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Abstract: This study introduces a Direct Model Reference Adaptive Control (DMRAC) algorithm
in a buck–boost converter in the power distribution of an electric vehicle. In this study, DMRAC
was used in order to overcome the system nonlinearity due to load demand variation, in case of
different driving modes (such as acceleration, stable and regenerative braking system mode), and
the presence of disturbances in the system. DMRAC receives popularity because of its robustness in
the presence of nonlinearity and ensuring system stability. To evaluate the efficacy of DMRAC in
the current system, its performance was compared with a PI controller in the MATLAB/Simulink
environment. The simulation results show the superiority of DMRAC over a conventional PI control
approach, in both variable load demand and disturbed system cases that were measured by tracking
error. The improvement was seen in the DMRAC response, with smaller tracking error and faster
transient and disturbance rejection. The main contribution of this work is in introducing DMRAC,
particularly in a buck–boost converter, and its efficacy with a DC–DC converter for an electric vehicle,
which has not been studied before.

Keywords: adaptive control; DC–DC converter; buck–boost converter; PI controller; electric vehicle

1. Introduction

Electric-powered equipment has received a great deal of interest among researchers
as an alternative to fossil fuel. Since electricity can be generated from various renewable
sources and is environment friendly, policy makers nowadays are highly interested in
bringing changes to sources of energy for transportation and industry. Higher fuel economy,
lower emissions and better performance are the key factors that motivate researchers to
pay more attention to the development of electric-powered vehicles as an alternative to
internal combustion engines [1–4].

DC–DC converters are commonly used to charge and discharge the battery of an
electric vehicle. The main characteristics of the converters that draw the attention of
researchers are that they provide either higher or lower amplitude in output than the
input [5], they are compact in size and they are cheap in price [6]. Basically, there are three
topologies of DC–DC converters, such as buck, boost and buck–boost, where buck–boost
can offer the functionalities of both buck and boost converters. Hence, in such a case, a
model-based control approach can be considered as a suitable approach, where robust and
adaptive control approaches have become popular among researchers for the last several
decades [7].
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In general, the conventional proportional–integral–derivative (PID) or proportional–
integral (PI)-type control approaches are very widespread in industries, since they are
simple to design and cheap in price [5]. These controllers cannot ensure robustness in
a wide range of operating points, since they work on linearized models [7–9]. Hence,
nonlinear controllers have been introduced to deal with the robustness, as the linear
controllers are found to be inaccurate in the presence of disturbances to the system [10].

Among nonlinear-type controllers, Sliding Mode Control (SMC) has gathered popu-
larity in the control of power converters, because of its ability to deal with model uncer-
tainty [11], structural simplicity [7] and discontinuous switching signal control [12]. Despite
several successful achievements from SMC in power converters [13–15], several drawbacks
can be highlighted such as chattering [16,17], variable switching frequency that leads to
electromagnetic interference [18] and, sometimes, steady-state errors at the output [19].
Feedback linearization and backstepping are two nonlinear control approaches that can
be considered as a better solution to overcome the chattering problem and steady-state
error. However, in feedback linearization, generally, a precise linear model is designed and
often useful nonlinear features are removed from the system [20]. Despite some works
with backstepping controllers with DC–DC converters [21,22], the backstepping controller
requires a systematic framework to design. Additionally, to be able to reject uncertainties,
it requires exact knowledge of the system parameters at any certain point of time, which is
sometimes unavailable. Hence, backstepping is also sometimes not a suitable choice for
researchers [7].

Adaptive control algorithms have gained popularity in power electronics, though
they have just emerged in aerospace industry for the first time. A type of adaptive control,
Model Reference Adaptive Control (MRAC), has several applications in power converters.
This controller considers a pre-designed model, a reference model to define the required
dynamics of the system, and follows an adaptation process [23]. It has achieved inter-
est among researchers, as the performance of the system can be pre-defined through a
reference model.

