

Electronics 2021, 10, 2505. https://doi.org/10.3390/electronics10202505 www.mdpi.com/journal/electronics

Article

Optimal Reduction in the Number of Test Vectors for Soft

Processor Cores Implemented in FPGA

Mariusz Węgrzyn 1, Ernest Jamro 2,*, Agnieszka Dąbrowska-Boruch 2 and Kazimierz Wiatr 2

1 Faculty of Electrical and Computer Engineering,Technical University of Cracow, ul. Warszawska 24,

31-155 Kraków, Poland; mariusz.wegrzyn@pk.edu.pl
2 Institute of Electronics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków,

Poland; adabrow@agh.edu.pl (A.D.-B.); wiatr@agh.edu.pl (K.W.)

* Correspondence: jamro@agh.edu.pl

Abstract: Testing FPGA-based soft processor cores requires a completely different methodology in

comparison to standard processors. The stuck-at fault model is insufficient, as the logic is

implemented by lookup tables (LUTs) in FPGA, and this SRAM-based LUT memory is vulnerable

to single-event upset (SEU) mainly caused by cosmic radiations. Consequently, in this paper, we

used combined SEU-induced and stuck-at fault models to simulate every possible fault. The test

program written in an assembler was based on the bijective property. Furthermore, the fault

detection matrix was determined, and this matrix describes the detectability of every fault by every

test vector. The major novelty of this paper is the optimal reduction in the number of required test

vectors in such a way that fault coverage is not reduced. Furthermore, this paper also studied the

optimal selection of test vectors when only 95% maximal fault coverage is acceptable; in such a case,

only three test vectors are required. Further, local and global test vector selection is also described.

Keywords: processor testing; FPGA; test optimization

1. Introduction

FPGA-based applications usually include a higher number of processor cores

implemented in real-time microcontrollers, as application processors. One can observe

that, to test such cores, random-based testing methodologies are mainly proposed, which

require a huge number of testing vectors, advanced optimization algorithms, and FPGA

resources for their implementation.

For such reasons, methods of test vector compression have been developed in order

to save memory resources to store them [1]. Pseudo-random stimuli generation is defined

in the System Verilog HDL language standard [2], and in the Universal Verification

Methodology (UVM) [3]. Various pseudo-random stimuli generators (PRGs) are often

utilized for this purpose. Such PRGs can be built into register-transfer level (RTL)

simulators or external ones written in C++ and connected through a direct programming

interface [4].

The efficiency of stimuli generation is usually measured by the coverage of injected

faults, where authors mainly utilize well-known “stuck-at” fault models.

The pseudo-random test-pattern generators proposed in the bibliography are often

realized as feedback-controlled. Such methods based on coverage analysis are called

coverage-driven verification (CDV). A drawback of this approach is the redundant

number of random test vectors, where, as a result, the coverage feedback is not properly

propagated to the PRG and reflected by suitable constraints [4]. Related optimization

techniques already appeared in works to overcome the above-mentioned difficulties.

Another similar solution is described in [5], which introduced the capability of on-the-fly

constraint optimization and generation of an optimal stimuli set. A genetic algorithm

Citation: Wegrzyn, M.; Jamro, E.;

Dąbrowska-Boruch, A; Wiatr, K.

Optimal Reduction in the Number of

Test Vectors for Soft Processor Cores

Implemented in FPGA. Electronics

2021, 10, 2505. https://doi.org/

10.3390/electronics10202505

Academic Editor: Prasan Kumar

Sahoo

Received: 14 September 2021

Accepted: 11 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(http://creativecommons.org/licenses

/by/4.0/).

Electronics 2021, 10, 2505 2 of 16

(GA) was integrated directly into the UVM verification environment with optimized

values of GA parameters. Kitchen and Kuehlmann in [6] proposed a pseudo-random

stimuli generator (PRG) using a hybrid constraint solver based on Markov chain Monte

Carlo methods, which dynamically controls the PRG.

Two main approaches based on coverage analysis are known from the bibliography:

feedback-based CDV (FBCDV) and CDV. FBCDV is based on feedback from coverage

analysis and modification of the constraints to the PRG, whereas the coverage-driven

verification by construction (CDVBC) approach is based on a generated external model of

the device under verification (DUV) which is used to generate stimuli designed to satisfy

the intended coverage [4]. By analogy, our optimization methodology presented in this

paper is supported by feedback information about the fault coverage. CDVBC-based

approaches commonly consist in transforming a coverage situation into Boolean logic

(e.g., the conjunctive normal form) and gaining the power of a simultaneous Boolean

satisfiability (SAT) solver [7,8].

Finally, there are FBCDV approaches based on genetic algorithms (GAs). The authors

of [8] applied a GA for automated generation of stimuli based on the source code of a

specific software application. Naturally, such an approach neglected all the details

concerning the processor hardware irrelevant to the verified application.

Different FBCDV solutions utilize genetic algorithms (GAs). Application of GA

automated generation of stimuli based on the source code of a specific software

application was presented in [9]. In this approach, only processor hardware resources

utilized by a verified application are taken into consideration. Additionally, such a

solution is time-consuming. Meanwhile, a lack of deterministic quick built-in self-tests

(BISTs) which can be applied to periodical online tests of embedded processor cores is

observable in the bibliography. This, with the cooperation of the dynamic FPGA

reconfiguration methodology, constitutes an efficient and powerful reliability

mechanism. Moreover, such a solution is easy to implement.

