
electronics

Article

Data Distribution Service Converter Based on the Open
Platform Communications Unified Architecture
Publish–Subscribe Protocol

Woongbin Sim 1, ByungKwen Song 1, Junho Shin 2 and Taehun Kim 3,*

����������
�������

Citation: Sim, W.; Song, B.; Shin, J.;

Kim, T. Data Distribution Service

Converter Based on the Open

Platform Communications Unified

Architecture Publish–Subscribe

Protocol. Electronics 2021, 10, 2524.

https://doi.org/10.3390/

electronics10202524

Academic Editor: In Lee

Received: 21 August 2021

Accepted: 11 October 2021

Published: 16 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronics and Computer Engineering, SeoKyeong University, Seoul 02713, Korea;
swb1015@skuniv.ac.kr (W.S.); bksong@skuniv.ac.kr (B.S.)

2 Smart Manufacturing Research Center, Korea Electronics Technology Institute, Seongnam-si 13509, Korea;
jhshin@keti.re.kr

3 School of Cybersecurity, Korea University, Seoul 02841, Korea
* Correspondence: kurie@korea.ac.kr; Tel.: +82-10-9029-5117

Abstract: The open platform communications unified architecture (OPC UA) is a major industry-
standard middleware based on the request–reply pattern, and the data distribution service (DDS) is
an industry standard in the publish–subscribe form. The OPC UA cannot replace fieldbuses at the
control and field levels. To facilitate real-time connectionless operation, the OPC Foundation added
the publish–subscribe model—a new specification that supports broker functions, such as message
queuing telemetry transport (MQTT), and advanced message queuing protocol (AMQP)—to the OPC
UA Part 14 standard. This paper proposes a protocol converter for incorporation into the application
layer of the DDS subscriber to facilitate interoperability among publisher–subscriber pairs. The
proposed converter comprises a DDS gateway and bridge. The former exists inside the MQTT and
AMQP brokers, which convert OPC UA publisher data into DDS messages prior to passing them
on to the DDS subscriber. The DDS bridge passes the messages received from the DDS gateway to
the OPC UA subscriber in the corresponding DDS application layer. The results reported in existing
studies, and those obtained using the proposed converter, allow all devices supporting the OPC UA
and OPC UA PubSub standards to realize DDS publish–subscribe interoperability.

Keywords: data distribution service; middleware; open platform communications unified architec-
ture (OPC UA); protocol converter; publish–subscribe protocol

1. Introduction

The data exchange process between modern industrial systems has attracted increased
attention in recent years. Industrial automation and control systems include intelligent
devices operating in conjunction with the Industrial Internet of Things (IIoT) while utilizing
a variety of middleware for data exchange, such as message queuing telemetry transport
(MQTT), advanced message queuing protocol (AMQP), HTTP, and data distribution service
(DDS). These middleware have different information models and communication protocols,
which makes it difficult for them to communicate directly with each other. For example, the
open platform communications unified architecture (OPC UA) is a client–server (request–
reply) architecture while MQTT, AMQP, and DDS are based on the publish–subscribe
model. Devices use the MQTT or AMQP links and publish topic-related data through
brokers, and data consumers or subscribers connect to brokers to subscribe to the desired
topic data. However, DDS does not use brokers.

The OPC UA is a de facto standard communication middleware technology used in
the upper layer of the automation pyramid and is one of the most promising industry
automation communication protocols for Industry 4.0 [1]. It is used for data exchange
between control systems and enterprise-level automation devices through connection-
oriented communication based on a service-oriented architecture [2].

Electronics 2021, 10, 2524. https://doi.org/10.3390/electronics10202524 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10202524
https://doi.org/10.3390/electronics10202524
https://doi.org/10.3390/electronics10202524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10202524
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10202524?type=check_update&version=3


Electronics 2021, 10, 2524 2 of 19

At the current field level, Ethernet-based fieldbus protocols (e.g., SERCOS, ProfiNET,
CAN) are used to achieve high performance. However, because these protocols have
different operating characteristics, interoperability problems abound. If different types
of protocols are used at the field level, a man–machine interface is required for each
protocol owing to their different characteristics. In the overall system integration, it
is also necessary to integrate multiple types of gateways, which provide the protocol
interconversion function, and all automation levels into the same protocol. To satisfy these
requirements, the OPC Foundation pursues real-time connectionless mechanisms and
has added the OPC UA publish–subscribe model (hereinafter PubSub), which is a new
specification that supports the broker function used by MQTT and AMQP, to the OPC UA
Part 14 standard [3]. This paper proposes a protocol converter that allows interoperability
between OPC UA publishers and subscribers present in the application layer of DDS
subscribers. The proposed protocol converter consists of a DDS gateway and a DDS bridge.
The DDS gateway exists inside the MQTT and AMQP brokers. It converts the publisher
data into DDS messages and sends them to the DDS subscriber. The DDS bridge sends the
DDS messages transmitted to the DDS subscriber to the OPC UA subscriber located in the
application layer. To verify the implementation accuracy and usability of the proposed
protocol converter, a testbed is built and the scenario-based throughput and latency are
measured for analysis.