The literature introduces multifarious applications of MRAC in power electronics [24].
We chose a Direct MRAC in order to control the voltage input to a DC–DC boost converter
with the help of a PI controller. In this study, we achieved a stable response and short
period of settling time, rise time and overshoot during operation [25]. We chose MRAC
for single-phase shunt active power with a view to reducing line current harmonics and
improving line power factor. The choice to utilize MRAC was based on its adaptability,
flexibility and robustness that surpasses PI controllers, and its self-tuning features that
ensure stability of the system [26]. We applied a fractional order MRAC on a system
that accommodated two power sources: a zero voltage switch full-bridge isolated DC–
DC buck converter; and a resistive load so that the controller can stabilize the current
and voltage of a DC–DC converter that is coupled with the DC bus link. The proposed
controller surprisingly offers a fast dynamic response to DC bus voltage, and robustness
to voltage variation in both load and input. This work proposes an adaptive controller in
a buck–boost converter to control the voltage demand, according to motor demand. The
novelty of this work is in the use of an adaptive controller, specifically a Direct Model
Reference Adaptive Control (DMRAC) with a buck–boost converter for an electric vehicle’s
power demand control, which previously has not been considered. Apart from that, this
study showed the performances of two controllers, namely PI and DMRAC, and compared
their performances based on a performance index, tracking error in both consistent load
demand and variation in load demand in the presence of disturbances. Section 2 focuses
on the topology of a buck–boost converter, and Section 3 deals with controller design.
Subsequently, Section 4 highlights the simulation results and the controllers’ performances,
based on the performance index. Finally, Section 5 outlines an exhaustive conclusion based
on the results.
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2. Modelling of a Buck–Boost Converter

A buck–boost converter is also familiar as a Bidirectional DC–DC Converter (BDC)
since it steps up and steps down the voltage continuously. It is primarily placed at a DC
powertrain that deals with the DC–AC converter afterwards, since electric vehicles, in
general, use a three-phase AC motor. Hence, the DC voltage is kept high, which necessitates
higher capacitance, since it deals with DC voltage [27].

In order to design the state-space model, both the switch-on and switch-off mode
were considered. Figure 1 shows the topology of a buck–boost converter used in this work.
The output voltage, Vo, at resistance, R, was regulated by the switch, S according to the
demand, where Vb was the input voltage to the buck–boost converter from the battery.
When the switch was on, the battery, input voltage and inductor were active, but while
in switched-off mode, the capacitor and the resistor were active. However, there was
no set switching frequency, though ideally it was considered as 50 kHz, because it was
determined by the voltage, which changed continuously with respect to the demand that
was controlled by the controller.

Figure 1. A diagram of buck–boost converter.

The switch-on mode, i.e., the boost mode, was the main concern of this study. Hence,
the average state-space model was derived to represent the complete function of a buck–
boost converter as follows [28]:

Ai =

[
0 DR−1

L
1−DR

C − 1
RC

]
(1)

Bi =

[ DR
L
0

]
(2)

Ci =
[

0 1
]

(3)

where Ai, Bi, Ci and DR symbolize state matrix, input matrix, output matrix and duty ratio.
The parameters of the buck-boost converter and properties of the lithium-ion battery

for this simulation work are shown in Table 1 [27,29–31].

Table 1. Properties of the buck–boost converter and lithium-ion battery.

Properties Values

Inductance, L 5 × 10−4 H
Capacitance, C 9200 × 10−6 F

Capacitor initial voltage, VC 10 V
Resistance, R 25 Ω

Switching frequency 50 kHz
Battery nominal voltage 48 V
Battery rated capacity 14 Ah

Battery initial SOC 95%
Battery response time 0.3 s
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3. Controller Design

This section describes the designing of both the PI and the DMRAC controller. There-
fore, this section is divided into two sub-sections: (1) DMRAC design and (2) PI design.

3.1. DMRAC Design

In order to design a DMRAC, a reference model was required to be designed primarily
as follows: .

Xm(t) = AmXm(t) + Bmr (4)

where Am > 0, and Bm > 0, are the parameters of the reference model and r is defined as
the reference point.

Meanwhile, a control law was deduced for the state feedback control as:

u(t) = kxX + krr (5)

Here, kx and kr are considered as the adjustable gains.
The main objective was to ensure X(t) as Xm(t) achieved the required performance.

