can transfer twice as much power as the single DD system. Therefore, the double
DD IPT system is the most attractive for wireless power transfer.

System efficiency and output power when load changed were also measured for
both IPT structures at three different distances: at 15.3 mm, 25.3 mm, and 35.3 mm. The
operating frequency was set to 87 kHz. The load was varied between 1 Ω and 30 Ω. The
results of load variation in the case of the single DD IPT system are given in Table 8. The
results of load variation in the case of the double DD IPT system are given in Table 9. The
tables include measured data at three different z distances.

Figure 20. Comparison between the single and double DD coil structures at the frequency 87 kHz: (a) system efficiency;
(b) average output power.
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Figure 21. Comparison between the single and double DD coil structures at the frequency 90 kHz: (a) system efficiency;
(b) average output power.

The result that shows the impact of resistance on a single DD IPT system efficiency is
shown in Figure 22a, and the impact of resistance on output power is shown in Figure 22b.
Similarly, the results that show the impact of the resistance on the double DD IPT system
are shown in Figure 23a,b.

The efficiency of the single DD IPT system was the same as the efficiency of the double
DD IPT system, such was the case at the fixed load. In the case of both systems, lowering
the resistance under 6 Ω also decreased system efficiency and transferred power. At a
distance of 15.3 mm, the increment of the load did not affect the overall system efficiency
negatively and only increased the transferred power. At distances of 25.3 mm and 35.3 mm,
in both systems, the increment of load lowered the system efficiency, and it also lowered
the amount of transferred power. At every load condition, the double DD IPT system
transferred twice as much power as the single DD IPT.

Figure 22. Impact of load variation on the IPT with the single DD coil structure: (a) efficiency of the system; (b) output
power transfer.
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Figure 23. Impact of load variation on the IPT with the double DD coil structure: (a) efficiency of the system; (b) output
power transfer.

Table 8. Single DD IPT system at different loads.

z (mm) R (Ω) UDC (V) IDC (A) Uout (V) Pout (W) η (%)

15.3 30 25.05 0.56 18.58 11.74 83.70
25 25.05 0.53 16.56 11.24 84.65
20 25.05 0.48 14.23 10.38 86.36
15 25 0.41 11.42 8.99 87.75
10 25 0.31 7.96 6.47 83.43
8 25 0.27 6.471 5.30 78.53
6 25 0.22 4.884 4.18 76.09
4 25 0.16 3.245 2.77 69.28
...

...
...

...
...

...

25.3 30 20.4 0.97 20.06 13.73 69.41
25 20.6 0.96 18.81 14.56 73.63
20 21.3 0.96 17.39 15.51 75.84
15 23.2 0.96 15.90 17.44 78.28
10 25 0.86 12.77 16.81 78.19
8 25 0.75 10.63 14.49 77.26
6 25 0.62 8.26 11.76 75.89
4 25 0.48 5.63 8.35 69.61
...

...
...

...
...

...

35.3 30 13.05 0.97 12.46 5.30 41.86
25 12.95 0.97 11.84 5.77 45.93
20 12.85 0.98 11.33 6.58 52.28
15 13.05 0.97 10.38 7.43 58.70
10 13.85 0.96 9.22 8.76 65.91
8 14.7 0.96 8.62 9.53 67.50
6 16.25 0.95 7.79 10.46 67.78
4 19.4 0.95 6.95 12.71 68.97
...

...
...

...
...

...
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Table 9. Double DD IPT system at different loads.

z (mm) R (Ω) UDC (V) IDC (A) Uout1 (V) Uout2 (V) Pout (W) η (%)

15.3 30 25 1.2 19.65 18.74 25.12 83.74
25 25 1.13 17.35 16.59 23.67 83.78
20 25 1.02 14.79 14.11 21.43 84.03
15 25 0.86 11.73 11.16 18.08 84.09
10 25 0.66 8.26 7.84 13.31 80.64
8 25 0.56 6.7 6.35 10.87 77.61
6 25 0.45 5.073 4.78 8.44 75.04
4 25 0.35 3.64 3.12 6.05 69.09
...

