
electronics

Article

MAN-EDoS: A Multihead Attention Network for the Detection
of Economic Denial of Sustainability Attacks

Vinh Quoc Ta 1 and Minho Park 1,2,*

����������
�������

Citation: Ta, V.Q.; Park, M.

MAN-EDoS: A Multihead Attention

Network for the Detection of

Economic Denial of Sustainability

Attacks. Electronics 2021, 10, 2500.

https://doi.org/10.3390/

electronics10202500

Academic Editor: Mehdi Sookhak

Received: 4 September 2021

Accepted: 9 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Communication, Materials and Chemistry Convergence Technology,
Soongsil University, Seoul 156-743, Korea; taquocvinh@soongsil.ac.kr

2 School of Electronic Engineering, Soongsil University, Seoul 156-743, Korea
* Correspondence: mhp@ssu.ac.kr

Abstract: Cloud computing is one of the most modernized technology for the modern world. Along
with the developments in the cloud infrastructure comes the risk of attacks that exploit the cloud
services to exhaust the usage-based resources. A new type of general denial attack, called “economic
denial of sustainability” (EDoS), exploits the pay-per-use service to scale-up resource usage normally
and gradually over time, finally bankrupting a service provider. The stealthiness of EDoS has made
it challenging to detect by most traditional mechanisms for the detection of denial-of-service attacks.
Although some recent research has shown that multivariate time recurrent models, such as recurrent
neural networks (RNN) and long short-term memory (LSTM), are effective for EDoS detection, they
have some limitations, such as a long processing time and information loss. Therefore, an efficient
EDoS detection scheme is proposed, which utilizes an attention technique. The proposed attention
technique mimics cognitive attention, which enhances the critical features of the input data and fades
out the rest. This reduces the feature selection processing time by calculating the query, key and value
scores for the network packets. During the EDoS attack, the values of network features change over
time. The proposed scheme inspects the changes of the attention scores between packets and between
features, which can help the classification modules distinguish the attack flows from network flows.
On another hand, our proposal scheme speeds up the processing time for the detection system in
the cloud. This advantage benefits the detection process, but the risk of the EDoS is serious as long
as the detection time is delayed. Comprehensive experiments showed that the proposed scheme
can enhance the detection accuracy by 98%, and the computational speed is 60% faster compared to
previous techniques on the available datasets, such as KDD, CICIDS, and a dataset that emerged from
the testbed. Our proposed work is not only beneficial to the detection system in cloud computing,
but can also be enlarged to be better with higher quality of training and technologies.

Keywords: network intrusion detection; cloud computing; economic denial of sustainability (EDoS);
machine learning; deep learning; multihead attention network

1. Introduction
1.1. Problems Statements

In the past few years, cloud computing has been one of the fastest growing technolo-
gies of the IT industry. It provides a better business environment with elastic computing
resource provisioning and powerful, high-availability clusters of virtual data centers. The
advantages of the cloud computing are considered to be cost-savings, high-speed deploy-
ment, data back-up and restoration, on-demand self-service, allowing pay-per-use, etc. As
the next generation architecture of the IT enterprise, cloud computing has unique features,
such as the organization of dynamic resource and costs based on utilization [1,2]. Despite
various benefits it might bring, cloud computing also possess vulnerabilities and is under
security threats, like previous network technologies. The scalability feature of cloud com-
puting may especially cause economic issues for the users, such as exorbitant costs [3,4].

Electronics 2021, 10, 2500. https://doi.org/10.3390/electronics10202500 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10202500
https://doi.org/10.3390/electronics10202500
https://doi.org/10.3390/electronics10202500
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10202500
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10202500?type=check_update&version=2


Electronics 2021, 10, 2500 2 of 18

The issues caused by attackers lead to many serious disadvantages in a variety of practical
fields, such as healthcare monitoring systems [5], online marketing, managements and
so on.

Economic denial of sustainability (EDoS) is a kind of denial-of-service (DoS) attack that
focuses on the economic aspect [6]. The EDoS attack exploits the cloud computing feature
of pay-per-use and causes an unnecessary scale-up of the service, resulting in financial
waste for the cloud resource. Although EDoS attacks share similarities with conventional
DoS threats, specifically those based on flooding [7] they often contain less traffic volume.
Thus, EDoS is a form of low-rate DoS attack and is difficult to detect by traffic volume-
based mechanisms. The EDoS attack is generated over thousands of attack packets, or
even more attack packets per second sent to the victims. Consequently, a one-second delay
in the detection would cause serious exhaustion to the victims. Thus, rapid detection in
the system is very crucial. Furthermore, DoS attacks aim to bankrupt the service provider.
Therefore, they can remain stealthy for a long time while wasting the cloud resource and
deceiving most existing DoS defense threshold-based mechanisms.