Paper Organization

Section 2.1 presents the authors’ previously published testing methodology: the

bijective test program and the SEU-induced fault model. The basic principle of instruction

sequencing is presented in Section 2.1. Section 2.1.1 clarifies our methodology for

achieving full bijectivity and illustrates the principle of a data-sensitive path. These

methods are the basis for the proposed research; therefore, they are described in detail

here. In Section 3, the fault detection matrix is determined, and then the methodology and

algorithms for a reduction in the number of test vectors are proposed. The results show

that for the PicoBlaze example, the number of required test vectors is reduced from 256

down to 28 (or 33 for different algorithms) with the same fault coverage (FC), denoted

further as the maximum value of fault coverage (FCmax). Section 4 studies the further

reduction in the test vector number where the FC might be reduced. Consequently, only

three test vectors are required in order to obtain 97% FCmax. The previous sections

consider global test vectors, i.e., the whole test program is initialized by a single vector. In

Section 5, local test vectors are used, i.e., the test program was divided into smaller parts

and each part (assigned to different microprocessor blocks) uses different local test vectors

which are optimized by algorithms described in Section 3. For most microprocessor

blocks, testing only one to three local test vectors results in FCmax(block). The only

exception is the flag generation block which requires all 28 test vectors. For FPGA soft

processors, testing is often neglected, and, as in most cases, a configuration readback

procedure is used to detect SEU faults. Consequently, there are very few current papers

studying the subject. Therefore, Section 6 describes designs when soft processor testing

might be very important.

Electronics 2021, 10, 2505 3 of 16

2. Bijective Program and Fault Modeling

2.1. Bijective Test Program

We generated a test sequence that allows arbitrary situations that might occur in

practice. This is accomplished by using a test sequence that explores the functionality of

each individual instruction and is composed in such a way that it forms a sensitive path.

This path can be executed more than once, each time with a different input vector [10,11].

Although we have borrowed the notion of a sensitive path from the automatic test

pattern generation (ATPG) techniques [12,13], in our case, it has a slightly different

meaning [10]. The path sensitization in conventional ATPG techniques for automatic test

generation involves the generation of the path that is sensitive to the presence of a stuck-

at fault and the justification of the values along the path by propagating signals back to

the primary inputs.

According to our approach, the fault detection is performed at the instruction level

by a compact test program in which individual processor instructions are organized in

such a sequence that the destination register operand of the i-th instruction represents the

source register operand of the (i+1)-th instruction. In the test sequence, each processor

instruction participates at least once. The principle of instruction sequencing is presented

in Figure 1.

Figure 1. The principle of instruction sequencing.

Intuitively, we assume that the test sequence represents a sensitive path if the data

flowing through it are sensitive to changes in the input pattern. We pursue the following

two goals:

 The faults occurring during the execution of individual instructions in the test

sequence should manifest themselves in the final result;

 To increase fault coverage, the data-sensitive path should provide a way of

randomizing the instruction operands of the test sequence, resulting in increased

processor activity and, consequently, in increased fault coverage.

The test sequence is composed of individual instructions (i.e., system components),

which act upon the data stored in registers and memory cells. An instruction processes

the input data (i.e., the argument) and generates a result that represents the input data for

the next instruction in the test sequence. The input data of the first instruction of the test

sequence represent the system’s primary inputs, while the results of the test sequence

system are the primary outputs. The test sequence is composed incrementally: each time,

a new instruction is added to the test sequence, and the resulting test block is checked for

controllability and observability [11].

The requirement that the test sequence preserves a sensitive data path between the

input data and the result is a prerequisite for achieving a high fault coverage. On the other

hand, some faults may still escape if the input data do not lead to the occurrence of an

event that would manifest itself in a result that is different from the expected reference

Electronics 2021, 10, 2505 4 of 16

obtained with a fault-free system. To detect these faults, we can re-run the test sequence

with different primary input data [10].

We impose a stricter rule on the test sequence generation by requiring that there is a

one-to-one, i.e., bijective [14], correspondence between the input test pattern and the

result. If we apply this rule at the level of sub-sequences of the assembler instruction

sequence, we can ensure a high fault coverage (FC). The key achievement of earlier work

[11] was the proposed bijective testing procedure.

2.1.1. Refinements to Achieve Full Bijectivity

For some instructions, the output data may not be completely sensitive to every

change in the input data, and hence the property of a sensitive data path is not preserved.

For example, some part of the register holding the result of the instruction operation may

be cleared or set to all 1s. In such a case, additional data manipulations need to be

performed (i.e., the input data are stored at another location and logically combined with

the result of the executed instruction). To summarize, bijectivity is closely related to the

full flow of information through the test program. The flow of information can be

disturbed by: an incompetent composition of the test program, which does not provide a

full flow of information, masking the flow of information related to problems that are not

completely solved due to the overlapping of flags generated by different instructions;

operation of different instructions on the same registers and data to be solved by a

programmer; and the nature of SHIFT instructions (by execution, merely “SHIFT”

instructions, not the full range of numbers, are generated, unless we use special solutions

such as an linear-feedback shift register LFSR), masking the flow of information related to

the processor implemented in the FPGA hardware construction as delays (Abramovici

2002), or hardware redundancies (Renovell 2000 B), simplifying the construction of

individual sub-blocks of the processor.

For illustration, a part of the test sequence organized in a data-sensitive path is shown

in Figure 2. The destination register operand of the instruction represents the source

register operand of the next instruction in the test sequence.

Figure 2. Our solution-sensitive path approach. A part of the test sequence.

Electronics 2021, 10, 2505 5 of 16

The execution of some instructions affects the status flags (for example, the Zero and

Carry Flags). In order to detect possible faults in the status information, the contents of

the status register are included in the result of the currently executed instruction. This is

usually achieved by “XOR-ing” the contents of the status register and the resulting output

data. However, more complex operations in the assembler are applied as described

further in this chapter, in the case when “XOR-ing” alone does not work. With such

refinements, the instructions and additional data manipulation code represent a bijective

block within the test sequence. The basic architecture of a bijective block is presented in

Figure 3. The bijective property opens up possibilities for further optimizations such as

cyclic usage of the output results, as indicated by the dashed line in Figure 3.

Figure 3. Architecture of the bijective block.