...
...

...
...

...
...

25.3 30 20.4 2 19.79 20.69 27.93 68.45
25 20.6 2 18.57 19.32 29.49 71.57
20 21.3 2 17.37 17.71 30.95 72.64
15 23.2 2 16.67 15.89 36.58 78.83
10 25 1.78 13.53 12.48 34.77 78.12
8 25 1.56 11.33 10.40 30.15 77.30
6 25 1.31 8.98 7.97 25.05 76.48
4 25 0.99 6.197 5.35 17.63 71.23
...

...
...

...
...

...
...

35.3 30 13.05 2 12 13.27 10.90 41.78
25 12.95 2 11.43 12.48 11.76 45.40
20 12.85 2 10.67 11.76 12.93 50.31
15 13.05 2 9.79 10.79 14.64 56.09
10 13.85 2 9.41 9.21 17.78 64.20
8 14.7 2 8.86 8.40 19.00 64.61
6 16.25 2 8.28 7.51 21.72 66.82
4 19.4 2 7.42 6.44 25.42 65.51
...

...
...

...
...

...
...

Figure 24. Position of the IPT pads in the 3D space.

5.7. The Impact of Horizontal Misalignment on the Transferred Power and the System Efficiency

The main advantage of the DD coils is their great tolerance for misalignment. However,
this only applies along one of the directions determined by the orientation of the DD coil.
That means that the misalignment tolerance of the single DD coil is not symmetrical,
which can be seen in the coupling coefficient evaluation, and was also confirmed with the
following experiment. The position of the transfer pads in the 3D space is presented in
Figure 24. The single DD power pad had a DD coil aligned with the DD1 coil in the x-axis
direction. In the double DD coil system, the DD1 coil was aligned along the x-axis, and
the DD2 coil was aligned along the y-axis. Both transmitter and receiver pad had the same
orientation.

The single DD coil and double DD coil were misaligned horizontally from −25 mm to
25 mm in 5 mm steps along the x and y-axes. The measurements were performed at three
different distances between the TX and RX pads: 15.3 mm, 25.3 mm, and 30.3 mm. The
impacts of misalignment along the x-axis on the efficiency are presented in Figure 25a. The
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full lines stand for the results of the double DD coil system and the dashed lines are results
for the single DD coil system.

The single DD coil was oriented in the x-direction, and was, therefore, tolerant for
misalignment along the x-axis. The double DD coil consisted of a DD1 coil that was tolerant
for misalignment along the x-axis and a DD2 coil that was not tolerant to misalignment
along the x-axis. In the case of misalignment along the x-axis, the double DD coil system
had lower efficiency compared to that of the single DD coil system. The difference in
efficiency increased at larger misalignments.

On the other hand, the double DD coil system performed better than the single DD
coil system in the case of misalignment along the y-axis, as presented in Figure 25b. The full
lines are the results of the double DD coil system and the dashed lines stand for the results
of the single DD coil system. Due to the poorer misalignment tolerance of the single DD coil
along the y-axis, the efficiency of the system was also affected quite drastically. Because the
double DD coil consisted of the DD1 coil that was not tolerant to misalignment along the
y-axis and the DD2 coil that was tolerant, the resulting efficiency was higher compared to
the single DD coil system. Therefore, the double DD coil had better misalignment tolerance
than the single DD coil system in the y-direction. Overall, the double DD coil had the same
symmetric misalignment tolerance along both the x and the y-axes. On the other hand, the
single DD coil system did not have symmetric misalignment tolerance, and its tolerance
was much better along the x-axis than along the y-axis.

Horizontal misalignment also had an impact on the transferred power. The com-
parison between transferred power using the single and double DD coils is presented in
Figure 26a,b. The power transferred using the double DD coil system is represented by the
full lines, and the power transferred using the single DD coil system is represented by the
dashed lines.