To address the issue of EDoS detection, various methods [8] have been proposed.
Among them, machine learning (ML) techniques, such as support vector machine (SVM)
and self-organizing map (SOM), have been shown to detect EDoS attacks well [9,10].
However, because most traditional ML methods rely heavily on feature engineering and
selection, they have limitations in effectively processing the massive EDoS data that arise in
network application environments. To enhance the accuracy and robustness of the detection
method and overcome the limitations of ML, deep learning (DL), a type of ML technique,
is applied automatically to better extract features by using neural layers. As classification
algorithms in DL, various neural network models mimic human nerves and use a large
number of non-linear processing units to address complex problems. Because of the
stealthiness of EDoS, many models and methods that apply flow-based detection methods
require a time-series model, which can recall the latest input and forecast the output of
the sequence data. The recurrent neural network (RNN) is a model for the sequence input
that can successfully detect DoS attacks [11]. Another RNN scheme [12], called the long
short-term memory (LSTM) model which can solve the vanishing gradient problem of
RNNs by an internal mechanism called “memory gates” that can regulate the flow of the
input sequence. Compared with previous models [11], this recurrent model faces a memory
limitation and time delay in the training phase and detecting phase. Because of gradually
computing the inputs over time of LSTM, stacking the memory cells caused the model
to lose the information of the past input and easily vanish when the back propagation
gradient is calculated. In addition, the time delay in model training is significant, especially
when the input is long. These shortcomings of the recurrent models make them inefficient
for processing the sequence data as EDoS data. In this research, to overcome the limitation
in the time delay of recurrent models and increase the accuracy of EDoS detection, a new
designed scheme is proposed.

1.2. Contribution

To counter the problems in recurrent models for the EDoS detection problem, a scheme
is proposed that makes the training and predicting phase faster than the recurrent LSTM
by parallel-calculating and keeps the data for forecasting the EDoS attack. In summary, the
major contributions are as follows.

• An effective EDoS detection scheme is proposed, which applies the attention technique.
Attention in DL can be interpreted as a vector of attraction score weights. To predict
or comprehend one element, such as a pixel in an image or a word in a sentence, the
attention vector is used to determine how strongly the unit is correlated with other
units in the sequence data, and the sum of their values weighted by the attention
vector is taken as the approximation of the target.

• In the present context, it is the relative scores of one feature to another features in the
network packet and one packet to the others in the flow network. These scores help



Electronics 2021, 10, 2500 3 of 18

to remember the history features of the input sequence. Furthermore, unlike most
other statistical techniques that have to compute with the feature selection threshold,
this scheme can compute the score of one feature that it observes and apply it to other
features for calculating the relative of one feature to another.

• The attention score is applied in the model that is similar to the auto encoder–decoder
network that has been introduced in the transformer model [13,14]. Instead of using
both modules as the transformer, the proposed modified model includes only one
encoder module block that can compute, in parallel, the inputs for accelerating the
training time but still gain the best accuracy as a sequence model as in LSTM schemes.

• Moreover, the constructed attention model can address unsupervised problems by
predicting the attack traffic using the attention score for classifying the zero-day
attack output.

• In addition, the MAN mechanism speeds-up the time processing. The improvement
in testing time will improve the detection time for the system, and the improve-
ment in training time will help update the model by fine-tuning the system update
immediately to get used to the change in the attacks.

• Common types of EDoS attacks in the cloud environment were investigated by adjust-
ing the attack rate to be lower than that in popular flooding attacks in the cloud and
network environments.

The rest of the article is organized as follows. In Section 2, some related works are
reviewed. In Section 3, background knowledge is discussed. The proposed scheme and
experimental setup are explained in Section 4. The performance results and evaluation
are given in Section 5. The conclusion and future research directions are given in the
final section.

