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Abstract: The advancement and popularity of computer games make game scene analysis one of the
most interesting research topics in the computer vision society. Among the various computer vision
techniques, we employ object detection algorithms for the analysis, since they can both recognize and
localize objects in a scene. However, applying the existing object detection algorithms for analyzing
game scenes does not guarantee a desired performance, since the algorithms are trained using
datasets collected from the real world. In order to achieve a desired performance for analyzing game
scenes, we built a dataset by collecting game scenes and retrained the object detection algorithms
pre-trained with the datasets from the real world. We selected five object detection algorithms,
namely YOLOv3, Faster R-CNN, SSD, FPN and EfficientDet, and eight games from various game
genres including first-person shooting, role-playing, sports, and driving. PascalVOC and MS COCO
were employed for the pre-training of the object detection algorithms. We proved the improvement
in the performance that comes from our strategy in two aspects: recognition and localization. The
improvement in recognition performance was measured using mean average precision (mAP) and
the improvement in localization using intersection over union (IoU).

Keywords: object detection; game scene; deep learning; YOLO; SSD; R-CNN; EfficientDet

1. Introduction

Computer games have been one of the most popular applications for all generations
since the dawn of the computing age. Recent progress in computer hardware and software
has presented computer games of high quality. Nowadays, e-sports, playing or watching
computer games, have become some of the most popular sports. E-sports are newly
emerging sports where professional players compete in highly popular games, such as
Starcraft and League of Legends (LoL), while millions of people watch them. Consequently,
e-sports have become one of the most popular types of content on various media channels,
including YouTube and Tiktok. From these trends, analyzing game scenes by recognizing
and localizing objects in the scenes has become an interesting research topic.

Among the many computer vision algorithms including object recognition and object
detection, localization and segmentation are candidates for analyzing game scenes. In
analyzing game scenes, both recognizing and localizing objects in the scene are required.
Therefore, we select object detection algorithms for analyzing game scenes. Object detection
algorithms can identify thousands of objects and draw bounding boxes for objects in real-
time. At this point, we have a question in relation to applying object detection algorithms
to game scenes: “Can the object detection algorithms trained by real scenes be applied to
game scenes?”

Detecting objects in game scenes is not a straightforward problem that can be re-
solved by applying existing object detection algorithms. The recent progress in computing
hardware and software techniques presents diverse visually pleasing rendering styles to
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computer games. Some games are rendered in a photorealistic style, while some are in a
cartoon style. Furthermore, various depictions of a game scene with various colors and
tones present a distinctive game scene style. Some cartoon-based games present their
deformed characters and objects according to their original cartoons. Therefore, detecting
various objects in diverse games can be challenging.

Existing deep-learning-based object detection algorithms show satisfactory detection
performance for images captured from the real world. We selected five of the most widely-
used deep object detection algorithms: YOLOv3 [1], Faster R-CNN [2], SSD [3], FPN [4]
and EfficientDet [5]. We also prepared two frequently used datasets, PascalVOC [6,7] and
MS COCO [8], for training the object detection algorithms. We examined these algorithms
in recognizing objects in game scenes.

We aimed to improve the performance of object recognition of these algorithms by
retraining them using game scenes. We prepared eight games including various genres,
such as first-person shooting, racing, sports, and role-playing. Two of the selected games
presented cartoon-styled scenes. We excluded games with non-real objects. In many fantasy
games, for example, dragons, orcs, and non-existent characters appear. We excluded these
games since existing object detection algorithms are not trained to detect dragons or orcs.

We also tested a data augmentation scheme that produces cartoon-styled images
for the images in frequently used datasets. Several widely used image abstraction and
cartoon-styled rendering algorithms were employed for the augmentation process. We
retrained the algorithms using the augmented images and measured their performances.

To prove that the performance of the object detection algorithms was improved using
game scene datasets, we compared the comparison for two cases. One case was to compare
PascalVOC and PascalVOC with game scenes, and the other case was to compare MS
COCO and MS COCO with game scenes. For each case of comparisons, the five object
detection algorithms were pre-trained with a frequently used dataset. After measuring the
performance, we retrained the algorithms with game scenes and measured the performance.
These performances were compared to prove our hypothesis that the object detection
algorithms trained with the public dataset and game scenes showed better performance
than the algorithms trained only with the public dataset.

We compared the pre-trained and retrained algorithms in terms of two metrics: mean
average precision (mAP) and intersection over union (IoU). We examined the accuracy of
recognizing objects with mAP and the accuracy of localizing objects with IoU. From this
comparison, we could determine whether the existing object detection algorithms could be
used for game scenes. Furthermore, we could also determine whether the object detection
algorithms retrained with game scenes showed a significant difference from the pre-trained
object detection algorithms.

The contributions of this study are summarized as follows:

• We built a dataset of game scenes collected from eight games.
• We presented a framework for improving the performance of object detection algo-

rithms on game scenes by retraining them using game scene datasets.
• We tested whether the augmented images using image abstraction and stylization

schemes can improve the performance of the object detection algorithms on game scenes.

This study is organized as follows. Section 2 briefly explains deep-learning-based
object detection algorithms and presents several works on object detection techniques
in computer games. We elaborate on how we selected object detection algorithms and
games in Section 3. In Section 4, we explain how we trained the algorithms and present
the resulting figures. In Section 5, we analyze the results and answer our RQ. Finally, we
conclude and suggest future directions in Section 6.