The OPC UA PubSub module used here is based on the Open62541 PubSub [4] open
source and uses A-Open62541 PubSub [5], which implements the OPC UA Part 14 specifica-
tion without the security key service. The MQTT supported in A-Open62541 PubSub does
not use MQTT-C [6] applied in Open62541 PubSub but instead uses Mosquitto [7], which
is commonly used as an industry standard. While Open62541 PubSub does not support
AMQP, A-Open62541 PubSub supports two models, RabbitMQ [8] and Qpid-Proton [9],
provided by Apache. OpenDDS open source is used for the DDS [10]. The DDS gate-
way module and broker run on Raspberry Pi 4, whereas A-Open62541 PubSub and DDS
subscribers run on Ubuntu-based virtual machines.

The remainder of this paper is organized as follows. Section 2 reviews the background
and studies related to the proposed technique. Section 3 presents the proposed OPC UA
publish–subscribe protocol converter model. Section 4 summarizes the implementation
and performance analysis results of the proposed model. Finally, Section 5 presents our
conclusions and future research directions.

2. Background and Related Work
2.1. Background
2.1.1. OPC UA PubSub

OPC UA PubSub is a standard added as OPC UA Part 14 [3]. Figure 1 illustrates the
overall OPC UA protocol stack. TCP/IP, UDP/IP, and the time-sensitive network (TSN)
are at the bottom and MQTT, AMQP, and the unified architecture datagram packet (UADP)
are configured on it; based on this, the PubSub (OPC UA Part 14) model exists.

The current OPC UA standard has been extended to include OPC UA PubSub, which
was added as Part 14 on top of the OPC UA based on the existing client–server commu-
nication model. The client–server communication model forms a new session whenever
additional clients are connected to a server, resulting in performance problems if the server
is linked to numerous industrial devices.

Figure 2 shows three OPC UA clients connected to one OPC UA server in a state
where each client has made a subscription request to the nodes in “AddressSpace” of the
server via the “MonitoredItem” storage space for collecting information. Although the
clients no longer request other services and only receive notifications on the nodes they
have already subscribed to, the server must maintain a session with each client to perform
the “Subscription” service. As communication parties, the server and clients are forced to
perform transmission-related functions individually during each session—such as trans-
mission buffering, acknowledgment of reception, and data resending—which consumes a



Electronics 2021, 10, 2524 3 of 19

significant amount of communication resources in proportion to the number of sessions.
Therefore, the number of clients simultaneously connected or the number of “Monitored-
Item/Subscription” needs to be capped for servers with limited communications resources,
such as hardware specifications.

Figure 1. The open platform communications unified architecture (OPC UA) protocol stack. MQTT,
message queuing telemetry transport; AMQP, advanced message queuing protocol; TSN, time-
sensitive network.

Figure 2. OPC UA PubSub communication model [3].

OPC UA PubSub is a protocol that overcomes this shortcoming. PubSub proposes
two communication models: UDP/IP multicast and a broker method using MQTT and
AMQP. As the client–server is not directly connected in PubSub, but instead is connected
through a broker or IP multicast, an increase in the number of connections has no impact
on the communications resources of the server or publisher. Additionally, the protocol
stack of the publisher is lightweight and can be applied at the low-specification field level
of 16/32 bits. Thus, the addition of the publish–subscribe function to the existing OPC UA
allows the OPC UA-based integration of the communication protocols across all system
levels, ranging from the field level to the high level. Consequently, an environment, in
which all factory automation facilities can be linked to OPC UA and OPC UA PubSub, is
created and operates as a single entity.



Electronics 2021, 10, 2524 4 of 19

Figure 3 illustrates the broker communication model of PubSub. MQTT and AMQP
are adopted by the OPC UA Part 14 standard as broker communication methods, or
IP multicast is used instead of brokers. The transmission to MQTT and AMQP occurs
in the forms of “mqtts://<domain name>[:<port>][/<path” and “amqps://<domain
name>[:<port>][/<path,” and the default port numbers are 8883 and 5671, respectively.