However, it was not exactly possible because A and B were considered as unknown system
parameters. It was noted that the parameters of a DC–DC converter were considered as
unknown, in order to tackle any unprecedented situation where the system could behave
irregularly. Therefore, the error between the plant and reference model was required to be
calculated as follows:

e(t) = X− Xm (6)

Subsequently, error dynamics were addressed in the Equation as follows:

.
e(t) = (A + Bkx)X− AmXm + Bkrr− Bmr (7)

Hence, Am and Bm were derived as follows to ensure
.
e(t)→ 0

A + Bkx = Am (8)

Bkr = Bm (9)

Since the system parameters were considered as unknown, another control law for
estimation was addressed as follows:

u = k̂x(t)X + k̂r(t)r (10)

where k̂x(t) and k̂r(t) are the estimated value of kx and kr, respectively, with respect to time.

A + Bk̂x(t) = Am (11)

Bk̂r(t) = Bm (12)

As a result, the closed-loop error dynamics were demonstrated by replacing the values
of A and Bm as follows in Equation (11), and finally

.
e(t) could be shown as follows:

u = k̂x(t)X + k̂r(t)r (13)

where
(

k̂x − kx

)
= k̃x,

(
k̂r − kr

)
= k̃r.

In order to ensure system stability, a Lyapunov function candidate was considered.
Here, γ is an adaptation gain rate that is responsible for converging the error [32].

Figure 2 demonstrates the complete process of the adaptive controller to make the pro-
cess comprehensible, where plant

.
X(t) is updated continuously according to the reference

model
.

Xm(t), based on error and error dynamics that make a significant contribution to
control input, u(t) of the system, with the help of the adjustment mechanism and hence,
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the complete DMRAC works. Figure 3 shows how a DC-DC converter is integrated into a
circuit and controlled by a controller.

Figure 2. A block diagram of DMRAC (Direct Model Reference Adaptive Control) algorithm.

Figure 3. A block diagram of a DC–DC converter (i.e., buck–boost converter) with a controller.

Reference Model: Here, the reference model was designed, based on the output’s char-
acteristics such as 0.2 s rise time, <0.5 s settling time and 0% overshoot. Therefore, the state-
space model of the reference model could be developed by considering Equations (1)–(3)
as follows:

Am=

[
−720 −8100

1 0

]
, Bm=

[
1
0

]
, Cm=

[
0 8100

]
(14)

3.2. PI Controller Design

The PI controller with a DC–DC converter is very well known, as it is simple to design
and offers reasonably satisfactory performance. The conventional PI controller can be
expressed as follows:

e(t) = Xd − Xa (15)

u(t) = Kp +
Ki
s

(16)

where, Xd represents the desired states and Xa defines the actual states. In addition, Kp is
known as proportional gain and Ki is known as integral gain.

The gains drive the controllers to perform efficiently and therefore, choosing a suitable
gain was very crucial for the controllers. Despite the fact that several methods were
available to find a suitable gain, in this work, the gains for both PI and DMRAC were
chosen based on a trial-and-error approach, as it is simple. Table 2 represents the parameters
of both DMRAC and PI controller used in this simulation.
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Table 2. Parameters of DMRAC and PI controller.

Properties Values

Rate of adaptation
γx = 2
γr = 2

Proportional gain, kp = 5

Initial gain
kx0 = 11
kr0 = 11

Integral gain, ki = 8

4. Simulated Results

This section provides a comparative discussion on the performance of the two con-
trollers, PI and DMRAC. In this work, tracking performance was considered as the perfor-
mance index. To analyze the tracking performance, two simulation cases were considered:
(a) voltage tracking in the presence of disturbance; and (b) voltage tracking without the
presence of disturbances. Here, Figure 3 portrays the block diagram of the system, specif-
ically when the system is under disturbances, where u is the control input, and d is the
disturbance to the system. In this block diagram, the controller block can be replaced by
any of the controllers. Hence, it describes the primary functions of the controllers with the
system in both cases, either with disturbance or without disturbance.

Figure 4a demonstrates the constant voltage tracking with the help of the PI and the
DMRAC controllers. Here, it was noticed that both the PI and DMRAC were able to track
the voltage, but DMRAC tracked more accurately than PI. As shown in Figure 4b, in the
presence of disturbance to the system, PI showed some small fluctuations during tracking,
while DMRAC maintained almost similar accuracy in the presence of disturbances. We
noted that a Gaussian noise had been applied to the controller output, as a disturbance to
the system.