2. Related Works

There have been several works on EDoS detection techniques. Al-Haidari et al. [15]
introduced EDoS-shield, which contains virtual firewalls (VFs) and verified cloud nodes
(V-nodes). The VFs work by filtering mechanisms that allow the packets originating from
the whitelist IP addresses to pass and dropping other packets originating from blacklist IP
addresses. These lists are frequently updated by the V-nodes according to the results of the
detection EDoS attacks module. Although EDoS-shield worked as the detection module, it
is easily bypassed by the spoofed IP addresses of attackers if the spoofed IP is not in, or not
updated to, the lists. Self-verifying proof of work (sPoW) [16] is an on-demand cloud-based
and application layer mitigation scheme. The main function of this method is to judge the
attack traffic before it starts pledging the resources. It transforms the network-level traffic
to distinguish the traffic that matches the attack pattern. However, one of this framework’s
requirements is the high computation power needed to solve crypto-puzzles for clients, and
the attackers can start a puzzle accumulation attack based on its vulnerability. Moreover,
the complexity of the puzzle can increase the false-positive rates because some users are
excluded from the network traffic or the cloud. EDoS armor is a multi-layered defense
system [17]. It is composed of an admission control phase and a congestion control phase.
The admission control restricts the number of end-users, while the congestion control sets
the priorities for the client based on past browsing behavior that is benign or anomalous
using a decision tree algorithm. A limitation of this technique is the adaptability of the
model because the site could be complicated for potential new users, who might then lose
interest. Game theory is the study of mathematical models of communicating strategically
among rational decision-makers. Chowdhury et al. [18] applied game theory to construct
a scenario among attackers and defenders. They obtained the optimal threshold value
by calculating the Nash equilibrium and incorporated honeypot to minimize false rates.
However, the game theory failed to operate reliably in the case of massive matrices of
payment. The use of a honeypot is unnecessary if it has to extract new signatures, so it is
not beneficial for detection.

In recent years, ML techniques have attracted much attention based on their efficiency



Electronics 2021, 10, 2500 4 of 18

and accuracy in various fields, including computer vision, healthcare, image processing,
and intrusion detection. Ghanem et al. [9] introduced the SVM technique as the detection
module to reduce the number of false alarms in distributed denial-of-service (DDoS) de-
tection applications. In [10] Trung et al. proposed an efficient solution to counter DDoS
attacks by using a hybrid ML model based on SVM and SOM algorithms to improve the
traffic classification. The SVM acts as a high-speed classification based on hyperplanes in
a high dimensional space and SOM increases the accuracy of vague data points that are
considered as suspicious points. Although ML worked for DDoS detection, ML is limited
because of the vast quantity of data with a vulnerable threshold, especially unfeasible for
EDoS attacks, because the vast quantity of data results in false-positive errors. A branch of
ML-DL has become popular and has been applied for DDoS attack detection. Many studies
have shown that DL can achieve much better accuracy with increasing datasets than ML.
Shaaban et al. [19] applied a convolution neural network (CNN), which technically mimics
the human brain. The difference of CNN is that it learns directly from image-like input
samples, not handcrafted features. In addition to the packet-based method to detect DDoS
and EDoS attacks, the flow-based method can also be used. Yin et al. [11] proposed a DL
approach for intrusion detection using RNNs. With continuous traffic flow, the RNN is ap-
plied as the classification technique for sequential input. By calculating input sequentially,
the recurrent model can remember the input of the previous character and predict the next
input so as to make a decision about the entire flow sequence. If the sequence is extremely
long, the RNN model is limited in memory because the features are stacked in memory cells.
LSTM is another recurrent model that can address the RNN memory problem. In previous
studies [12,20,21], LSTM showed major improvements over what RNNs could accomplish.
LSTM is designed to avoid long dependency problems and can remember long historical
information and gain high accuracy in EDoS detection with a sequence flow-based method.
Nevertheless, with the activation functions in recurrent gates, the computations slow down
the training time and prediction time of the scheme and affect the multivariate-real-time
with a long input sequence. According to one report [22], the concept of bi-directional
LSTM (BiLSTM) is enhanced from a bidirectional RNN that processes sequence inputs in
forward as well as backward directions by utilizing two different hidden layers. BiLSTM
joins both the hidden layers to the same output layer. BiLSTM runs the inputs in two ways:
one from the past to the future and one from the future to the past. What distinguishes
this approach from a uni-directional one is that the LSTM that runs backward preserve
information from the future and uses the two combined hidden states, leading to the ability
at any point in time to preserve information from both the past and future. However, by
calculating the inputs in two ways, backward and forward, the BiLSTM is even slower
than LSTM in training time and predicting time.