The test sequence is composed of bijective blocks. By definition, any program

composed of bijective blocks is bijective. A bijective block can be a single instruction if it

exhibits a bijective property. If not, some additional data manipulation is required to

obtain a bijective block. We have found several ways to achieve a bijective property:

1. IDENTITY;

2. Continuous ADDITION or SUBTRACTION of a constant value, e.g., “1”;

3. Flag register (e.g., Carry Flags) generation or recovery (on the basis of actual data);

4. Negation (e.g., by “XOR-ing” data);

5. Bit permutation (e.g., ROTATE data);

6. Lookup table (LUT) method (not hereby used);

7. LFSR.

2.1.2. Comparison of Results

Table 1 presents a summary of the research results from the bibliography of the

subject. Research results on the processors whose functionality, construction complexity,

or performance can be compared with the PicroBlaze were selected and are collected in

Table 1 to compare with the results achieved by our program intended for PicoBlaze

testing. The results of these studies are usually expressed as the coverage of injected faults

into the hardware of the given microprocessor/microcontroller.

The most important novelty introduced hereby is a different model of injected faults.

This model differs significantly from the conventional stuck-at models widely used for

testing processors/microcontrollers implemented in ASIC/embedded platforms because

an SEU-induced fault affects the logic elements implemented by the lookup tables (LUTs)

in this manner, meaning that the logic function is arbitrarily changed, as described in

detail in Chapter 2.2 about fault modeling and injections.

Electronics 2021, 10, 2505 6 of 16

Table 1. Summary of results of research from the bibliography in comparison with PicoBlaze.

Nr Author Tested Processor Year Fault coverage [%]

1 Lingappan and Jha Parwan 2007 96

2 Wegrzyn PicoBlaze 2014 95.4 stuck-at

3 Bernardi, Sonza Intel 8051 2004 95 (stuck at 0,1)

4 Zhang Parwan 2013 94.8

5 Wegrzyn PicoBlaze 2014 94.76

6 Krstic et al. Parwan 8-bit 2002 92

7 Shen and Abraham GL85 (8085) 1998 90

8 Corno, Sonza Intel 8051 2002 89 RTL description

9 Corno, Sonza Intel 8051 2002 85 gate level

It is worth noticing that the authors of publications compared in Table 1 mainly

applied stuck-at fault models, while we injected both stuck-at and “SEU in LUT”

modeling faults. Despite the fact that faults induced by SEU in LUTs are harder to detect,

we obtained results comparable to those of other publications which utilized only the

stuck-at fault model.

2.2. Fault Modeling

In the proposed approach, the goal is to generate a compact test sequence that detects

permanent SEU-induced faults of embedded processor cores in SRAM-based FPGAs [11].

As described in [14,15], the functional model of such faults differs considerably from the

conventional stuck-at fault model because SEU-induced faults affect logic elements

implemented by lookup tables (LUTs); in this way, the logic function is arbitrarily

changed [16]. Permanent SEU-induced faults in LUTs are modeled by software injection

at the structural level of the hardware description language (HDL—in our case, VHDL)

description of the targeted microprocessor.

An example [17] of a modeled fault is shown in Figure 4. The HDL description of an

LUT implementing a three-input OR gate is shown in Figure 4a, and the corresponding

truth table is shown in Figure 4c. An SEU-induced fault of an LUT typically manifests

itself as a change of one bit of the LUT, thus modifying the Boolean function it implements.

Let us assume that the most significant bit of the LUT has been corrupted, as shown in

Figure 4d. The fault can be modeled by changing the initialization parameter (INIT), as

shown in Figure 4b.

Figure 4. Fault effect related to a change of one bit (X”FE”) → (X”7E”) in LUT3. (a) HDL description

of fault-free three-input OR gate, (b) most significant bit of the LUT is changed (X”FE”) → (X”7E”),

(c) fault-free LUT contents, (d) LUT contents with a SEU fault.

Electronics 2021, 10, 2505 7 of 16

According to [17] PicoBlaze HDL descriptions reflect the FPGA structure in order to

efficiently use the FPGA resources. This allows precise modeling of the faults and their

automated fault injection. For each simulated fault, an appropriate HDL file is generated.

All the fault injection campaigns and analysis of their effects are automatically performed

by a Perl script. The faults in an HDL description of the processor are simulated by

modifying the individual functional blocks. For each functional block, an HDL model

represents the behavior of the SEU. The HDL model should reflect the change in the

configuration as a consequence of the SEU effect. These errors are injected and detected

consecutively. We identified 1804 single-bit faults related to the used LUTs. These are all

possible single-bit errors to inject into the HDL description of PicoBlaze.

The developed experiments were targeted at testing the fault susceptibility of

application programs running on a microprocessor implemented within FPGA. Our idea

[11] is to use an appropriate microprocessor simulator that accepts its specification in the

HDL, correlates it with the targeted FPGA, performs simulations with the provided

programs (in an assembler), and allows analyzing the behavior of the tested application

(e.g., program results) in this environment. These simulations were performed by two

simulators: Cadence NC VHDL and Mentor Graphics ModelSim. Fault injection was

performed at the microprocessor HDL structural description level, which reflects the

FPGA implementation.

The generation of the fault descriptions was implemented as a Perl script [11,17]. All

the instances of lookup tables (LUTs) contained in functional blocks of the processor are

described in the VHDL code. For each LUT instance, its initialization parameter is

investigated, and the list of the initialization parameters describing all the SEU-induced

faults as well as all the stuck-at faults at the LUT inputs and outputs are generated. For

some LUT instances, a single-bit change in the LUT content may manifest itself as a stuck-

at fault. In such a case, a duplicated stuck-at fault description is excluded. Similarly, the

stuck-at faults at the LUT inputs as well as the stuck-at faults at the LUT output can also

be modeled by modifying the contents of the LUT configuration. In some cases, LUT SEU

faults and the stuck-at faults may result in the same LUT contents. In such a case, a

duplicated fault description is omitted.