Figure 4. Constant voltage tracking (a) without the presence of disturbance and (b) in presence of disturbance.

Figure 5 describes the inductor’s current signal in the presence of the PI and the
DMRAC controllers. In both cases, the DMRAC and PI offer an almost similar effort in
inductor current in order to track the voltage. It was noticed from Figure 5b that in every
0.5 s, disturbances were added at the controller output and, as a result, the inductor current
rose suddenly.
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Figure 5. Inductor current (a) without the disturbance in the system, and (b) in presence of the disturbance in constant
voltage tracking.

In addition, the performance of the controllers was measured, based on a simulation
close to a real scenario of an EV driving mode, where the load demand varies with respect
to time. In Figure 6a, the voltage demand increased from 0 V to 100 V within 0.6 s,
as the electric vehicle was in an acceleration mode and immediately dropped to 55 V
within 0.5 s when it was in a regenerative braking system mode. Then, for a 0.2 s period
of time, the voltage demand remained constant, and then immediately dropped down
again to make the car stop completely within a 0.5 s period of time. Therefore, this
trajectory describes the three driving modes, such as acceleration mode, steady-state mode
and regenerative breaking mode, and this simulation is suitable for the analysis of the
controllers’ performance in voltage tracking.

Figure 6. Variable voltage tracking (a) without the presence of disturbance in the system and (b) in presence of disturbance
in the system.

Figure 6a describes the variable voltage tracking in ideal conditions, using both the
PI and DMRAC control approach. It was prominently visible that a PI controller was able
to track the trajectory with some deviations, while DMRAC tracked with higher accuracy.
Similarly, in Figure 6b, the disturbance distracted the performance of both the controllers.
It was noticed that the PI controller deviated more than DMRAC. Similar to Figure 5, both
the controllers’ fluctuations were almost similar along inductor currents in both cases, as
shown in Figure 7, and hence, both the controllers required almost the same control effort.



Electronics 2021, 10, 2516 8 of 12

Because of the disturbances in the system as shown in Figure 6b, they offered fluctuation
every 0.5 s.

Figure 7. Inductor current (a) without the disturbance in the system and (b) in presence of the disturbance in variable
voltage tracking.

The performance of both the controllers can be better understood with the help of a
Root Mean Square Error (RMSE) approach, as shown in Table 3. In this approach, the error
between the desired trajectory and actual trajectory were compared with respect to the
desired trajectory for every single time step. RMSE can be demonstrated as the following
equation [33]:

RMSE =

√
∑(ya − yd)

2

length o f y
(17)

where ya represents the actual values of y, and yd symbolizes the desired values of y.

Table 3. RMSE for both DMRAC and PI controllers.

Properties
RMSE Along Controllers

DMRAC (%) PI (%)

Constant voltage 0.0005 0.6723
Constant voltage with

disturbance 0.0003 0.8477

Variable voltage 0.0310 0.5149
Variable voltage with

disturbance 0.0321 0.1661

In order to represent the tracking performance of the controllers in an efficient manner,
Table 3 shows the tracking error of the controllers in all four different cases. Here, in every
case, PI was found to be poor in overcoming a tracking error compared with DMRAC.
Hence, it can be concluded that DMRAC is more efficient in tracking than a PI controller.

Table 4 provides the performance of the controllers in terms of the time response
characteristics for the EV driving mode simulation. Here, DMRAC performed better than
the PI controller in all four different cases, with its lesser errors. Apart from that, Table 4
also shows the dominance of DMRAC over PI in terms of performance, though it is minute.
DMRAC offered the least settling time, rise time and peak time, except overshoot, albeit it
was also near to zero.
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Table 4. Controllers’ characteristics for both DMRAC and PI controllers.

Characteristics
Controllers

DMRAC PI

Settling time (s) 0.3436 0.4122
Overshoot (%) 0.0007 0.0003
Rise time (s) 0.1921 0.2060
Peak time (s) 1.9840 2.0000

Hence, a DMRAC can be considered as a suitable controller for a buck–boost con-
verter, both in an ideal and disturbed situation, to track load demand accurately with a
satisfactory outcome.