2. Related Work
2.1. Deep Object Detection Approaches

Object detection, which extracts a bounding box around a target object from a scene,
is one of the most popular research topics in computer vision. Many object detection
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algorithms have been presented after the emergence of the histogram of the oriented
gradient (HoG) algorithm [9]. Recently, the progress of deep learning techniques has
accelerated object detection algorithms on a great scale. Many recent works, including the
you only look once (YOLO) series [1,10,11], the region with a convolutional neural network
(R-CNN) series [2,12,13], spatial pyramid pooling (SPP) [14] and the single-shot multibox
detector (SSD) [3], have demonstrated impressive results in detecting diverse objects from
various scenes.

YOLO detects objects by decomposing an image into S × S grid cells. We estimate
B bounding boxes at each cell, each of which possesses a box confidence score and C
conditional class probabilities. The class confidence score, which estimates the probability
of an object belonging to a class in the cell, is computed by multiplying the box confidence
score with the conditional class probability. YOLO is a CNN that estimates the class
confidence score for each cell. Although YOLOv1 [10] has a very fast computational speed,
it suffers from relatively low mAP and limited classes for detection. Redmon et al. later
presented YOLOv2, also known as YOLO9000, which detects 9000 objects with improved
precision [11]. They further improved YOLOv2’s performance in YOLOv3 [1].

R-CNN, which is another mainstream deep object detection algorithm, employs a
two-pass approach [12]. The first pass extracts a candidate region, where an object should
go through a selective search and a region proposal network. In the second, they recognize
the object and localize it using a convolutional network. Girshick presented fast R-CNN,
improving computational efficiency [13], and Ren et al. presented faster R-CNN [2].

The SPP algorithm allows arbitrary size input for object detection [14]. It does not crop
or warp input images to avoid distortion of the result. It devises an SPP layer before the
fully connected (FC) layer to fix the size of feature vectors extracted from the convolution
layers. SSD addresses the problem of YOLO, which neglects objects smaller than the
grid [3]. The SSD algorithm applies an object detection algorithm to each feature map
extracted through a series of convolutional layers. The detected information is merged into
a final detection result by executing a fast non-maximum suppression.

FPN builds a pyramid structure on the images by reducing their resolutions [4]. FPN
extracts features in a top-down approach and merges the extracted features in both high-
resolution images and low-resolution images. In the high-resolution images, the features
in low-resolution images are employed to predict the features in high-resolution images.
The pyramid structure of FPN extracts more semantics on the features in low-resolution
images. Therefore, FPN extracts features from the input image in a convincing way.

2.2. Object Detection in a Game

Utsumi et al. [15] presented a classical object detection and tracking method for a
soccer game in the early days. They employed a color rarity and local edge property for
their object detection scheme. They extracted objects with high edges from a roughly
single-colored background. Compared to a real soccer game scene, their model shows a
comparatively high detection rate.

Many researchers have applied the recent progress of deep-learning-based object
detection algorithms to individual games.

Chen and Yi [16] presented a deep Q-learning approach for detecting objects in
30 classes from the classic game Super Smash Bros. They proposed a single-frame 19-
layered CNN model, with five convolution layers, three pooling layers and three FC layers.
Their model recorded 80% top-1 and 96% top-3 accuracies.

Sundareson [17] chose a specific data flow for in-game object classification. Their
model also aimed to detect objects in virtual reality (VR). They converted 4K input im-
ages into 256 × 256 resolution for efficiency. Their model’s performance exhibits very
competitive results in implementing in-game and in-VR object classification using CUDA.

Venkatesh [18] surveyed and proposed SmashNet, a CNN-based object tracking
scheme in games. This model recorded 68.25% classification precision for four characters
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in fighting games by employing very effective structures. The author also developed
KirbuBot, which performs basic commands on the positions of two tracked characters.

Liu et al. [19] employed faster R-CNN to implement the vision system of a game robot.
They extracted features and position label mapping for a single object using ResNet100.
The information about object movement in a game is tracked using the robot’s camera to
improve the accuracy and speed of the model recognition.

Chen et al. [20] attempted to address the multi-object tracking problem, which is cru-
cial in video analysis, surveillance and robot control, using a deep-learning-based tracking
method. They applied their method to a football video to demonstrate the performance of
their method.

Tolmacheva et al. [21] used a YOLOv2 model to track a puck in an air hockey game.
The air hockey game is an arcade game played by two players who aim to push a puck into
the opponent’s goal by moving a small hand-held stick. Since the puck moves with great
velocity, exact detecting and tracking of an object is a challenging problem. They collected
and prepared datasets from game images to predict the trajectory of a fixed object. Using
YOLOv2 in a C implementation, they recorded 80% detection accuracy.

Yao et al. [22] presented a two-stage algorithm to detect and recognize “hero” charac-
ters from a video game named Honor of Kings. They applied a template-matching method
to detect all heroes in the frames and devised a deep convolutional network to recognize
the name of each detected hero. They employed InceptionNet and recorded a 99.6% F1
score with less than 5 ms recognition time.

Spijkerman and van der Harr [23] presented a vehicle recognition scheme for Formula
One game scenes using several object detection algorithms, including HoG, support vector
machine and faster R-CNN. They trained their models using images captured from the
F1 2019 video game. Their models’ precision and recall scores based on R-CNN, the best
among the three models, record 97% and 99%, respectively. They applied the trained
R-CNN model to real objects and achieved 93% precision.