Because of the issues of recurrent models in detecting the intrusion network, specifi-
cally in EDoS attack detection, a multi-head attention mechanism working with an encoder
model was proposed as the Transformer model [13,14]. To the best of our knowledge,
most of the research works have been focused on improving the accuracy, while the time
processing of the detection system is significant so that it affects the EDoS detection. Hence,
our proposal can achieve the best results for sequence issues in EDoS attack detection, and
also increase the quality of time processing.

3. Background Knowledge
3.1. EDoS Attack on Network

In general, a DDoS attack is a targeted attack by multiple compromised computers
called “botnets” or “zombies”, focusing on a single system network [23]. Their purposes
are to exhaust the objective system, thus making it unavailable for registration. Similarly
to DDoS attacks, in EDoS attacks, the network systems are attacked by many botnets that
are spoofed by attackers. However, EDoS attacks are stealthier and gradually exhaust the
system by pushing illegitimate traffic over a longer period of time. The motivation of EDoS
attackers is to increase the costs that are incurred by the users through the system or the



Electronics 2021, 10, 2500 5 of 18

cloud. The users are then forced to rent extra computing resources by manipulating the
auto-scaling engine in the cloud. As a result, the users have to pay more money.

As in Figure 1, EDoS attacks have a lower region of attack rate and intensity threshold
value than DDoS attacks, thus, an EDoS attack can easily be ignored and pass the DDoS
defense mechanisms. EDoS is described as a specific family of attacks and one kind of
low-rate attack against the cloud computing platforms detection system, where the attacker
aims at increasing the economic costs derived from both maintenance and provision of the
services offered, hence making the support less applicable, even achieving denial. In gen-
eral terms, EDoS attacks have similarities to regular DDoS threats, especially those based
on flooding. However, EDoS raise a significantly different problem. The characteristics and
impact of EDoS are illustrated in Figure 2.

Figure 1. DDoS and EDoS attacks regions.

Figure 2. Auto-scaling triggered by EDoS attacks.

An effect of EDoS attacks is that it becomes necessary to scale-up and scale-out the
deployed environment resource by adding additional computational resources when the
request packets of the attacker are consequently generated, flooding the resource [24].
Moreover, Figure 3 illustrates the CPU utilization of EDoS attacks in multi-variate time
series. Some characteristics, such as CPU utilization, are changed by time, this multi-time
variate feature is significant in the flow-based method rule instead of the packet-based rule.
As in Figure 3, some parameters change extremely during the attack time. Following this
alternation, we use these two extremely high changes in values of CPU usage and memory
usage parameters to collect and process data in the Data Preparation section. However,
the CPU and memory usage features are the sequential features that are multivariate



Electronics 2021, 10, 2500 6 of 18

time in series. Therefore, a mechanism is proposed that is not only based on sequence
multi-variate time data, as a flow-based method to detect EDoS attacks, but also overcomes
the shortcomings of previous approaches. In the following subsections, we discuss the
varieties of EDoS attacks, as mentioned in previous research [23].

Figure 3. Suspected regions occurring during normal and EDoS attacks periods.

3.1.1. TCP SYN Flooding Attack

Transmission Control Protocol (TCP) is a connection-adapted protocol that happens
on the transport layer of the model stack. The connection is settled by the three-way
handshaking method by sending the SYN and ACK packets and receiving response ones
respectively. The clients send an SYN packet to the server. Upon receiving the SYN packet,
the server acknowledges the SYN-ACK packet and allocates the TCP stack for the new
connection request, and it comes into the listening state. In this type of attack, the attackers
send repeated SYN packets to ports on the headed server, often using fake IP addresses.
The server unfamiliar with the attack receives multiple, apparently appropriate, requests to
establish communication. It responds to each attempt with an SYN-ACK packet from each
open port. The attacked client either does not send the expected ACK or the IP address
is spoofed, and the SYN-ACK is never received in the first place. Either way, the server
under attack will wait for acknowledgment of its SYN-ACK packet for a bit of time. The
server cannot close down the connection by sending an RST packet and the connection
stays open. Before time is out, another SYN packet is reached. This leads to an increase
in the large number of connections being half-open connections. Eventually, due to the
connection overflow tables, services of legitimate clients are denied and the server may
even malfunction or crash [25].