Figure 3. OPC UA PubSub broker communication model.

Two message-encoding methods are adopted in PubSub: UADP and JavaScript object
notation (JSON). UADP is an optimized application of UA binary encoding, which also
provides a security feature for messages. It is used for communication based on the UDP/IP
multicast, Ethernet, and brokers. JSON is a highly readable method in text form and is
used as an encoding method for general data exchange.

2.1.2. Data Distribution Service (DDS)

Based on PubSub, the DDS is a data-centric middleware recommended by the Object
Management Group [11] for time/mission-critical applications. The DDS provides quality
of service (QoS) to ensure communication quality. It sends and receives data based on
topics that are virtual data transmission channels between a publisher and a subscriber.
Multiple publishers can generate data for a single topic, and the generated data can be
passed to all subscribers connected to the topic. Each set of generated data can be assigned a
priority level while establishing the QoS for the data. Topic-based application programming
interfaces (APIs) for the data-centric publish–subscribe (DCPS) model provided by DDS
include the following types [12]:

• Topic: An information exchange unit is defined by using a subset of the interface
definition language (IDL), identified by a name. A topic connects the publisher and
the subscriber to allow anonymous transparent communication. A topic instance is a
data entity separated by a key.

• Domain: A scoping mechanism for establishing a separate virtual network or com-
munication context. Domains provide an optimal communication environment by
separating different applications.

• Domain Participant: An entity participating in a domain.
• Partition: A scoping mechanism that logically groups topics and further constructs

domains.
• Data Writer: An entity that publishes a topic.
• Data Reader: An entity that subscribes to a topic.
• Publisher: An entity that manages the data writer group.



Electronics 2021, 10, 2524 5 of 19

Subscriber: As an entity that manages the data reader group, DDS dynamically
searches for new participants in the system and establishes connections between publishers
and subscribers on specific topics.

Figure 4 shows the correlation between the DDS domain participants and topics.
Topics A and B exist in the global data space. Each of the two domain participants had a
publisher and subscriber. It is not necessary to read only one topic because it is a publisher
or subscriber. The topic can be read for each data writer inside the publisher and/or for
each data reader inside the subscriber.

Figure 4. Correlation between DDS domain participants and topics.

Table 1 shows the default QoS policy provided by the DDS [11,12].

Table 1. Data distribution service (DDS) quality of service (QoS) policies.

DDS QoS Policies

Deadline Ownership strength
Destination order partition

Durability Presentation
Durability service reader data lifecycle

Entity factory Reliability
Group data Resource limits

History Time-based filter
Latency budget topic data

Lifespan
Liveliness

Ownership

Transport priority
user data

Writer data lifecycle

2.2. Related Work

Research related to the OPC UA and DDS for interoperability is actively being con-
ducted. Endeley et al. [13] proposed a smart gateway for interoperability between OPC
UA and DDS in an IIoT environment. In their system, the OPC UA service set is mapped



Electronics 2021, 10, 2524 6 of 19

through the smart gateway between the OPC UA and DDS. However, it is limited to OPC
UA and does not support OPC UA PubSub.

Cheikh et al. [14] proposed the use of DDS middleware to support cooperative vehicle
infrastructure systems for vehicle-to-vehicle or vehicle-to-infrastructure systems. Their
proposed DDS middleware is based on the publish–subscribe model and has QoS sup-
port. Cilden et al. [15] proposed a general distributed architecture based on a DDS as an
integrated laboratory architecture for avionics. Their proposed architecture facilitates the
testing of modular avionics against the rest of the system consisting of real hardware and
simulated participants by bringing together different communication bus standards and
improving flexibility through DDS and data gateways. Lee et al. [16] proposed a DDS
gateway architecture that enables interconnection between DDS domains for large-scale
cyber-physical systems (CPS). Their architecture consists of four main components: in-
terface module, topic manager, routing manager, and network module, and a method to
address bottlenecks through token passing.

As the related studies cited above show, DDS is utilized in various fields, including
IIoT, vehicles, avionics, and CPS, and interconnection and interoperability between different
domains and systems have become more important. Additionally, most existing studies
focus on gateways for the OPC UA and DDS, with scant regard for interoperability. To
rectify this issue, a PubSub protocol converter model that ensures the interoperability of all
devices that support the OPC UA standard is proposed herein.