Kim et al. [24] improved the performance of a safety zone monitoring system using
game-engine-based internal traffic control plans (ITCPs). They used a deep-learning-based
object detection algorithm to recognize and detect workers and types of equipment from
aerial images. They also monitored unsafe activities of works by observing four rules.
Through this approach, they emphasized the importance of a digital ITCP-based safety
monitoring system.

Recently, the YOLO model has been employed with Unity to present a very effective
model for object detection in games [25].

3. Collecting Materials
3.1. Selected Deep Object Detection Algorithms

We found many excellent deep object detection algorithms in the recent literature.
Among these algorithms, we selected the most highly-cited algorithms: YOLO [1,10,11],
R-CNN [2,12,13], and SSD [3]. Among various versions of YOLO algorithms, we selected
YOLOv3 [1], which detects 9000 objects very effectively. For R-CNN algorithms, we selected
Faster R-CNN [2], the cutting-edge version of the R-CNNs. Although these algorithms are
highly cited, we needed to select a recent algorithm. Therefore, we selected EfficientDet [5].
Therefore, we compared four deep object detection algorithms in our study: YOLOv3,
Faster R-CNN, SSD and EfficientDet. The architectures of these algorithms are compared
in Figure 1.
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concatenation
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(a) YOLOv3

(c) SSD

(b) Faster R‐CNN

(d) EfficientDet (e) FPN

Figure 1. The architectures of the deep object detection algorithms used in this study.

3.2. Selected Games

We had three strategies for selecting games in our study. The first strategy was to
select games over various game genres. Therefore, we referred to Wikipedia [26] and
sampled game genres including action, adventure, role-playing, simulation, strategy, and
sports. The second strategy was to exclude games with objects that existing object detection
algorithms cannot recognize. Many role-playing games include fantasy items such as
dragons, wyverns, titans, or orcs, which are not recognized by existing algorithms. We also
excluded strategy games since they include weapons such as tanks, machine guns, and jet
fighters that are not recognized. Our third strategy was to sample both photo-realistically
rendered games and cartoon-rendered games. Although most games are rendered photo-
realistically, some games employ cartoon-styled rendering because of their uniqueness.
Games whose original story is based on cartoons tend to preserve cartoon-styled rendering.
Therefore, we sampled cartoon-rendered games to test how the selected algorithms can
detect cartoon-styled objects.
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We selected games for our study from these genres as evenly as possible. For action
and adventure games, we selected 7 Days to Die [27], Left 4 Dead 2 [28] and Gangstar New
Orleans [29]. For simulation, we selected Sims4 [30], Animal Crossing [31], and Doraemon [32].
For sports, we selected Asphalt 8 [33] and FIFA 20 [34]. Among these games, Animal
Crossing and Doraemon are rendered in a cartoon style. Figure 2 shows illustrations of the
selected games.

(a) 7 days to die (b) Sims4 (c) Animal crossing (d) Asphalt 8

(e) FIFA20 (f) Doraemon (g) Left 4 Dead 2 (h) Gangstar New Orleans

Figure 2. Eight games we selected for our study.

4. Training and Results
4.1. Training

We retrained the existing object detection algorithms using two datasets: PascalVOC
and game scenes. We sampled 800 game scenes: 100 scenes from 8 games we selected. We
augmented the sampled game scenes in various schemes: flipping, rotation, controlling
hues and controlling tone. By alternating these augmentation schemes, we could build
more than 10,000 game scenes for retraining the selected algorithms.

We trained and tested the algorithms on a personal computer with an Intel Pentium
i7 CPU and nVidia RTX 2080 GPU. The time required for re-training the algorithms is
presented in Table 1.

Table 1. Time required for retraining the algorithms (hrs).

Algorithm YOLOv3 [1] Faster R-CNN [2] SSD [3] FPN [4] EfficientDet [5]

Time required
for retraining 9.5 8.1 9.1 9.4 8.5

the algorithms

4.2. Results

The result images on sampled eight samples comparing pre-trained algorithms and
re-trained algorithms are presented in Appendix A. We have presented our results accord-
ing to the following strategies: recognition performance measured by mAP, localization
performance measured by IoU and various statistics. We measured mAP, IoU and various
statistic values including average IoU, precision, recall, F1 score and accuracy for the five
object recognition algorithms with two datasets.

4.2.1. Measuring and Comparing Recognition Performance Using mAP

In Table 2, we compare mAP values for the five algorithms between the Pascal VOC
dataset and the Pascal VOC dataset with game scenes. We show the same comparison on
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the MS COCO dataset in Table 3. In Figure 3, we illustrate the comparisons presented in
Tables 2 and 3.

Table 2. The comparison of mAPs for each game. We compared five object detection algorithms pre-trained by PascalVOC
and retrained by PascalVOC with game scenes. Note that PascalVOC is abbreviated as Pascal in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal
Dataset + + + + +

Game Game Game Game Game

7 Days to Die 1.0 1.0 0.4167 0.6667 0.5 0.4792 0.5940 0.7376 0.4167 0.75

Sims4 0.7556 0.9182 0.5118 0.7452 0.3885 0.4973 0.75 0.8 0.5092 0.8878

Animal Crossing 0.8389 0.7567 0.65 0.6667 0.4833 0.6167 0.4636 0.7882 0.5524 0.85