Figure 26a shows the impact of horizontal misalignment along the x-axis, and Figure 26b
shows the impact of the misalignment along the y-axis. Due to its structure, the double DD
coil system has symmetrical power transfer when compared to the single DD coil system.
Overall, the power transferred with the double DD coil system was larger when compared
to the single DD coil system, even along the x-axis, when the single DD coil system had
better efficiency.

Figure 25. Impact of horizontal misalignment on IPT system efficiency: (a) misalignment in the direction of the x-axis;
(b) misalignment in the direction of the y-axis.
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Figure 26. Impact of the horizontal x misalignment on the IPT power output: (a) misalignment in the direction of the x-axis;
(b) misalignment in the direction of the y-axis.

6. Discussion

The results show that the double DD coupler structure enables higher power density
compared to the single DD coupler. Each coil of the double DD system can transfer as
much power as the system with the single DD coil. The IPT system with the double DD
does not have overall better system efficiency when compared to the single DD system.
System efficiency is determined by the transfer frequency and physical properties of the
transfer pads, and the coupling coefficient between the transfer pads. Because both single
and double DD structures used the same basic coil shape with the same dimensions and
inductances, the impact of distance z on system efficiency was the same. The difference
in efficiency between the single and double DD systems can be seen in the horizontal
x-y plane misalignment. The proposed double DD coupler structure shows symmetrical
tolerance to misalignment on the x-y plane. On the other hand, the misalignment of the
single DD coil was not symmetrical. In the case of the misalignment along the x-axis, the
single DD coil system performed better than the double DD coil system. In the y-axis, the
double DD coil system had better efficiency than the single DD coil system. Nonetheless,
the double DD coil system enabled higher power density when compared to the single DD
coil system, and is, therefore, more attractive for applications where the space is limited.

7. Conclusions

This paper presents a double DD IPT coupler structure that can be used instead of a
single circular nonpolar coupler or a polar DD coupler. The proposed coupler structure
consists of two DD coils stacked on top of each other and perpendicular (rotated 90◦)
to each other. Because both coils are polarized and rotated, the DD coils on the pad are
uncoupled magnetically. Therefore, both coils on a pad can transfer power independently
of each other if the transfer pads are positioned correctly to each other. The coupling coeffi-
cient between the proposed pad structure was measured and compared to the coupling
coefficient between single DD transfer pads. The double DD pads showed two separated
coupling coefficients with different horizontal x-y plane tolerance and the same z-axis
(distance) tolerance. To evaluate transferred power using the proposed pads, a double
rectifier structure was used to transfer power to the same load in the same coil footprint
and at the same time. This resulted in a 50% power transfer increase when compared to
the single DD coil system at the same input voltage. The efficiency when increasing the z
distance between the transfer pads in the case of the double DD coil system was similar
to the single DD coil system. The maximum DC-DC system efficiency was between 80%
and 85%, which also matches the simulation results. The DC–DC efficiency at coupling
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coefficients lower than 0.5 can be increased by using coils with larger inductance. At
the operating point, the current state-of-the-art wireless charging systems have DC–DC
efficiency from 80% to 90% and coil efficiency higher than 90%.

The double DD coil structure also showed symmetrical misalignment tolerance on the
x-y plane compared to the non-symmetrical misalignment tolerance of the single DD coil.

Author Contributions: N.P. introduced and designed the novel DD coil structure and presented
new applications; J.D. prepared the measurement 3D system. The analyses of the entire system, its
feasibility and design were supervised and guided by M.M. All authors have read and agreed to the
published version of the manuscript.

Funding: Research was funded by the Slovenian Research Agency (ARRS).

Data Availability Statement: Data are contained within the article at hand.

Acknowledgments: The authors acknowledge the financial support from the Slovenian Research
Agency (Research Core Funding No. P2-0028).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Manoufali, M.; Bialkowski, K.; Mohammed, B.; Abbosh, A. Wireless Power Link Based on Inductive Coupling for Brain

Implantable Medical Devices. IEEE Antennas Wirel. Propag. Lett. 2017, 17, 160–163. [CrossRef]
2. Jang, Y.; Jovanovic, M.M. A Contactless Electrical Energy Transmission System for Portable-telephone Battery Chargers. IEEE

Trans. Ind. Electron. 2003, 50, 520–527. [CrossRef]
3. Triviño, A.; González-González, J.M.; Aguado, J.A. Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review.