3. OPC UA PubSub Protocol Converter Model

The protocol converter model for interoperability between the OPC UA publisher and
subscriber present in the application layer of the DDS subscriber model consists of a DDS
gateway and a DDS bridge. Figure 5 shows the overall system architecture of the proposed
protocol converter model.

Figure 5. Overall system architecture of the OPC UA protocol converter.

3.1. A-Open62541 PubSub

A-Open62541 PubSub [5] is based on the Open62541 PubSub open source, and it
includes additional functions not available in the corresponding source. Open62541 PubSub
does not support AMQP, but A-Open62541 PubSub supports two standards: RabbitMQ
and Qpid-proton. Figure 6 illustrates the functions supported by A-Open62541 PubSub.



Electronics 2021, 10, 2524 7 of 19

Figure 6. A-Open62541 PubSub UML diagram.

3.2. DDS Gateway

A DDS gateway converts the OPC UA published data into DDS messages and sends
them to the DDS subscribers. One of the key functions of the DDS gateway is the conversion
of native types of OPC UA published data and DDS messages; Table 2 shows the applicable
mapping.

Table 2. Mapping of OPC UA PubSub native types to DDS.

OPC UA PubSub Type DDS Type

Boolean Boolean
Sbyte Byte
Byte Byte
Int16 Int16

UInt16 Uint16
Int32 Int 32

UInt32 Uint32
Float Float32

Double Float64
String String

DateTime Int64
ByteString Sequence(Byte)

Data type conversion is performed in the cross-mapping module (CMM) with the
following functions:

• Topic discriminator: The data and topics sent to the broker are read to call the “Data
Type conversion” function if a topic is “DDS Gateway” or, if not, pass it onto the
subscriber connected to the broker.

• Data type conversion: OPC UA publish data are sent in an encoded type, which is
converted to DDS IDL before being received by the DDS subscriber.

• IDL mapping: The converted data are substituted into topics containing key values
and data, and the key values are set to the length of the publish data.

3.3. DDS Bridge

A DDS bridge is a module that exists between the OPC UA subscriber and DDS
subscriber that converts the messages received from the DDS gateway into OPC UA
subscriber data and delivers them. In other words, the DDS gateway and bridge provide
location transparency for OPC UA publishers and subscribers. Figure 7 illustrates the
communication model of the OPC UA publisher and the subscriber. When the publisher
issues encoding data such as DataSetField and DataSetMessage, the DDS gateway receives
and transforms the data to fit the DDS data stack and the DDS subscriber within the OPC



Electronics 2021, 10, 2524 8 of 19

subscriber receives it. The received DDS data are transformed back into the OPC UA data
through the DDS bridge, and the subscriber decodes it. Due to the DDS bridge, it appears
that only the OPC UA publisher and subscriber transmit and receive the data.

Figure 7. Communication model of OPC UA publisher and subscriber.

4. Implementation and Performance Evaluation
4.1. Implementation
4.1.1. A-Open62541 PubSub

As mentioned in Section 3.1, A-Open62541 PubSub has been implemented based on
the Open62541 PubSub open source with the added AMQP function. JSON and MQTT
have been implemented in the commonly used JSON-C and Mosquitto. Figure 8 illustrates
the protocol stack and API of the A-Open62541 PubSub.

Figure 8. A-Open62541 PubSub protocol stack and API.

Table 3 shows the mapping of JSON used in the Open62541 PubSub open source
in the JSON-C API, and Table 4 shows the mapping of MQTT−C in the Mosquitto API.
Tables 5 and 6 describe the AMQP API of A-Open62541 PubSub.



Electronics 2021, 10, 2524 9 of 19

Table 3. A-Open62541 PubSub JSON-C API.

Open62541 PubSub A-Open62541 PubSub (JSON-C)

make_json()

Json_object_new_object()
/*create a new Json object*/
Json_object_object_add()
/*Add an object field to a json_object of type
json_type_object*/

decode_json()

json_tokener_parse()
/*Parse a string and return a non-NULL json_object if a
valid JSON value is found*/
json_object_object_get()
/*Get the json_object associated with a given object field*/
json_object_get_int() /*Get the int value of a json_object*/
json_object_get_string() /*Get the string value of a
json_object*/

Table 4. A-Open62541 PubSub Mosquitto API.