Asphalt8 0.375 1.0 0.75 1.0 0.1875 0.725 0.75 1 0.375 0.875

FIFA 20 1.0 1.0 0.8725 0.7857 0.6428 0.7143 0.6694 0.75 1.0 1.0

Doraemon 0.5222 0.8778 0.2056 0.57 0.3167 0.4667 0.1333 0.875 0.1667 0.9444

Left 4 Dead 2 0.9444 0.9724 0.1944 0.67 0.056 0.215 0.5 0.875 0.2222 1.0

Gangstar 1.0 1.0 0.5833 0.9583 0.6667 0.4431 1 1 0.8333 0.9167

Average 0.8045 0.9406 0.5230 0.7578 0.4051 0.4973 0.6076 0.8376 0.5092 0.9029

Table 3. The comparison of mAPs for each game. We compared five object detection algorithms pre-trained by MS COCO
and retrained by MS COCO with game scenes. Note that MS COCO is abbreviated as MS in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

MS MS MS MS MS MS MS MS MS MS
Dataset + + + + +

Game Game Game Game Game

7 Days to Die 0.88 0.9 0.75 1 0.7457 0.8 0.5 0.8 0.4792 0.9

Sims4 0.3511 0.7984 0.45 0.5961 0.5643 0.725 0.6697 0.8361 0.75 1

Animal Crossing 0.6731 0.8030 0.6694 0.7576 0.4636 0.639 0.4337 0.8394 0.5758 0.875

Asphalt8 0.7781 1 0.75 1 0.6964 0.875 0.6786 0.875 0.7143 1

FIFA 20 0.8712 0.9286 0.748 1 0.8571 0.7857 1 1 0.8571 1

Doraemon 0.3871 0.7202 0 0.5523 0.2762 0.526 0.1333 0.6667 0.4 0.8

Left 4 Dead 2 0.6153 0.9218 0.5833 0.814 0.2857 0.4464 0.875 1 0.875 0.875

Gangstar 0.8914 1 0.4431 0.9583 0.9135 0.9689 0.579 0.875 1 0.8571

Average 0.6809 0.8840 0.54923 0.8348 0.6003 0.7208 0.6087 0.8615 0.7064 0.9134
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YOLOv3‐MS Coco
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0
0.1
0.2
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SSD‐MS Coco

MS Coco MS Coco +game

0
0.1
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Faster R‐CNN‐MS Coco
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(a) mAP’s of YOLOv3 compared by PascalVOC and MS Coco datasets

(b) mAP’s of SSD compared by PascalVOC and MS Coco datasets

(c) mAP’s of Faster R‐CNN compared by PascalVOC and MS Coco datasets

(d) mAP’s of FPN compared by PascalVOC and MS Coco datasets

(e) mAP’s of EfficientDET compared by PascalVOC and MS Coco datasets

Figure 3. mAPs from five object detection algorithms trained by different datasets are compared. In the left column, blue
bars denote mAPs from those models trained using PascalVOC only and red bars are for PascalVOC + game scenes. In the
right column, blue bars denote mAPs from those models trained using MS COCO only and red bars are for MS COCO +
game scenes.
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4.2.2. Measuring and Comparing Localization Performance Using IoU

In Table 4, we compare IoU values of the five algorithms between the Pascal VOC
dataset and the Pascal VOC dataset with game scenes. We show the same comparison on
the MS COCO dataset in Table 5. In Figure 4, we illustrate the comparisons presented in
Tables 4 and 5.

Table 4. The comparison of IoUs for each game. We compared five object detection algorithms pre-trained by PascalVOC
and retrained by PascalVOC with game scenes. Note that PascalVOC is abbreviated as Pascal in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal
Dataset + + + + +

Game Game Game Game Game

7 Days to Die 0.7237 0.7889 0.3938 0.6944 0.3010 0.6389 0.4831 0.6891 0.3887 0.5566

Sims4 0.5148 0.6373 0.3576 0.5955 0.4234 0.6805 0.5934 0.7605 0.1911 0.4830

Animal Crossing 0.5001 0.6810 0.3632 0.3545 0.3369 0.6949 0.2891 0.7732 0.3985 0.5974

Asphalt8 0.5560 0.7941 0.6482 0.8289 0.2516 0.7057 0.8099 0.8946 0.3506 0.6062

FIFA 20 0.7857 0.7741 0.7870 0.8500 0.8005 0.7445 0.8472 0.6860 0.5950 0.5752

Doraemon 0.3818 0.6303 0.1664 0.6231 0.0927 0.8656 0.1719 0.8507 0.1644 0.4516

Left 4 Dead 2 0.5214 0.6769 0.2828 0.6345 0.3825 0.7308 0.5894 0.7454 0.0917 0.0905

Gangstar 0.7536 0.8033 0.6503 0.7352 0.6113 0.7334 0.7503 0.7966 0.4308 0.4751

Average 0.5689 0.7299 0.4354 0.5462 0.3999 0.7243 0.2803 0.4935 0.5668 0.7745

Table 5. The comparison of IoUs for each game. We compared five object detection algorithms pre-trained by MS COCO
and retrained by MS COCO with game scenes. Note that MS COCO is abbreviated as MS in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

MS MS MS MS MS MS MS MS MS MS
Dataset + + + + +

Game Game Game Game Game

7 Days to Die 0.3972 0.5024 0.5823 0.6964 0.3624 0.6551 0.3672 0.6691 0.3643 0.7183

Sims4 0.4129 0.6891 0.2852 0.4767 0.3531 0.6805 0.3114 0.4648 0.6419 0.8419

Animal Crossing 0.2382 0.5830 0.2403 0.3174 0.4427 0.6949 0.3109 0.5789 0.3234 0.4371