Energies 2021, 14, 1547. [CrossRef]
4. Xiang, L.; Sun, Y.; Tang, C.; Dai, X.; Jiang, C. Design of Crossed DD Coil for Dynamic Wireless Charging of Electric Vehicles. In

Proceedings of the 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China,
21–22 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [CrossRef]

5. Patil, D.; McDonough, M.K.; Miller, J.M.; Fahimi, B.; Balsara, P.T. Wireless Power Transfer for Vehicular Applications: Overview
and Challenges. IEEE Trans. Transp. Electrif. 2017, 4, 3–37. [CrossRef]

6. Buja, G.; Bertoluzzo, M.; Mude, K.N. Design and Experimentation of WPT Charger for Electric City Car. IEEE Trans. Ind. Electron.
2015, 62, 7436–7447. [CrossRef]

7. Dai, J.; Ludois, D.C. A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for
Small Gap Applications. IEEE Trans. Power Electron. 2015, 30, 6017–6029. [CrossRef]

8. Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Jawad, H.M.; Ismail, M. Opportunities and Challenges for Near-Field Wireless Power
Transfer: A Review. Energies 2017, 10, 1022. [CrossRef]

9. SAE International J2954 Taskforce about Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment
Methodology. Available online: https://www.sae.org/standards/content/j2954_202010/ (accessed on 2 July 2021).

10. Wei, Z.; Quan, Z.; Wu, J.; Li, Y.; Pou, J.; Zhong, H. Deep Deterministic Policy Gradient-DRL Enabled Multiphysics-Constrained
Fast Charging of Lithium-Ion Battery. IEEE Trans. Ind. Electron. 2021. early access. [CrossRef]

11. Wei, Z.; Zhao, J.; Xiong, R.; Dong, G.; Pou, J.; Tseng, K.J. Online Estimation of Power Capacity with Noise Effect Attenuation for
Lithium-Ion Battery. IEEE Trans. Ind. Electron. 2019, 66, 5724–5735. [CrossRef]

12. Budhia, M.; Covic, G.A.; Boys, J.T. Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power
Transfer Systems. IEEE Trans. Power Electron. 2011, 26, 3096–3108. [CrossRef]

13. Budhia, M.; Boys, J.T.; Covic, G.A.; Huang, C. Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT
Charging Systems. IEEE Trans. Ind. Electron. 2013, 60, 318–328. [CrossRef]

14. Budhia, M.; Covic, G.; Boys, J. A new IPT magnetic coupler for electric vehicle charging systems. In Proceedings of the IECON
2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 2487–2492.
[CrossRef]

15. Bima, M.E.; Bhattacharya, I.; Neste, C.W.V. Experimental Evaluation of Layered DD Coil Structure in a Wireless Power Transfer
System. IEEE Trans. Electromagn. Compat. 2020, 62, 1477–1484. [CrossRef]

16. Kan, T.; Lu, F.; Nguyen, T.P.; Mercier, P.; Mi, C.C. Integrated Coil Design for EV Wireless Charging Systems Using LCC
Compensation Topology. IEEE Trans. Power Electron. 2018, 33, 9231–9241. [CrossRef]

17. Cheng, C.; Li, W.; Zhou, Z.; Deng, Z.; Mi, C. A Load-Independent Wireless Power Transfer System with Multiple Constant Voltage
Outputs. IEEE Trans. Power Electron. 2020, 35, 3328–3331. [CrossRef]