Open62541 PubSub A-Open62541 PubSub(Mosquitto)

UA_PubSubChannelMQTT_open()

mosquitto_lib_init()
/* Must be called before any other mosquitto
functions.*/
mosquitto_new()
/* Create a new mosquitto client instance. */

UA_PubSubChannelMQTT_regist() mosquitto_subscribe()
/* Subscribe to a topic. */

UA_PubSubChannelMQTT_send() mosquitto_publish()
/* Publish a message on a given topic. */

UA_PubSubChannelMQTT_close() mosquitto_disconnect()
/* Disconnect from the broker. */

Table 5. A-Open62541 PubSub RabbitMQ API.

Open62541 PubSub A-Open62541 PubSub (RabbitMQ)

UA_PubSubChannelAMQP_open()

amqp_new_connection()
/*Allocate and initialize a new amqp_connection_state_t
object*/
amqp_tcp_socket_new()
/*A TCP socket connection. Create a new TCP socket.*/

UA_PubSubChannelAMQP_regist()

amqp_bytes_malloc_dup()
/*Duplicates an amqp_bytes_t buffer.*/
amqp_queue_bind()
/*amqp bind*/
amqp_basic_consume()
/*Subscribe to a message from the broker*/

UA_PubSubChannelAMQP_send()

amqp_basic_publish()
/*Publish a message to the broker*/
amqp_bytes_free()
/*Frees an amqp_bytes_t buffer*/

UA_PubSubChannelAMQP_close()

amqp_channel_close()
/*Closes a channel*/
amqp_connection_close()
/*Closes the entire connection*/
amqp_destroy_connection()
/*Destroys an amqp_connection_state_t object*/



Electronics 2021, 10, 2524 10 of 19

Table 6. A-Open62541 PubSub Qpid-proton API.

Open62541 PubSub A-Open62541 PubSub (Qpid-proton)

UA_PubSubChannelAMQP_open()

pn_event_connection()
/*Get the connection associated with an event.*/

pn_session()
/*Factory for creating a new session on a given
connection object.*/
pn_connection_set_container()
/*Set the AMQP Container name advertised by a
connection object.*/
pn_connection_open()
/*Open a connection.*/

UA_PubSubChannelAMQP_regist()

pn_event_delivery()
/*Get the delivery associated with an event.*/
pn_link_recv()
/*Receive message data for the current delivery on a
link.*/

UA_PubSubChannelAMQP_send()

pn_message_body()
/*Get and set the body of a message.*/
pn_data_put_binary()
/*Puts a PN_BINARY value.*/
pn_data_exit()
/*Sets the current node to the parent node and the
parent node to its own parent.*/
pn_message_send()
/*Encode and send a message on a sender link.*/

UA_PubSubChannelAMQP_close() pn_connection_close()
/*Close a connection.*/

4.1.2. DDS Gateway

The DDS gateway (Figure 9) runs inside the MQTT and AMQP brokers. The main
APIs of the DDS gateway are as follows:

• handle_connect(): This checks data and topics by receiving the data sent from the
publisher to the Mosquitto broker.

• amqp_basic_get(): This checks data and topics by receiving the data sent from the
publisher to the RabbitMQ broker.

• queue_receive(): This checks data and topics by receiving the data sent from the
publisher to the Qpid-proton broker.

• check_gateway_topic(): If a topic is “DDS Gateway,” the received data are passed to
the change_type() API parameter.

• change_type(): Encoded OPC UA published data are converted into IDL types that
can be used in DDS.

• input_IDL_data(): DDS topics are generated using IDL.



Electronics 2021, 10, 2524 11 of 19

Figure 9. Overall software architecture of DDS gateway.

Figure 10 and Algorithm 1 show an example of the IDL mapping process and the QoS
setting, respectively.

Algorithm 1: DDS gateway QoS setting
Initialization

1. publisher -> get_default_datawriter_qos(pin_qos)

Task 1: Modify QoS settings

2. pin_qos.history.kind = DDS::KEEP_ALL_HISTORY_QOS
3. pin_qos.ownership.kind = DDS::SHARED_OWNERSHIP_QOS
4. pin_qos.destination_order.kind =

DDS::BY_SOURCE_TIMESTAMP_DESTINATION_QOS
5. pin_qos.reliability.kind = DDS::RELIABLE_RELIABILITY_QOS
6. pin_qos.reliability.max_blocking_time.sec = 0
7. pin_qos.reliability.max_blocking_time.nanosec = 100,000

Task 2: Apply QoS settings
8. DDS::DataWriter_var writer =

publisher->create_datawriter(topic, pin_qos, 0, 0)



Electronics 2021, 10, 2524 12 of 19

Figure 10. Example of DDS gateway IDL mapping process.