All fault descriptions were placed in a file of faults and then read by the Perl script.

The set of faults was developed in this way so that the content of LUTs is altered only by

one bit or by many bits when a stuck-at fault is injected. This leads to a slight modification

of a logical function realized by the LUTs. Such faults are more difficult to test. During the

fault simulation, the generated “faulty” initialization parameters were applied one by one

to the HDL description of the Xilinx PicoBlaze processor core [11,17]. A modified HDL

description was used, running the test sequence with different input vectors, and the

results were recorded for a later offline evaluation. A Cadence NC VHDL simulator

running on a Sun Fire V240 server and then i7 Intel core was used for the HDL.

3. Optimal Reduction in Test Vectors

One of the most important criteria of every test program evaluation is the fault

coverage (FC) and the time required for completion. This time depends on both the

number of program instructions to be executed and the number of applied test vectors.

This paper focuses on optimization of the number of test vectors with as low an influence

as possible on the FC. Such approaches may be especially profitable in the case of testing

32- or 64-bit microprocessors as there is a huge number of input test vectors required for

exhaustive testing of these microprocessors. For instance, there are 232 possible input test

vectors for a 32-bit microprocessor.

The superior objective is to find a minimal set of test vectors which can achieve the

maximal fault coverage (FCmax). This means that the developed optimization method

should return the same FC as an exhaustive test. Another aspect of research is to select

Electronics 2021, 10, 2505 8 of 16

only a few vectors in such a way that the ratio of FC to the number of test vectors is

optimal. A general test situation can be described by:

• The set of faults F = {f1 , f2 , ..., fm }:

The set of available tests vectors V= {v0 , v1 , ...,vn-1 }, where vi corresponds to the

execution of the test sequence (program) with a binary input value i (0 ≤ i ≤ n-1); in

the case of an 8-bit microprocessor, n = 256.

• The fault detection matrix D of dimension m×n, which describes the detectability of

every fault fj by every test vector vi , 0 ≤ i ≤ n - 1:

The element dji of matrix D is set to 1 (dji = 1) in the case when the test vector vi

detects a fault fj; otherwise, dji = 0. In this particular case, the number of different

injected faults is m = 1603, and the number of different test vectors n = 256.

In order to better understand the optimization of the number of test vectors, we

propose the following definitions:

Definition 1: A fault of the i-th order is a fault detected exclusively by i test vectors.

Definition 2: The vector of the i-th order is a vector which detects at least one fault of the i-th

order and does not detect any fault of a lower order than i.

Consequently, the most difficult to detect faults, further referred to as the hardest

faults, are the first-order faults, which are detected by only one test vector. In our practical

case, we found 41 faults detected by only one vector. Table 2 presents statistics on the fault

orders. Faults of these orders are present as the outcome of the fault simulation

experiment.

Table 2. Statistics on fault orders.

Order 1 15 67 71 72 78 80 87 92 99 125 127 128

faults 41 1 1 1 1 1 1 1 1 1 1 2 110

Order 135 144 160 161 168 175 176 184 190 191 192 193 194

faults 1 1 2 1 2 1 3 6 1 4 32 2 3

Order 195 196 199 200 204 206 208 209 215 216 217 219 222

faults 2 1 1 4 1 1 4 1 1 4 1 1 1

Order 223 224 225 226 227 230 231 232 234 235 236 239 240

faults 1 34 4 8 3 2 1 2 4 2 1 2 103

Order 241 242 243 248 249 250 251 252 253 254 255 256 -

faults 19 2 2 31 2 3 2 6 3 10 146 731 -

There are 41 faults of the first order, 1 fault of the 15th order, 1 fault of the 67th order,

etc. Faults of the 256th order occur the most (731). It is worth noticing that faults of higher

orders are usually covered by first-order vectors. By definition, this holds for 256th-order

faults. Experiments proved that this also holds for the 15th- and higher-order faults.

The above statistics provide us with information on how efficient a bijective test

program is. Hence, if the number of low-order faults is high, and a high number of the

lowest-order vectors is required to detect them, this would mean that a small number of

sensitivity paths are activated. Therefore, it seems a good idea to improve the test program

(written in the PicoBlaze assembler).

Based on the above results, vector selection algorithms may be proposed in order to

minimize the set of test vectors required to obtain the maximal fault coverage (FCmax).

First, a greedy algorithm is proposed. This algorithm first selects the best vector, i.e., a

vector which covers the largest number of faults (Algorithm 1).

Electronics 2021, 10, 2505 9 of 16

Algorithm 1: Greedy algorithm: the vectors that detect the largest number of faults first

Determine set F of all faults fi

{ Determine test vector vi which covers the maximum number

of faults in set F;

Test the microprocessor with test vector vi ;

Remove all faults fj that are covered by test vector vi from

set F;

}

In the case of Algorithm 1 and the penultimate version of the bijective program, the

set of 33 such vectors appears to be sufficient to reach an FCmax of 85.4% (see Figure 5).

This experiment showed that the application of all 256 tests vectors (exhaustive test) for

the PicoBlaze processor is redundant. Moreover, it turns out that we can shorten the

exhaustive testing time by about eight times.

In order to further reduce the number of test vectors without decreasing the FC,

Algorithm 2 is proposed. This algorithm selects the lowest-order test vectors first.

Algorithm 2: the lowest-order vector first:

Determine set F of all faults fi ;

While F is not empty

{Select the lowest order fault fi of set F;

Select a test vector vi that detects fault fi ;

Test the microprocessor with test vector vi ;

Remove all faults fj covered by test vector vi from set F;

}

In the implementation of the above algorithm, 28 vectors are enough to obtain the

maximal fault coverage FCmax. One of the vectors (7D) detected 12 first-order faults.