Asphalt8 0.4817 0.9184 0.5495 0.4665 0.5717 0.7832 0.4858 0.7133 0.5428 0.8873

FIFA 20 0.6942 0.6516 0.5424 0.7304 0.7435 0.6486 0.5299 0.4262 0.7177 0.6830

Doraemon 0.4242 0.5027 0 0.1132 0.0513 0.5632 0.1031 0.1574 0.2873 0.5719

Left 4 Dead 2 0.4144 0.5956 0.3706 0.4209 0.3337 0.4408 0.1824 0.1684 0.5588 0.5985

Gangstar 0.7611 0.8215 0.5515 0.8694 0.6043 0.6125 0.6448 0.7374 0.5224 0.6730

Average 0.4779 0.6580 0.3902 0.5114 0.4328 0.6349 0.3669 0.4894 0.4948 0.6751
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(a) IOU’s of YOLOv3 compared by PascalVOC and MS Coco datasets

(b) IOU’s of SSD compared by PascalVOC and MS Coco datasets

(c) IOU’s of Faster R‐CNN compared by PascalVOC and MS Coco datasets

(d) IOU’s of FPN compared by PascalVOC and MS Coco datasets

(e) IOU’s of EfficientDET compared by PascalVOC and MS Coco datasets
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Figure 4. IoUs from five object detection algorithms trained by different datasets are compared. In the left column, blue
bars denote IoUs from those models trained using PascalVOC only and red bars are for PascalVOC + game scenes. In the
right column, blue bars denote IoUs from those models trained using MS COCO only and red bars are for MS COCO +
game scenes.
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4.2.3. Measuring and Comparing Various Statistics

In Tables 6 and 7, we estimate the average IoU, precision, recall, F1 score and accuracy
of the five algorithms for the Pascal VOC dataset and the MS COCO dataset. In Figure 5,
we illustrate the comparisons presented in Tables 6 and 7.

Table 6. The statistics. We compared the algorithms trained by PascalVOC and retrained by PascalVOC with game scenes
for five object detection algorithms. Note that PascalVOC is abbreviated as Pascal in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal
Dataset + + + + +

Game Game Game Game Game

average IoU 0.5689 0.7299 0.4354 0.5462 0.3999 0.7243 0.2803 0.4934 0.3263 0.4795

precision 0.9222 0.9375 0.9821 0.5627 0.9333 0.9255 0.8571 0.9896 0.6508 0.7763

recall 0.8557 0.9278 0.5670 0.7143 0.5773 0.8969 0.6990 0.9223 0.4227 0.6082

F1 score 0.8877 0.9326 0.7190 0.7778 0.7134 0.9110 0.7701 0.9548 0.5125 0.6821

accuracy 0.7981 0.8738 0.5612 0.6364 0.5545 0.8365 0.6261 0.9135 0.3445 0.5175

Table 7. The statistics. We compared the algorithms trained by MS COCO and retrained by MS COCO with game scenes for
five object detection algorithms. Note that MS COCO is abbreviated as MS in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

MS MS MS MS MS MS MS MS MS MS
Dataset + + + + +

Game Game Game Game Game

average IoU 0.4779 0.6580 0.3902 0.5114 0.4328 0.6349 0.3669 0.4894 0.4948 0.6751

precision 0.9028 0.9740 0.9403 0.9383 0.9836 0.9775 0.9231 0.9870 0.8364 0.8772

recall 0.6311 0.7282 0.6117 0.7379 0.5825 0.8447 0.6990 0.7379 0.4466 0.4854

F1 score 0.7429 0.8333 0.7412 0.8261 0.7317 0.9062 0.7956 0.8444 0.5823 0.6250

accuracy 0.5909 0.7143 0.5888 0.7037 0.5769 0.8286 0.6606 0.7308 0.4107 0.4545
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(a) statistics of YOLOv3 compared by PascalVOC and MS Coco datasets

(b) statistics of SSD compared by PascalVOC and MS Coco datasets

(c) statistics of Faster R‐CNN compared by PascalVOC and MS Coco datasets

(d) statistics of FPN compared by PascalVOC and MS Coco datasets

(e) statistics of EfficientDET compared by PascalVOC and MS Coco datasets
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Figure 5. Mean IoU, precision, recall, F1 score and accuracy are compared between two different datasets. In the left column,
blue bars denote the values from those models trained using PascalVOC only and red bars are for PascalVOC + game scenes.
In the right column, blue bars denote the values from those models trained using MS COCO only and red bars are for MS
COCO + game scenes.
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5. Analysis

To prove our claim that the object detection algorithms retrained with game scenes
show better performance than the object detection algorithms trained only with existing
datasets such as Pascal VOC and MS COCO, we asked the following research questions
(RQ).

RQ1. Does our strategy to retrain existing object detection algorithms with game scenes
improve mAP?

RQ2. Does our strategy to retrain existing object detection algorithms with game scenes
improve IoU?

5.1. Analysis of mAP Improvement

To answer RQ1, we compared and analyzed mAP values suggested in Tables 2 and 3,
which compare the mAP values of the object detection algorithms trained only with the
existing datasets and retrained with game scenes. An overall observation reveals that the
retrained object detection algorithms show better mAP than the pre-trained algorithms for
61 of all 80 cases. For further analysis, we performed a t-test and measured the effect size
using Cohen’s d value.

5.1.1. t-Test

Table 8 compares the p values for the five algorithms trained by PascalVOC and
retrained by PascalVOC + game scenes. From the p values, we found that the results from
three of the five algorithms are distinguished for p < 0.05. The results from EffficientDet
are distinguished even for p < 0.01.