4.1.3. DDS Bridge

Figure 11 shows the architecture of the DDS bridge, which consists of the
following APIs.

Figure 11. DDS bridge APIs.

• Read_dds_data(): This receives and reads DDS messages.
• Change_type(): This converts DDS messages to OPC UA subscriber data types accord-

ing to the rules in Figure 9.
• Data_delivery(): This passes the information model converted to OPC UA subscriber

data types to UA_Server_addPubSubConnection(), which provides the “PubSubCon-
nection” function.

4.2. Performance Evaluation
4.2.1. Testbed and Scenario

To evaluate the performance of the proposed protocol converter, a testbed was built
and a test scenario executed (see Figure 12).



Electronics 2021, 10, 2524 13 of 19

Figure 12. Testbed configuration used for proof of concept.

The testbed used for proof of concept (POC) comprised a DDS gateway, an OPC UA
publisher, and a DDS subscriber. The DDS gateway ran on Raspberry Pi 4 whereas the
OPC UA publisher and DDS subscriber ran on Ubuntu virtual machines. Figure 13 and
Table 7 illustrate the testbed and corresponding system specifications, respectively.

Table 7. Proof of concept testbed system specifications.

Component OPC UA Publisher DDS Gateway OPC UA Subscriber

OS Ubuntu 20.04 Raspbian GNU/Linux 10 Ubuntu 20.04

Tool A-Open62541 Pub

Mosquitto v2.0.4
RabbitMQ v3.8.2

Qpid-proton v0.33.0
OpenDDS v3.17

OpenDDS v3.17

Language C C, C++ C, C++
RAM 4 GB 4 GB 4 GB

Capacity 30 GB 32 GB 30 GB
CPU Intel Core i7 ARM v7 Processor rev3 Intel Core i7

The test scenario for the POC was as follows:

• AMQP/MQTT-based OPC UA publisher data publication (source IP: 210.110.34.167).
• Broker reception (destination IP: 210.110.34.177).
• Publication of RTPS messages to UDP by the DDS publisher inside broker (source IP:

210.110.34.177).
• UDP-based RTPS messages received by DDS subscriber (destination IP: 239.255.0.2).

To analyze the performance of the protocol converter, a test bed was configured as a
local environment based on Ubuntu Linux-based virtual machines. Figure 13 and Table 8
illustrate the configuration of the test bed and detailed H/W and S/W specifications.



Electronics 2021, 10, 2524 14 of 19

Figure 13. Testbed configuration for the performance analysis.

The specifications of the performance analysis testbed are as follows.

Table 8. System specifications for the performance analysis testbed.

OS Tool RAM Language Capacity CPU

Ubuntu 20.04 A-Open62541
OpenDDS v3.17
Mosquitto v2.0.4
RabbitMQ v3.8.2

Qpid-proton v0.33.0

4 GB C, C++ 30 GB Intel Core i7

The test scenario for the performance analysis was as follows:

• A measure of the OpenDDS latency obtained without the protocol converter – 1©;
• A measure of the OPC UA PubSub latency obtained without the protocol

converter – 2©;
• A measure of the A-Open62541 PubSub latency obtained with the protocol

converter – 3©;
• The comparison of latency 3© and the sum of latency 1© and 2©.

4.2.2. Evaluation Results

The throughput and latency were measured and analyzed based on the test scenario
to confirm the interoperability and verify the implementation accuracy and usability of the
implemented protocol converter.

To verify the implementation accuracy, Figure 14 shows the flow of AMQP messages
from the OPC UA publisher to the DDS gateway monitored using Wireshark, and Figure 15
shows the data flow from the DDS gateway to the DDS subscriber. As Figures 14 and 15
show, when the real number 58.0 was sent as random data from the OPC UA publisher to
the JSON type, the corresponding type was mapped to the DDS type at the DDS gateway,
and an identical value of 58 was passed to the DDS subscriber.



Electronics 2021, 10, 2524 15 of 19

Figure 14. Monitoring screen between the OPC UA publisher and DDS gateway (AMQP).

Figure 15. Monitoring screen between the DDS gateway and OPC UA subscriber (AMQP).

The protocol converter supports AMQP and MQTT; MQTT shows the same results
as AMQP, which verifies that the function works correctly. The performance analysis and
results are as follows. To analyze the performance of the protocol converter, it was tested
locally with the delay time unit in microseconds (µs). The final delay time was calculated
as the average value of 20 publish–subscribe cycles executed at 100 ms intervals. As in the
performance analysis scenario described above, the delay time of OPC UA PubSub and
that of OpenDDS with no DDS converter are shown in Figure 16.