Vector 7E detected three first-order faults. The other 26 vectors detected only one first-

order fault each (see Table 3).

Table 3. List of the first-order vectors.

iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Test vector 7D 7E FB FA F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

detected 1-st order faults 12 3 1 1 1 1 1 1 1 1 1 1 1 1

iteration 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Test vector EE DE CE BE AE 9E FC 6D 5D 4D 3D 2D 1D 77

#detected 1-storder faults 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Initially, it might seem that the greedy algorithm (Algorithm 1) should return a better

result (lower number of test vectors) than Algorithm 2. However, this is not the case, and

Algorithm 2 results in 28 test vectors, in comparison to 33 test vectors for Algorithm 1.

After thorough consideration, it is obvious that starting with first-order test vectors

provides the optimal solution, as in order to obtain FCmax, all first-order vectors must be

tested. This can be easily derived from Definitions 1 and 2. For a first-order fault, only one

vector detects this fault, meaning this vector must be used to obtain FCmax.

Nevertheless, it is not obvious how Algorithm 2 should be constructed after all first-

order vectors have been tested. Fortunately, in our case, testing all first-order vectors is

enough to cover all higher-order faults. Based on the statistics of the fault orders and

further experiments, we can conclude that most higher-order faults are covered by many

vectors from the set of the first order. Hence, we may propose the method of testing the

processor consequently with increased order vectors, until all faults are covered.

Nevertheless, in the general case, Algorithm 2 should be improved. When there are two

or more vectors of the same lowest order, several different vectors can be taken. In this

case, the proposed Algorithm 3 may be used. For Algorithm 3, the vector which covers

Electronics 2021, 10, 2505 10 of 16

the largest number of the lowest-order faults is selected. Consequently, the improved

algorithm, Algorithm 3 Hybrid, is a mixture of Algorithms 2 and 1. However, Algorithm

2 is a higher-priority algorithm. Algorithm 3 is especially useful in the case when the

lowest-order vector is a second- or higher-order one, as in this case where there are two

or more vectors that cover the same fault. A proposition of the improvement is presented

below. It should be noted that the performance of Algorithm 3 was not tested in practice,

as in this experiment, testing only first-order vectors resulted in FCmax.

Algorithm 3: Hybrid (improved the lowest-order vector first)

Determine set F of all faults fi ;

While F is not empty

{Determine subset Fi of F with the same, lowest-order faults fi ;

Select a vector vi that detects the largest number of faults from set Fi ;

Test the microprocessor with test vector vi ;

from set F, remove all faults fj that are covered by test vector vi ;

}

In our case, all faults are covered by the first-order vectors; therefore, Algorithm 3

and Algorithm 2 require the same number of vectors to obtain FCmax. Nevertheless, in

the general case, Algorithm 3 should require less testing vectors. On the other hand,

Algorithm 2 is simpler and requires slightly less calculation time. Algorithm 1 “Greedy”

requires a higher number of iterations to achieve FCmax. Algorithm 3 “Hybrid” turned

out to be the best in this practical case.

4. Further Reduction in Test Vector Number

In our testing case, all vectors (or selected 28 vectors) return a fault coverage at the

level of 85.4% which is denoted as FCmax. It should be noted that some of these

undetected faults cannot be detected at all due to, e.g., logic redundancy. Some faults are

so hard to detect that only specific instructions with specific input vectors and defined

processor states are affected. In practice, these instructions are, in most cases, not used.

In some cases, we want to further reduce the number of test vectors at the cost of a

lower FC. In practice, 95 or 97% FCmax may be satisfactory. For this reason, we checked

how quickly the FC tends to FCmax, applying the algorithms presented previously.

The initial goal was to reach FCmax with the lowest number of vectors (the result

was 33 vectors), which is larger in the case of Algorithm 1 than Algorithm 2 (28 vectors).

However, the greedy algorithm (Algorithm 1) results in the fastest increase in FC for the

initial iterations. This holds by definition, where the greedy algorithm takes the best

possible vector at each iteration (but no global optimization is used); therefore, a different

algorithm (global optimization) may return a better result only after two or more

iterations.

Algorithm 2 requires 28 first-order test vectors to achieve FCmax. The FC achieved

when one of these vectors was applied alone is presented in Table 4. Based on these

results, the order of applied test vectors is determined at the very beginning of this

algorithm (before Algorithm 2 is started). This order was determined once. However, this

approach allows achieving FCmax, but the number of iterations required to achieve 97%

FCmax is optimized further in Section 5.

Electronics 2021, 10, 2505 11 of 16

Table 4. First-order vectors and their FC.

Vector F2 F0 F4 F6 F1 FA F8 EE CE 2D

Detected faults 1249 1240 1240 1236 1231 1229 1227 1226 1221 1220

%FC max 91.03 90.38 90.38 90.09 89.72 89.58 89.43 89.36 88.99 88.92

Vector FC F5 F3 77 1D DE F9 F7 AE 3D

Detected faults 1220 1218 1217 1214 1209 1205 1203 1202 1198 1193

%FCmax 88.92 88.78 88.70 88.48 88.12 87.83 87.68 87.61 87.32 86.95

Vector 9E FB 4D BE 5D 6D 7E 7D - -

Detected faults 1187 1185 1184 1175 1164 1157 1149 1099 - -

%FCmax 86.52 86.37 86.30 85.64 84.84 84.33 83.75 80.10 - -

Results of Implementation-Aggregated FC vs. Number of Test Vectors

The comparison of the aggregated FC for all three algorithms is shown in Figure 5.