Table 9 compares the p values for the five algorithms trained by MS COCO and
retrained by MS COCO + game scenes. From the p values, we found that the results from
four of the five algorithms are distinguished for p < 0.05.

From these results, we show that seven cases from all ten cases exhibit significantly
distinguishable results for p < 0.05.

5.1.2. Cohen’s d

We also measured the effect size using Cohen’s d value for the mAP values and present
the results in Tables 10 and 11.

Since four Cohen’s d values in Table 10 are greater than 0.8, we can conclude that the
effect size of retraining the algorithms using game scenes is great for four algorithms.

We also suggest the Cohen’s d values measured from the MS COCO dataset in Table 11,
where four Cohen’s d values are greater than 0.8. We can also conclude that the effect size
of retraining the algorithms using game scenes is great for four algorithms.

Table 8. p values for the mAPs from five object detection algorithms. We compared the algorithms trained by PascalVOC
and retrained by PascalVOC with game scenes. Note that PascalVOC is abbreviated as Pascal in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal
Dataset + + + + +

Game Game Game Game Game

average mAP 0.8045 0.9182 0.5118 0.7452 0.3885 0.4973 0.6076 0.8376 0.5092 0.8878

std. dev. 0.2396 0.1057 0.2457 0.1562 0.2196 0.2114 0.2552 0.1091 0.2864 0.0959

p 0.2476 0.0397 0.3301 0.0437 0.0063

p < 0.05 Not Distinguished Not Distinguished Distinguished

p < 0.01 Not Not Not Not Distinguished
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Table 9. p values for the mAPs from five object detection algorithms. We compared the algorithms trained by MS COCO
and retrained by MS COCO with game scenes. Note that MS COCO is abbreviated as MS in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

MS MS MS MS MS MS MS MS MS MS
Dataset + + + + +

Game Game Game Game Game

average mAP 0.6809 0.8840 0.5492 0.8348 0.6003 0.7208 0.7064 0.9134 0.6087 0.8615

std. dev. 0.2168 0.1009 0.2559 0.1853 0.2445 0.1756 0.2076 0.0771 0.2678 0.1079

p 0.0372 0.0228 0.2768 0.0352 0.0268

p < 0.05 Distinguished Distinguished Not Distinguished Distinguished

p < 0.01 Not Not Not Not Not

Table 10. Cohen’s d values for mAPs from five object detection algorithms. We compared the algorithms trained by
PascalVOC and retrained by PascalVOC with game scenes. Note that PascalVOC is abbreviated as Pascal in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal
Dataset + + + + +

Game Game Game Game Game

average mAP 0.8045 0.9182 0.5118 0.7452 0.3885 0.4973 0.6076 0.8376 0.5092 0.8878

std. dev. 0.1883 0.2326 0.2743 0.2157 0.2237

Cohen’s d 0.8681 1.6031 2.5073 1.0278 0.7136

Effect size Large Large Large Large >medium

Table 11. Cohen’s d values for mAPs from five object detection algorithms. We compared the algorithms trained by MS
COCO and retrained by MS COCO with game scenes. Note that MS COCO is abbreviated as MS in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

MS MS MS MS MS MS MS MS MS MS
Dataset + + + + +

Game Game Game Game Game

average mAP 0.6809 0.8840 0.5492 0.8348 0.6003 0.7208 0.7064 0.9134 0.6087 0.8615

std. dev. 0.1941 0.2614 0.2148 0.1853 0.2365

Cohen’s d 1.0461 1.0924 1.0689 1.1171 0.5606

Effect size Large Large Large Large >medium

5.2. Analysis on the Improvement of IoU

To answer RQ2, we compared and analyzed IoU values suggested in Tables 4 and 5
that compare the IoU values of the object detection algorithms trained only with existing
datasets and retrained with game scenes. From these values, we found that the retrained
object detection algorithms show better IoU for 68 of all 80 cases. For further analysis, we
performed a t-test and measured the effect size using Cohen’s d value.

5.2.1. t-Test

Table 12 compares the p values for the five algorithms trained by PascalVOC and
PascalVOC + game scenes. From the p-values, we found that the results from all the five
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algorithms are distinguished for p < 0.05. Therefore, our strategy to retrain the algorithms
with game scenes shows a significant improvement for localization.

Table 13 compares the p values for the five algorithms trained by MS COCO and MS
COCO + game scenes. From the p-values, we found that the results from three algorithms
are distinguished for p < 0.05.

From these results, we have demonstrated that eight cases from all ten cases show a
significant distinguishable results for p < 0.05.

Table 12. p values for the IoUs from four object detection algorithms. We compared the algorithms trained by PascalVOC
and retrained by PascalVOC with game scenes. Note that PascalVOC is abbreviated as Pascal in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal
Dataset + + + + +

Game Game Game Game Game

average IoU 0.5689 0.7299 0.4356 0.5462 0.3999 0.7243 0.5668 0.7745 0.2803 0.4935

std. dev. 0.1594 0.1398 0.2509 0.2348 0.2191 0.0665 0.2428 0.0726 0.1616 0.2064

p 0.0497 0.0377 0.0039 0.0490 0.0373

p < 0.05 Distinguished Distinguished Distinguished Distinguished Distinguished

p < 0.01 Not Not Distinguished Not Not

Table 13. p values for the IoUs from four object detection algorithms. We compared the algorithms trained by MS COCO
and retrained by MS COCO with game scenes. Note that MS COCO is abbreviated as MS in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

MS MS MS MS MS MS MS MS MS MS
Dataset + + + + +

Game Game Game Game Game

average IoU 0.4779 0.6580 0.3902 0.5114 0.4329 0.6439 0.3669 0.4894 0.4948 0.6751

std. dev. 0.1699 0.1480 0.2062 0.2443 0.2111 0.1011 0.1804 0.2298 0.1549 0.1438

p 0.0403 0.3021 0.0348 0.2554 0.0301

p < 0.05 Distinguished Not Distinguished Not Distinguished

p < 0.01 Not Not Not Not Not

5.2.2. Cohen’s d

We also measured the effect size using Cohen’s d value for the IoU values and present
the results in Tables 14 and 15.