Electronics 2021, 10, 2524 16 of 19

Figure 16. OPC UA PubSub and OpenDDS latencies without converter.

Figure 17 compares the sum of the OPC UA and OpenDDS latencies to that obtained
when using the MQTT-based converter while Figure 18 compares it to that obtained using
the AMQP-based converter.

Figure 17. Comparison of latencies with and without the MQTT-based converter.



Electronics 2021, 10, 2524 17 of 19

Figure 18. Comparison of latencies with and without the AMQP-based converter.

Based on the performance analysis results, when the data for all cases are averaged, it
is clear that there is an increase in latency by a factor of 47% compared to the case without
the converter. Table 9 summarizes these results.

Table 9. Performance analysis results/latencies for various data lengths.

Data Lengths and Corresponding Latencies

10 B (µs) 100 B (µs) 1 kB (µs) 1 MB (µs)

OPC UA MQTT 240 377 524 2885
OPC UA AMQP 421.5 434 460.2 2142

OpenDDS 262.3 265.3 326 3566
MQTT DDS converter 1024.3 1224.6 1553 5235.1
AMQP DDS converter 749.3 957.5 986.5 4927.4

In the case of DDS, there is no broker, but A-Open62541 satisfies all the criteria of
OPC UA Part 14, adding AMQP and MQTT communication. As shown in the performance
analysis results in Table 9, when the length of the transmission/reception data are 1 kB, the
latency with the AMQP DDS converter is approximately 1.2 times that without, and for
1 MB, the latency with the MQTT DDS converter is approximately 1.12 times that without.
Therefore, it is recommended to convert the type of broker according to the data length
and use it.

5. Conclusions

This paper proposed a protocol converter that provides interoperability between
the OPC UA publisher and DDS subscriber. The proposed protocol converter primarily
converts the data types passed from the publisher into DDS messages. The A-Open62541
PubSub used in this study is based on the Open62541 PubSub and implemented the AMQP
function. In contrast, the JSON parser and MQTT were implemented by substituting JSON-
C and Mosquitto, which are commonly used in industry. Through performance analysis,
the interoperability of the proposed technique was confirmed, and the implementation
accuracy and usability were verified. OPC UA PubSub is a protocol that supports real-time
at the field level and allows the integration of OPC UA and the entire factory automation
levels into the identical communication protocol of the OPC UA. It also facilitates the



Electronics 2021, 10, 2524 18 of 19

construction of cloud-based IIoT applications by connecting to MQTT or AMQP. Most
existing studies focused on gateways using OPC UA and DDS. The results from existing
studies and the technique presented here allow all devices supporting OPC UA and PubSub,
as OPC UA standards, to acquire interoperability with DDS subscribers. In a smart grid, the
OPC UA (IEC 62541) is used as a protocol for common information model communication,
which is a standard information model for smart grids, and the application scope of
IEC62541 can be significantly expanded by adding OPC UA PubSub. As the current
implementation of A-Open62541 PubSub does not support the security key service (SKS)
recommended by OPC UA Part 14, there is a limit to data security for transmission and
reception. SKS will be implemented in the future based on an open-source secure socket
layer (SSL) [17] and OAuth2.0 [18]. Additionally, an embedded system [19] that supports
a TSN will be ported to validate the technique in a real-time Ethernet communication
environment.

Author Contributions: Conceptualization, W.S.; methodology, W.S.; software, W.S.; validation, J.S.;
formal analysis, T.K.; investigation, J.S.; data curation, B.S.; writing—original draft preparation, B.S.;
writing—review and editing, T.K. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Ministry of Environment of Korea under a grant to the
Korea Environmental Industry and Technology Institute, grant number 2020002970006.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscrip, or
in the decision to publish the results.

References
1. Prinz, F.; Schoeffler, M.; Eckhardt, A.; Lechler, A.; Verl, A. Configuration of Application Layer Protocols within Real-time I4.0

Components. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland,
22–25 July 2019; pp. 971–976. [CrossRef]

2. Eckhardt, A.; Muller, S.; Leurs, L. An Evaluation of the Applicability of OPC UA Publish Subscribe on Factory Automation Use
Cases. In Proceedings of the 2018 IEEE 23rd International Conference on ETFA, Turin, Italy, 4–7 September 2018; pp. 1071–1074.
[CrossRef]

3. OPC Foundation, OPC Unified Architecture Specification Part 14: PubSub. 2019. Available online: https://opcfoundation.org/
developer-tools/specifications-unified-architecture/part-14-pubsub/ (accessed on 19 July 2021).