Algorithm 1 results in the highest FC only for the three initial iterations. A higher FC is

achieved with Algorithm 3 from the fourth iteration. Using Algorithm 2, the FC increased

irregularly. This algorithm is not optimal. However, this algorithm is easier to implement

and quicker to execute than Algorithm 3. For the hybrid algorithm, the number of covered

faults is calculated at every iteration of the algorithm. Algorithm 1 “Greedy” can be used

when a rapid increase in FC in the first few iterations is required. On the other hand, this

algorithm requires the highest number of iterations (33) for completion (obtaining

FCmax). It is predictable that for other sets of input data, the difference in the number of

iterations may be even greater in favor of Algorithm 3 “Hybrid”. Taking into

consideration both the number of iterations required to achieve FCmax and the FC

increase rate, it is possible to conclude that Algorithm 3 is the best. However, more

sophisticated algorithms, i.e., exhaustive search, genetic algorithm, and simulated

annealing, might return better solutions.

Figure 5. Comparison of the FC aggregation for all three algorithms.

5. Local Test Vectors

Up to now, global test vectors have only been considered, i.e., a single input vector

is applied for the whole test program. The global test vectors reduce the number of

input/output data transfers between the processor and external test control module,

reduce the memory size, and check results. Nevertheless, when these factors are

neglected, a further reduction in the test time might be obtained by employing local test

vectors. A local vector is applied only for a single processor block (specified assembler

instructions).

The PicoBlaze VHDL description is divided into 13 blocks by its designer (Ken

Chapman). We determined optimal sets of test vectors separately for every hardware

block of the processor. We primarily utilized Algorithm 3 Hybrid and Algorithm 1 for this

task. Algorithm 1 is usually applied for blocks, where the lowest order of test vectors was

relatively high, i.e., 67 or higher. The number of local test vectors required to achieve

Electronics 2021, 10, 2505 12 of 16

FCmax(block) and the index of the algorithm which returned the best result are presented

in Table 5.

Table 5. Number of local test vectors.

 Processor’s block # vectors The fastest Algorithm

1 Fundamental control 1 3

2 Interrupt (input, enable, flags) 1 3

3 Decodes for Control PC & CALL/RET stack 2 1, 3

4 The Zero, Carry flags 28 (1-order) 3

5 PC, Def. 10-bit counter 2 1, 3

6 Register bank and 2nd operand 2 1

7 Memory storing 1 3

8 Logical instructions 3 1

9 Shifts instructions 2 1, 3

10 Arithmetical instructions 3 1

11 ALU multiplexer 2 1

12 Read/write strobes 2 1, 3

13 Program CALL/RETURN stack 2 1, 3

Three blocks require only one test vector to obtain FCmax(block). Most blocks require

two or a maximum of three vectors to obtain FCmax(block). Seven blocks require two such

vectors. Only two blocks require three such vectors. However, the worst block is the Zero

and Carry Flag block which requires as much as 28 vectors to obtain FCmax(block).

Furthermore, there exist two PicoBlaze HW blocks, where global rather than local

vectors are required. Such blocks are Zero and Carry Flags, and Program Counter (PC).

Every type of instruction such as logical, arithmetical, and shifts can generate flags. Every

instruction of the bijective program tests PC indirectly.

The percentage distribution of detected faults in every individual PicoBlaze block is

presented in Figure 6. We can observe that the best results are achieved for blocks that

operate directly on data (Blocks 6–10 in Table 5).

Figure 6. The percentage of FC of individual PicoBlaze blocks.

ALU multiplexer was tested indirectly by assembler functions, and hardware

redundancies existed in this block. Moreover, a lot of undetected faults have their place

in HW which realizes I/O operations (about 39% injected in this block). For this reason,

FC is relatively low here. The most difficult one to test is the Zero and Carry Flag

generation block. Hence, there is a higher number of first-order faults and vectors to detect

them. The hardware architecture of this block is the most complex. Many one-bit details

on both operands (256×256) are required to detect all possible situations related to faults

in this block. Moreover, a few instructions can generate the same flags in the situation

when all 8 bits are taken under calculations and the range of the register is limited to 7, 6,

5, etc., bits. The FC for PicoBlaze blocks dedicated to Program Counter is low too because

testing of these processor resources is not the main task of this bijective program, as

mentioned above.

Electronics 2021, 10, 2505 13 of 16

Unfortunately, the Zero and Carry Flag block has a maximum of 28 test vectors.

Therefore, local vectors cannot reduce the test time in a direct way. One of the solutions

to this problem might be to further optimize the testing procedure so that the Zero and

Carry Flag block has a separate testing program. For example, we may design a similar

testing procedure only for the Zero and Carry Flag block, i.e., check how many vectors

are required for each processor block when only flag block faults are injected. The

drawback of this solution is that the program size will grow, and the testing procedure

will be complicated.

Another solution is to analyze an individual user’s program for what type of flag

instructions are used. In most cases, the flag register is modified but the next instruction

ignores the flag states; in most cases, only branch instructions check the flag state.

Therefore, only a few instructions need to be tested in the Zero and Carry Flags.

6. Configuration Readback

Almost 100% FC can be obtained by using FPGA configuration readback, i.e., when

a configuration memory SEU error occurs, we can read the configuration memory and

compare it with the original one. Therefore, in theory, this results in 100% FC.

Nevertheless, hard faults, i.e., stuck-at errors, might not be detected by the readback, as

these faults are not associated with the FPGA configuration memory corruption.

Nevertheless, these types of faults are less common than SEUs. Such types of faults can be

detected by our test program. Stuck-at faults at the inputs and outputs of LUTs were

modeled [11,17].

The configuration readback method does not detect any application faults of data

stored in BRAM. Fortunately, additional parity bit checking can easily detect these SEU

faults. SEU fault detection is much more complicated in the case of registers (standard or

pipeline) and distributed RAM (scratchpad or stack memory). In this case, parity bit

checking would require redesigning the processor core with associated arithmetic and

logic modules. An alternative solution might be triple modular redundancy (TMR).