Since four Cohen’s d values in Table 10 are greater than 0.8, we can conclude that the
effect size of retraining the algorithms using game scenes is great for four algorithms.

We also suggest the Cohen’s d values measured from the MS COCO dataset in Table 11,
where three Cohen’s d values are greater than 0.8. We can also conclude that the effect size
of retraining the algorithms using game scenes is great for three algorithms.
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Table 14. Cohen’s d values for IoUs from four object detection algorithms. We compared the algorithms trained by
PascalVOC and retrained by PascalVOC with game scenes. Note that PascalVOC is abbreviated as Pascal in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal
Dataset + + + + +

Game Game Game Game Game

average IoU 0.5689 0.7299 0.4356 0.5462 0.3999 0.7243 0.5668 0.7745 0.2803 0.4935

std. dev. 0.1670 0.2416 0.2291 0.2037 0.2102

Cohen’s d 0.9641 0.4586 1.4153 1.020 0.0142

Effect size Large >small Large Large Large

Table 15. Cohen’s d values for IoUs from four object detection algorithms. We compared the algorithms trained by MS
COCO and retrained by MS COCO with game scenes. Note that MS COCO is abbreviated as MS in the table.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

MS MS MS MS MS MS MS MS MS MS
Dataset + + + + +

Game Game Game Game Game

average IoU 0.4779 0.6580 0.3902 0.5114 0.4329 0.6439 0.3669 0.4894 0.4948 0.6751

std. dev. 0.1798 0.2272 0.1909 0.1718 0.2094

Cohen’s d 1.0011 0.5332 1.0581 1.0494 0.5849

Effect size Large >medium Large >medium Large

In summary, mAP is improved for 61 of 80 cases and IoU for 68 of 80 cases. When we
performed a t-test on p < 0.05, 7 of 10 cases showed a significantly unique improvement
for mAP and 8 of 10 cases for IoU. When we measured the effect size, 8 of 10 cases showed
a large effect size for mAP and 7 of 10 for IoU. Therefore, we can answer the research
questions as the object detection algorithms retrained with game scenes show an improved
mAP and IoU compared with the algorithms trained only with public datasets including
PascalVOC and MS COCO.

5.3. Training with Augmented Dataset

An interesting approach for improving the performance of object detection algorithms
on game scenes is to employ augmented images from datasets such as Pascal VOC or MS
COCO. In several studies, intentionally transformed images are generated and employed
to train pedestrian detection [35,36]. In our approach, stylization schemes are employed
to render images in some game scene style. The stylization schemes we employ include
flow-based image abstraction with coherent lines [37], color abstraction using bilateral
filters [38] and deep cartoon-styled rendering [39].

In our approach, we augmented 3000 images by applying three stylization schemes [37–39]
and retrained object detection algorithms. Some of the augmented images are suggested
in Figure 6. In Table 16, we present a comparison between mAP values from pre-trained
algorithms and mAP values from retraining with the augmented images. We tested this
approach for the Pascal VOC dataset.

Among the eight games we used for the experiment, the scenes from Doraemon show
similar styles to the augmented images. It is interesting to note that this approach shows
somewhat improved results on the scenes from Doraemon. For other game scenes, we
cannot recognize the improvement in the results. Figure 7 illustrates the comparison of
three approaches: (i) trained with Pascal VOC, (ii) retrained with augmentation and (iii)
retrained with game scenes.
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(a) Images from PascalVOC dataset

(b) Flow‐based image abstraction with coherent lines

(c) Color abstraction using bilateral filters

(d) Deep cartoon‐styled rendering

Figure 6. The augmented images from Pascal VOC: (a) is the sampled images from Pascal VOC dastaset, (b) is produced by
flow-based image abstraction with coherent lines [37], (c) is produced by color abstraction using a bilateral filter [38] and (d)
is produced by deep cartoon-styled rendering [39].

Table 16. The comparison of mAPs of the object detection algorithms between the VOC dataset trained with Pascal and
retrained using augmented images.