3.1.2. UDP Flooding attack

The User Datagram Protocol (UDP) is produced on top of the Internet Protocol (IP)
to broadcast datagrams over the network interface. UDP does not require the source and
destination to build the three-way handshaking like TCP. Moreover, it is not crucial for an
end-to-end connection [26]. The minor of the authentication mechanism and end-to-end
connections make UDP vulnerable to attacks. The application is reached directly with the
spoofed IP packets that are generated by the attackers. In the variety of ports on a single
server, the flood of UDP contains the huge volumes of packets. The server reacts to all the
requests with response messages, overwhelming its resources. In addition, in the EDoS
UDP flood attack, the attackers send the packets frequently, but with a low-rate request to
slowly congest the network traffic.

3.1.3. ICMP Flooding attack

The Internet Control Message Protocol (ICMP) is a network layer protocol used by
network devices to analyze network communication problems. ICMP is used to determine
whether data reach their destinations in a timely manner. Commonly, the ICMP is used on
network devices, such as routers. ICMP is crucial for error recording and verification, but



Electronics 2021, 10, 2500 7 of 18

it can also be used in DoS attacks, especially EDoS attacks. The ICMP flood attack can be
broken down into two repeating steps.

• The attacker sends many ICMP request packets to the aimed server using multiple botnets.
• The victim server then sends an ICMP echo-response packet back respectively to the

request one to the botnet’s IP address as an answer. The effect on the network traffic
is damaging when the number of requests made to the targeted server increase.

3.2. Attention Technique

The attention technique in the self-attention layer helps the model look at other input
sentences as it encodes a specific feature input. As discussed in [13], self-attention is a
mechanism that relates different points of a single sequence to compute a representation
of the sequence. The first step in calculating self-attention is to create three vectors from
each of the input vectors of the encoder. For each input Xi in window slot t ≤ i ≤ d, three
matrices, Query Q, Key K and Value V, are created by multiplying the embedding three
matrices that are in training process.

Z = σ(
Q ·KT
√

dk
). (1)

The Query, Key, and Value are useful for calculating and understanding attention.
Secondly, self-attention is calculated as the Z scores. The scores determine the concentration
to place on other parts of the inputs sequence. The scores are calculated by computing the
dot-product of the Q matrix and the K transpose matrix. Then the results are divided by
the square root of the dimension of the key matrix

√
dk. This leads to more stable gradients.

Then, the result is passed through a softmax operation σ. Softmax normalizes the scores
that are between 0 and 1 so that they can be interpreted as probability and sum up to 1.

σ(z) =
ez

∑d
j=1 ez

. (2)

The softmax score determines how much each input packet is expressed at this position
in one flow traffic window. These scores also are significant to weights on the values. The
dot-product is more rapid and more space-efficient in practice because it can be achieved
using highly optimized matrix multiplication code. The dot-product advances large in
weight, pushing the softmax function into regions where it has extremely small grades,
and
√

dk outperforms dot-product attention and scales the dot-product, preventing the
vanishing in gradient.

Attention = A(Q, K, V) = Z×V. (3)

The third step is to multiply each value matrix V by the softmax scores. The intent
is to keep the values of the packets and the features in the flow that one wants to focus
on intact, and track the gradual change of the packets in the flow that affects much of the
attack. Finally, the weighted value matrices are summed up. This produces the output of
the self-attention layer at the position of these packets in the window flow.

According to [13] to improve the performance of the attention, the mechanism “Multi-
Head Attention” has been introduced. This gives the attention layer multiple representation
subspaces. The multihead of attention are multiple sets of Q, K, and V weight matrices.
Each of these sets is randomly initialized. After training, each set is used to project the
input embedding into a different representation subspace.

MultiHead = Concatenate(A(Qj, Kj, Vj)). (4)

Multihead attention is a method to concatenate the attention j-th results where j is
the number of heads in the attention layers. Then, the concatenated result is the matrix
MultiHead ∈ RT×j.

Figure 4 is an example of the computation of the multi-head attention scores of three



Electronics 2021, 10, 2500 8 of 18

embedded inputs. To earn these representations, every input is multiplied with a set of
weights for keys, a set of weights for queries, and a set of weights for values. In a neural
network setting, these weights are usually small numbers, initialized randomly using an
appropriate random distribution such as Gaussian distribution. This initiation is done once
before training. After obtaining the key K, query Q and value V representations for every
input with the same dimension size, to obtain the attention score, the dot product starts
between the input’s query with all keys of other inputs, including itself. The softmax scores
of each dot product result are then multiplied by its corresponding value. The outputs for
each input are then added up together. The calculation is repeated for every input to gain
the result matrix attention scores.