18. Shevchenko, V.; Husev, O.; Strzelecki, R.; Pakhaliuk, B.; Poliakov, N.; Strzelecka, N. Compensation Topologies in IPT Systems:
Standards, Requirements, Classification, Analysis, Comparison and Application. IEEE Access 2019, 7, 120559–120580. [CrossRef]

http://doi.org/10.1109/LAWP.2017.2778698
http://doi.org/10.1109/TIE.2003.812472
http://doi.org/10.3390/en14061547
http://doi.org/10.1109/WoW.2017.7959422
http://doi.org/10.1109/TTE.2017.2780627
http://doi.org/10.1109/TIE.2015.2455524
http://doi.org/10.1109/TPEL.2015.2415253
http://doi.org/10.3390/en10071022
https://www.sae.org/standards/content/j2954_202010/
http://doi.org/10.1109/TIE.2021.3070514
http://doi.org/10.1109/TIE.2018.2878122
http://doi.org/10.1109/TPEL.2011.2143730
http://doi.org/10.1109/TIE.2011.2179274
http://doi.org/10.1109/IECON.2010.5675350
http://doi.org/10.1109/TEMC.2020.3002694
http://doi.org/10.1109/TPEL.2018.2794448
http://doi.org/10.1109/TPEL.2019.2940091
http://doi.org/10.1109/ACCESS.2019.2937891


Electronics 2021, 10, 2528 30 of 30

19. Okada, K.; Sekino, T. The Impedance Measurement Handbook; A Guide to Measurement Technology and Techniques, App. Note;
2016, Keysight Technologies, Santa Rosa, CA, USA, 3 August 2014, 5950–3000. Available online: https://www.keysight.com/zz/
en/assets/7018-06840/application-notes/5950-3000.pdf (accessed on 2 July 2021).

20. Ayyanar, R.; Mohan, N. A Novel Full-bridge DC-DC Converter for Battery Charging Using Secondary-Side Control Combines
Soft-Switching over the Full Load Range and Low Magnetics Requirement. In Proceedings of the APEC 2000. Fifteenth Annual
IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058), New Orleans, LA, USA, 6–10 February 2000;
Volume 1, pp. 340–346. [CrossRef]

21. Wenli, L.; Ying, M.; Danan, S.; Shaolin, W.; Zhigang, L. Design of a Soft Switched 8 kW Battery Charging Converter for 100%
Low Floor Light Rail Vehicle. In Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5
September 2008; pp. 1–5. [CrossRef]

22. Huynh, P.S.; Ronanki, D.; Vincent, D.; Williamson, S.S. Overview and Comparative Assessment of Single-Phase Power Converter
Topologies of Inductive Wireless Charging Systems. Energies 2020, 13, 2150. [CrossRef]

23. Alexander, K.C.; Sadiku, N.O.M. Magnetically Coupled Circuits. In Fundamentals of Electric Circuits, 3rd ed.; Isenberg, S., Ed.;
McGraw-Hill Higher Education: New York, NY, USA, 2007; pp. 528–531.

https://www.keysight.com/zz/en/assets/7018-06840/application-notes/5950-3000.pdf
https://www.keysight.com/zz/en/assets/7018-06840/application-notes/5950-3000.pdf
http://doi.org/10.1109/APEC.2000.826125
http://doi.org/10.1109/VPPC.2008.4677785
http://doi.org/10.3390/en13092150

	Introduction 
	The Proposed Double DD Coil Design 
	System Structure 
	The Coupling Coefficient Measurement System 
	The IPT System 

	The Experimental Set Benches 
	IPT System Parameters 
	IPT System Description 
	High-Frequency Inverter 
	Driving the Inverter MOSFETs 
	Primary and Secondary Compensation Circuits 
	Synchronous Rectifier 


	Simulation and Experimental Results 
	Coupling Coefficient Measurement between Double DD Pads 
	Measurement of L', LX1 and LX2' Inductances 
	Measurement of the Coupling Coefficient on the x-y Plane 
	Simulation of Magnetic Flux Density 
	Measurement of the Coupling Coefficient in the z Direction 
	Experimental Evaluation of the IPT System 
	The Impact of Horizontal Misalignment on the Transferred Power and the System Efficiency 

	Discussion 
	Conclusions 
	References