Recent research revealed that the method of partial reconfiguration assisted by TMR or

testing achieves the best results. On the other hand, there are static FPGA resources which

cannot be partially reconfigured, such as global connections, the logic of interfaces, and

part of clock resources. The method of partial reconfiguration is usually complex and

requires three bitstreams (original, readback, and masking data, which can change during

operation). Xilinx elaborated a CAPTURE tool which makes it possible to store application

data before readback. Moreover, testing by the readback method requires knowledge

about the placement and utilization of elements (frame address register).

Nevertheless, TMR has its drawbacks too. For example, it requires three times more

hardware resources; moreover, TMR is sensitive to a higher number of faults and may not

satisfy its function in this case. One of the most important TMR components, the so-called

majority voter (MV), is the most critical circuit. For this reason, newer solutions of MV are

still being developed, both at the logical and technological levels. New TMR solutions,

increasingly immune to SEUs, are also created as temporal, partial, or partitioned TMR

[18–21].

Reading back the whole FPGA configuration memory is time consuming—it requires

a similar time to FPGA programming. The complete bitstream for Virtex Ultrascale+ VU3P

contains 213’752’800 bits. Using the SelectMAP mode or the ICAP, this BIT file could be

loaded in about: 213’752’800 bits/3’200’000’000 bps ≈ 66.79 milliseconds.

The time can be significantly reduced when partial configuration readback is

employed. For example, a small partial BIT file for a Virtex-7 device contains a region

spanning 100 slices. Before the raw bit (.rbt) file is generated, the configuration time can

be estimated by using the bitstream size provided by the PlanAhead software.

Nowadays, the partial reconfiguration technique plays a key role for digital

programmable systems, where high reliability is required. In high-reliability systems,

partial reconfiguration is often supported by testing for the above-mentioned reasons.

Electronics 2021, 10, 2505 14 of 16

Testing according to our methodology under certain conditions [11,16] may require a

similar amount of time as partial reconfiguration. Table 6 presents a comparison of

reconfiguration and testing times for the PicoBlaze processor core. The first column

presents the partial reconfiguration time with an exclusively given processor core.

Additionally, the fast version of PicoBlaze (PicoBlazeHZ) was taken into consideration.

Table 6. Testing time vs. reconfiguration time.

PicoBlaze in Virtex-7 (XC7VH870T)

Partial PB configuration time

(50CLB)

370 instructions 3 vectors x 370

instructions

28 vectors

(the worst

case)

Full configuration

readback

Processor clock 100 MHz

36 us 3.7 us 11.1 us 103.6 us 91.88 ms/3.2 Gbps

Processor clock 240 MHz (PicoBlazeHZ)

36 us/3.2 Gbps 1.54 us 4.63 43.17 91.88 ms/3.2 Gbps

There is not an optimal solution for every application. In the case when a fast run

time (less than roughly 10 µs) is required, TMR seems the only solution. On the other

hand, when the accepted delay is more than 100 ms, configuration readback is the best

solution. This readback should be associated with the proposed test and the user’s

program execution two or three times in order to detect register/distributed memory

SEUs. In the case when the accepted delay is between roughly 10 µs and 100 ms, different

solutions might be used. One of them is (partial) readback combined with the proposed

testing solution. Another solution might be dual module redundancy combined with the

proposed testing procedure to select a proper result. The proposed testing procedure can

also be adopted in the case of TMR when two or more SEUs occur. In these cases, selecting

the number and/or value (order) of test vectors might be a very important issue and it is

application dependent.

7. Conclusions

Testing FPGA soft processors is often neglected since, in most cases, either

configuration readback or triple module redundancy (TMR) is used. Nevertheless, testing

combined with readback or TMR might still be a good solution. Furthermore, for an

allowed delay of 10 µs to 100 ms, soft processor testing might be the very fundamental

mission-critical procedure.

In this paper, an SEU-induced fault model in FPGA was presented. Based on the

model and the bijective testing procedure, an automated tool was designed to construct

the fault detection matrix D. This matrix specifies the fault coverage for every possible test

vector. Based on the matrix D, three novel optimization algorithms: Algorithm 1 (greedy),

Algorithm 2 (lowest order first), and Algorithm 3 (hybrid), were developed in order to

reduce the number of required test vectors without reducing the obtained fault coverage

(FC). In the given case study, the number of required global test vectors was reduced from

256 (8-bit microprocessor) to 31 for Algorithm 1, and even to 28 for Algorithm 2 or

Algorithm 3. By the introduced theory, it is proved that Algorithm 2 obtains the optimal

number of test vectors to obtain FCmax, provided that only first-order vectors are used.

In a general case, when second- or higher-order vectors were used, Algorithm 3 seemed

to be the best; however, this was not proved in practice, as in our case, testing only first-

order vectors resulted in the FCmax. In some cases, it might even be possible to use

Algorithm 2 for first-order vectors and an exhaustive search algorithm for second- and

higher-order vectors. The provided theory proves that it would result in the optimal

solution.

Electronics 2021, 10, 2505 15 of 16

In some cases, the testing time was limited, and thus the number of test vectors

needed to be further reduced, sacrificing the level of fault coverage. This case was also

studied, and as the result in our case, the greedy algorithm was the best when only three

vectors were tested. Otherwise, Algorithm 3 should be employed. This hybrid algorithm

considers both global and local optimization. It should be noted that testing only three

vectors resulted in a more than 97% FCmax.

A further reduction in the number of testing vectors might be obtained by employing

local test vectors. These test vectors are used only for a specific microprocessor block. Most

blocks can be fully tested by only two or three vectors. Unfortunately, 28 vectors were

required to test the Carry and Zero Flag generation block, and the flag register was

influenced by most instructions. It should be noted that the Carry Flag register was, in

most cases, used only for branches. Therefore, a further reduction in the number of test

vectors can be obtained by analyzing an individual program. The drawback of local vector

usage is that more input and output vectors should be transferred to/from the

microprocessor, and in some cases, these vectors’ transfer may be more problematic than

an increased test run time in the case of global vectors. Further optimization may be

achieved by employing a hybrid method: global and local vector usage, i.e., employing 2

global vectors and 26 local vectors to test only the flag register block.