Algorithm YOLOv3 SSD Faster R-CNN FPN EfficientDet

Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal Pascal
Dataset + + + + +

Augment Augment Augment Augment Augment

7 Days to Die 1.0 1.0 0.4167 0.3705 0.5 0.5413 0.5940 0.5415 0.4167 0.5035

Sims4 0.7556 0.8125 0.5118 0.4915 0.3885 0.4124 0.75 0.8125 0.5092 0.4501

Animal Crossing 0.8389 0.8735 0.65 0.6413 0.4833 0.3314 0.4636 0.5315 0.5524 0.5035

Asphalt8 0.375 0.4214 0.75 0.8215 0.1875 0.3641 0.75 0.8125 0.375 0.5102

FIFA 20 1.0 0.8921 0.8725 0.8613 0.6428 0.6784 0.6694 0.5603 1.0 1.0

Doraemon 0.5222 0.6712 0.2056 0.4510 0.3167 0.5124 0.1333 0.3125 0.1667 0.4315

Left 4 Dead 2 0.9444 0.9214 0.1944 0.315 0.056 0.2105 0.5 0.6124 0.2222 0.3415

Gangstar 1.0 0.9416 0.5833 0.6135 0.6667 0.4641 1 0.9315 0.8333 0.8145

Average 0.8045 0.8168 0.5230 0.5707 0.4051 0.4288 0.6076 0.6394 0.5092 0.5693
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Figure 7. Comparison of three approaches: training only with Pascal VOC, retrained with augmented images and retrained
with game scenes. The red rectangle shows comparison of mAPs on scenes from Doraemon, which shows greatest
improvement. The blue rectangle shows comparison of average mAPs.

6. Conclusions and Future Work

This study proved that the object detection algorithms retrained using game scenes
show an improved performance compared with the algorithms trained only with the
public datasets. Pascal VOC and MS COCO, two of the most frequently used datasets,
were employed for our study. We tested our approach for five widely used object detection
algorithms, YOLOv3, SSD, Faster R-CNN, FPN and EfficientDet, and for eight games from
various genres. We estimated mAP between the pre-trained and retrained algorithms to
show that object recognition accuracy is improved. We also estimated IoU to show that the
accuracy of localizing objects is improved. We also tested data augmentation schemes that
can be applied for our purpose, which shows very limited results according to the style of
game scenes.

We have two further research directions. One direction is to establish a dataset about
game scenes to improve the performance of existing object detection algorithms on game
scenes. We aim to include various non-existent characters such as dragons, elves or orcs.
Another direction is to modify the structure of the object detection algorithms to optimize
them on game scenes.
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Appendix A

In Appendix A, we present eight figures (Figures A1–A8) that sample the results for
eight games by five important object detection algorithms: YOLOv3, SSD, Faster R-CNN,
FPN and EfficientDet.

(a) The results of YOLOv3

(b) The results of SSD

(c) The results of Faster R‐CNN

(d) The results of EfficientDet

(e) The results of FPN

Figure A1. Cont.
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(a) The results of YOLOv3

(b) The results of SSD

(c) The results of Faster R‐CNN

(d) The results of EfficientDet

(e) The results of FPN

(a) The results of YOLOv3

(b) The results of SSD

(c) The results of Faster R‐CNN

(d) The results of EfficientDet

(e) The results of FPN

Figure A1. Comparison of the bounding box detection on game 7 Days to Die. The left column is the result from the models
trained by PASCAL VOC and the right column is the result from the models trained by PASCAL VOC and game scenes.

(a) The results of YOLOv3

(b) The results of SSD

(c) The results of Faster R‐CNN

(d) The results of EfficientDet

(e) The results of FPN

Figure A2. Cont.
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(a) The results of YOLOv3

(b) The results of SSD

(c) The results of Faster R‐CNN

(d) The results of EfficientDet

(e) The results of FPN

Figure A2. Comparison of the bounding box detection on game Sims. The left column is the result from the models trained
by PASCAL VOC and the right column is the result from the models trained by PASCAL VOC and game scenes.
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(a) The results of YOLOv3

(b) The results of SSD

(c) The results of Faster R‐CNN

(d) The results of EfficientDet

(e) The results of FPN

Figure A3. Comparison of the bounding box detection on game Animal Crossing. The left column is the result from
the models trained by PASCAL VOC and the right column is the result from the models trained by PASCAL VOC and
game scenes.
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(a) The results of YOLOv3

(b) The results of SSD

(c) The results of Faster R‐CNN

(d) The results of EfficientDet

(e) The results of FPN

Figure A4. Comparison of the bounding box detection on game Asphalt 8. The left column is the result from the models
trained by PASCAL VOC and the right column is the result from the models trained by PASCAL VOC and game scenes.



Electronics 2021, 10, 2527 24 of 29

(a) The results of YOLOv3

(b) The results of SSD

(c) The results of Faster R‐CNN

(d) The results of EfficientDet

(e) The results of FPN

Figure A5. Comparison of the bounding box detection on game FIFA20. The left column is the result from the models
trained by PASCAL VOC and the right column is the result from the models trained by PASCAL VOC and game scenes.
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(a) The results of YOLOv3

(b) The results of SSD

(c) The results of Faster R‐CNN

(d) The results of EfficientDet

(e) The results of FPN

Figure A6. Comparison of the bounding box detection on game Doraemon. The left column is the result from the models
trained by PASCAL VOC and the right column is the result from the models trained by PASCAL VOC and game scenes.
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(a) The results of YOLOv3

(b) The results of SSD

(c) The results of Faster R‐CNN

(d) The results of EfficientDet

(e) The results of FPN

Figure A7. Comparison of the bounding box detection on game Le f t4Dead2. The left column is the result from the models
trained by PASCAL VOC and the right column is the result from the models trained by PASCAL VOC and game scenes.
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(a) The results of YOLOv3

(b) The results of SSD

(c) The results of Faster R‐CNN

(d) The results of EfficientDet

(e) The results of FPN

Figure A8. Comparison of the bounding box detection on game Gangstar, New Orleans. The left column is the result from
the models trained by PASCAL VOC and the right column is the result from the models trained by PASCAL VOC and
game scenes.
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