5. Discussion

A DMRAC is a nonlinear controller that is suitable when a system is generally affected
by noise, disturbance and uncertain parameters. In this work, the disturbance was un-
known to the controller and at the same time, it managed to track voltage very efficiently,
with minimal RMSE errors of 0.0003% and 0.0321% when it tracked constant voltages
and variable voltages in the presence of disturbances, respectively. In the meantime, a
fixed gain controller, PI, also offered satisfactory behavior with some small fluctuations
and RMSE errors of 0.8477% for constant voltage and 0.1661% variable voltage, when
the system is affected by disturbances. Here, the DMRAC updated its adaptation gain
continuously with respect to time, giving an advantage to this controller, while PI did not
have the feature to adapt itself in the presence of uncertainty, causing it to show some
unsmooth behavior. Apart from that, the DMRAC demonstrated a comparatively more
satisfactory step response than the PI controller, which indicated that DMRAC was faster
in response than the PI controller. A recent work can be cited to compare the performance
of this controller [31]

In the simulation, the inductor current, which was considered as a control input,
showed a spike in the presence of disturbances that happened because of the sudden rise in
disturbance. As it is beyond the control of DMRAC, future works should consider adding
a low pass filter to remove the spike of current from the system.

From the design perspective, the DMRAC was more complicated than the PI controller
to implement, as it required a suitable reference model, and at the same time, Lyapunov
stability had to be ensured, which is one of the most difficult parts for any system. As the
control law was not changed in this work, the stability checking was avoided. In contrast,
the PI controller was simpler than DMRAC, and choosing its gains was not tricky. However,
choosing a suitable controller required a trade-off between the advantages and drawbacks
of a controller, and its application as well. Since voltage demand needed to be met, even
in a fraction of a second, in the presence of uncertainty to the system, DMRAC could
be considered as a suitable controller for this application. Even though the simulation
results demonstrate the potentiality of our proposed controller, tailoring the proposed
method with an electric vehicle will be challenging, as there will be many factors that
need to be considered. It is difficult to guarantee that factors such as overvoltage and
internal resistance will not impair performance. We present the following elements as
study limitations, which will be addressed in future works that take into account our tool
and approach choices:

(i) At the time of writing, the proposed method was not integrated with the electrical ve-
hicle, representing a challenge to confidently assess the performance of our methods.

(ii) The experimental results are presented in terms of Simulink simulations, which may
produce different results, while considering various factors, such as voltage, resistance
and so on.

(iii) During this study, we did not compare our proposed model with the currently used
DC–DC converters for electrical vehicles, as our proposed methods were in the
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development stage, while many of the existing algorithms are implemented in real-
world scenarios. Thus, a reliable performance comparison would be expected once
our proposed method is implemented with an electrical vehicle.

Our study did not explore the compatibility of our proposed method with a real- world
scenario, and from a translational perspective, future works should explore the opportunity
to bridge that gap with higher priority. Hence, in order to apply it in any hardware, dSPACE
integrated with MATLAB will be initially considered to run the simulation. Note that
dSPACE is an industrial software that is widely used in the automotive industry for any
simulation work of electrical equipment, since it can directly deal with hardware through
the MATLAB/Simulink environment. As a result, it offers researchers the opportunity to
work directly with the hardware.

6. Conclusions

This work focuses on the boost mode of a buck–boost converter that incorporates
battery discharge when an electric vehicle requires load to run the motor. The notability
of this work was to introduce DMRAC with a buck–boost converter in order to maintain
the load demand, according to the motor’s demand. Therefore, this study fills the gap in
the literature on a controller with a buck–boost converter, through introducing a DMRAC
algorithm. We noticed that the performance of DMRAC is significantly better in terms of
voltage tracking and characteristics, i.e., smaller overshoot, faster settling time, smaller
rise time and lower peak time than a PI controller. Hence, a DMRAC can be considered
as a suitable controller for voltage tracking with a buck–boost converter in the presence
of unknown parameters and uncertainty to the system. In the future, this work will be
extended by considering a hybrid energy storage system of a lithium-ion battery and a
supercapacitor with a buck–boost converter.
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Nomenclature

C Capacitor
DR Duty cycle
IL Inductor current
R Resistance
VC Capacitor voltage
Vb Battery voltage
γ Adaptation gain rate
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