4. Open62541. Available online: https://open62541.org (accessed on 19 July 2021).
5. Song, B.K. A-Open62541 PubSub Technical Memorandum. 2020. Available online: https://github.com/SimWB/A-62541

(accessed on 19 July 2021).
6. GitHub. Available online: https://github.com/LiamBindle/MQTT-C (accessed on 19 July 2021).
7. Mosquitto Eclipse Foundation. Available online: https://mosquitto.org (accessed on 19 July 2021).
8. RabbitMQ. Available online: https://www.rabbitmq.com/ (accessed on 19 July 2021).
9. Apache Qpid. Available online: https://qpid.apache.org/proton/ (accessed on 19 July 2021).
10. OpenDDS. Available online: https://opendds.org/ (accessed on 19 July 2021).
11. Object Management Group (OMG). Available online: https://www.omg.org/omg-dds-portal/ (accessed on 19 July 2021).
12. Etxeberria-Agiriano, I.; Calvo, I.; Pérez, F. Providing Soft Real-Time Capabilities to Business Applications. In Proceedings of the

7th Iberian Conference on Information Systems and Technologies, Madrid, Spain, 20–23 June 2012; pp. 1–6.
13. Endeley, R.; Fleming, T.; Jin, N.; Fehringer, G.; Cammish, S. A Smart Gateway Enabling OPC UA and DDS Interoperability. In

Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, Leicester, UK,
19–23 August 2019; pp. 88–93. [CrossRef]

14. Cheikh, F.B.; Mastouri, M.A.; Hasnaoui, S. Implementing a Real-Time Middleware Based on DDS for the Cooperative Vehicle
Infrastructure Systems. In Proceedings of the 2010 6th International Conference on Wireless and Mobile Communications,
Valencia, Spain, 20–25 September 2010; pp. 492–497. [CrossRef]

15. Cilden, E.; Gültekin, E.; Poyraz, D.; Haluk Canberi, M. A Generic Distributed Architecture to Integrate Simulated Participants
with Modular Avionics. In Proceedings of the 2018 IEEE/ACM 22nd International Symposium on Distributed Simulation and
Real Time Applications (DS-RT), Madrid, Spain, 15–17 October 2018; pp. 1–2. [CrossRef]

16. Lee, W.; Chung, S.; Choi, M.; Cho, S.; Joe, I.; Park, J.; Lee, S.; Kim, W. A Robust Inter-Domain DDS Gateway Based on Token Passing
for Large-Scale Cyber-Physical Systems. In Proceedings of the 16th International Conference on Advanced Communication
Technology, Pyeongchang, Korea, 16–19 February 2014; pp. 868–871. [CrossRef]

http://doi.org/10.1109/INDIN41052.2019.8972255
http://doi.org/10.1109/ETFA.2018.8502445
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-14-pubsub/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-14-pubsub/
https://open62541.org
https://github.com/SimWB/A-62541
https://github.com/LiamBindle/MQTT-C
https://mosquitto.org
https://www.rabbitmq.com/
https://qpid.apache.org/proton/
https://opendds.org/
https://www.omg.org/omg-dds-portal/
http://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00058
http://doi.org/10.1109/ICWMC.2010.49
http://doi.org/10.1109/DISTRA.2018.8601012
http://doi.org/10.1109/ICACT.2014.6779084


Electronics 2021, 10, 2524 19 of 19

17. OpenSSL. Available online: https://www.openssl.org/ (accessed on 19 July 2021).
18. OAuth 2.0. Available online: https://oauth.net/2/ (accessed on 19 July 2021).
19. TTTech Industrial. Available online: https://www.tttech-industrial.com/products/slate/edge-ip-solution/ (accessed on 19 July

2021).

https://www.openssl.org/
https://oauth.net/2/
https://www.tttech-industrial.com/products/slate/edge-ip-solution/

	Introduction 
	Background and Related Work 
	Background 
	OPC UA PubSub 
	Data Distribution Service (DDS) 

	Related Work 

	OPC UA PubSub Protocol Converter Model 
	A-Open62541 PubSub 
	DDS Gateway 
	DDS Bridge 

	Implementation and Performance Evaluation 
	Implementation 
	A-Open62541 PubSub 
	DDS Gateway 
	DDS Bridge 

	Performance Evaluation 
	Testbed and Scenario 
	Evaluation Results 


	Conclusions 
	References