Author Contributions: Conceptualization, M.W. and E.J.; Funding acquisition, K.W.;

Methodology, A.D.-B.; Project administration, E.J. and K.W.; Software, M.W.;

Supervision, E.J.; Writing—original draft, M.W. and E.J.; Writing—review & editing, E.J.,

A.D.-B. and K.W. All authors have read and agreed to the published version of the

manuscript.

Funding: AGH subsidy: 16.16.230.434.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kedarnath, J.B.; Nur, A.T. Matrix-Based Test Vector Decompression Using an Embedded Processor. In Proceedings of the 17th

IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02), Vancouver, BC, Canada, 6–8 November

2002; pp. 159–165.

2. IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language. In IEEE Std 1800-2012

(Revision of IEEE Std 1800-2009); IEEE: Piscataway, NJ, USA, 2013.

3. Universal Verification Methodology (UVM) 1.2 Users Guide; Accellera Systems Initiative: Napa, CA, USA, 2015.

4. Fajcik, M.; Smrz, P.; Zachariasova, M. Automation of Processor Verification Using Recurrent Neural Networks. In Proceedings

of the 18th International Workshop on Microprocessor and SoC test and Verification (MTV), Austin, TX, USA, 11–12 December

2017.

5. Simkova, M.; Kotasek, Z. Automation and Optimization of Coverage-driven Verification. In Proceedings of the 2015 Euromicro

Conference on Digital System Design, Madeira, Portugal, 26–28 August 2015; pp. 87–94.

6. Kitchen, N.; Kuehlmann, A. Stimulus generation for constrained random simulation. In Proceedings of the 2007 IEEE/ACM

International Conference on Computer-Aided Design, San Jose, CA, USA, 4–8 November 2007; pp. 258–265.

7. Yeh, H.; Huang, C.J. Automatic Constraint Generation for guided random simulation. In Proceedings of the 2010 15th Asia and

South Pacific Design Automation Conference (ASP-DAC), Taipei, Taiwan, 18–21 January 2010; pp. 613–618.

8. Cheng, A.C.; Yen, C.C.J.; Val, C.G.; Bayless, S.; Hu, A.J.; Jiang, I.H.R.; Jou, J.Y. Efficient Coverage-Driven Stimulus Generation

Using Simultaneous SAT Solving, with Application to System Verilog. ACM Trans. Des. Autom. Electron. Syst. 2014, 20, 7.1–7.23.

9. Goloubeva, O.; Reorda, M.S.; Violante, M. Automatic generation of validation stimuli for application-specific processors. In

Proceedings the Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 16–20 February 2004; Volume

1, pp. 188–193.

10. Wegrzyn, M.; Biasizzo, A.; Novak, F. Application-oriented testing of embedded processor cores implemented in FPGA circuits.

Int. Rev. Comput. Softw. 2007, 2, 666–671.

11. Wegrzyn, M.; Biasizzo, A.; Novak, F.; Renovell, M. Functional Testing of Processor Cores in FPGA-Based Applications. Comput.

Inform. 2009, 28, 97–113.

12. Doumar, A.; Ito, H. Testing the logic cells and interconnects resources for FPGAs. In Proceedings of the 8th Asian Test

Symposium (ATS'99), Shanghai, China, 18–18 November 1999; pp. 369–374.

13. Renovell, M.; Portal, J.M.; Faure, P. A Discusion on Test Pattern Generation for FPGA-Implemented Circuits. J. Electron. Test.

Theory Appl. 2001, 17, 283–290.

Electronics 2021, 10, 2505 16 of 16

14. Wikipedia 2021. Available online: https://en.wikipedia.org/wiki/Bijection (accessed on 29 July 2021).

15. Safi, E.; Karimi, Z.; Abbaspour, M.; Navabi, M. Utilizing Various ADL Facetes for Instruction Level CPU Test. In Proceedings

of the Fourth International Workshop on Microprocessor Test and Verification, Austin, TX, USA, 30 May 2003; pp. 38–45.

16. Aranda, L.A.; Wessman, N.J.; Santos, L.; Sánchez-Macián, A.; Andersson, J.; Weigand, R.; Maestro, J.A. Analysis of the Critical

Bits of a RISC-V Processor Implemented in an SRAM-Based FPGA for Space Applications. Electronics 2020, 9, 175.

https://doi.org/10.3390/electronics9010175.

17. Wegrzyn, M.; Sosnowski, J. Tracing Fault Effects in FPGA Systems. Int. J. Electron. Telecommun. 2014, 60, 103–108.

18. Katkoori, S.; Islam, S.A.; Kakarla, S. Partial evaluation based triple modular redundancy for single event upset mitigation. Integration

2021, 77, 167–179.

19. Sielewicz, K.M.; Rinella, G.A.; Bonora, M.; Giubilato, P.; Lupi, M.; Rossewij, M.J.; Schambach, J.; Tomas Vanat, T. Experimental

methods and results for the evaluation of triple modular redundancy SEU mitigation techniques with the Xilinx Kintex-7 FPGA.

In Proceedings of the IEEE Radiation Effects Data Workshop (REDW),), New Orleans, LA, USA, 17–21 July 2017.

20. Cui, X.; Liansheng, L. Mitigating single event upset of FPGA for the onboard bus control of satellite. Microelectron. Reliab. 2020,

114, 113779.

21. Bolchini, C.; Miele, A.; Santambrogio, M.D. TMR and Partial Dynamic Reconfiguration to mitigate SEU faults in FPGAs. In

Proceedings of the 22nd IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, Rome, Italy, 26–28

September 2007.