Figure 4. Attention score example of three embedded inputs.

4. Proposed Scheme and Experiment
4.1. Testbed Scheme for Network Communication

To construct the network traffic testbed, the virtual machine (VM) and Open vSwitch
tools were used, and port mirroring was set up to capture the packets from the attacker
to the VMs of the victim [27,28] as shown in Figure 5. The VMs attackers deploy different
flooding attacks by running an attack script. The open-source software switch, called Open
vSwitch, provides network connections between VMs inside the VirtualBox virtualization
platform. In order to capture the packets from attackers to the victims, a third party was
set up to run the Open vSwitch and port mirroring bridge.

The packets captured from the interface by Open vSwitch and port mirroring are
translated to Data preprocessing modules before being fed into the model for training.
The model decides whether the input flow window is an EDoS flow attack or benign flow.
The defense system works as Virtual Firewall (VF) in [29] that contains the blacklist and
whitelist, while the Virtual Firewall can be implemented in the cloud as a VM that has
filtering and routing capability. The whitelist is used to track the authenticated source IP
addresses that are in benign flow as decided by the trained model, and the blacklist is used
to hold those unauthenticated source IP addresses that indicate EDoS flow attacks, which
are excluded from the service and the incoming packet flows are dropped. These two lists
are updated periodically by the time running the interface network traffic. After training
the model, the predicting model is used in the mitigation system with the defense system.
In the experiment in the next section, it is shown that this novel solution to EDoS has an
influencing effect. Algorithm 1 describes the workflow of the testbed in Figure 5 of the
EDoS detection and mitigation system.



Electronics 2021, 10, 2500 9 of 18

Figure 5. Testbed set up for capturing network packets.

Algorithm 1 Workflow of testbed for EDoS detection and mitigation

Capture←− running Open vSwitch and port mirroring script for capturing packets from
the interface.
Pre− Process←− Processing data.
Model ←−Multihead Attention Model (MAN).
De f ense←− The defense system that contains black lists and white lists.
loop

x←− Capture
X←− PreProcess
Training: output←− Model ←− X
Updating:

if output is normal:
De f ense : White− lists←− output

else output is EDoS:
De f ense : Black− lists←− output

end if
Predicting:

output←− Model ←− X
if Output is EDoS

De f ense −→ Drop
else output is benign

De f ense −→ Pass
end if

end loop

4.2. EDoS Attack Performance

In this section, first a scheme for performing an EDoS attack based on DDoS attack
application script—BoNeSi [30] is constructed. As mentioned, an EDoS attack has a lower
rate in a longer period of time.

Table 1 shows the different kinds of EDoS attacks, classified by the BoNeSi tool. In
the TCP SYN flooding attack, the attackers generate many botnets that carry the spoofed
IP addresses (100 botnets in the experiment) to send SYN packets to the victims and
exhaust the network traffic. The UDP and ICMP flooding attacks differ from the TCP
one, by sending a large number of attack packets, which eventually causes the system
traffic network to be unreachable. The EDoS attack is different from a DDoS one in that
it is stealthier, and the intensity is under the threshold value of the attack traffic rate.



Electronics 2021, 10, 2500 10 of 18

To generate EDoS attack, the attack rate in the BoNeSi script was adjusted to 2000 and
3000 request packets per second, which is different from the default DDoS attack of more
than 50,000 requests per second.

Table 1. EDoS attack by BoNeSi.

EDoS Attack Rate (pkts/s) Botnets Times (s)

TCP SYN flooding 2000 100 3600

ICMP flooding 3000 - 3600

UDP flooding 3000 - 3600

4.3. Preprocessing and Model Work Flow

In this section, the workflow of the scheme is discussed, including: data capture, data
preprocessing and model architecture as shown in Figure 6.

Figure 6. Model flow architecture.

4.3.1. Data Preparation

• Data capture: This module runs in basic network traffic. After collecting generated
packets from BoNeSi attackers, the packets inflow is captured by the Wireshark tool
which can split flow by the number of packets per flow and by the time per flow.
Referring to a previous study [21], the sequence length is 250 packets per flow. To
overcome the loss of information and memory vanishing of LSTM, a longer sequence
length of the window slot, that is 500 packets per flow sequence, is proposed. For a
sequence flow that does not have enough packets of protocol, the proposed methods
generate fake packets in the flow, which contain zero values to fill up the sequence
window slot.



Electronics 2021, 10, 2500 11 of 18

• Data preprocessing: The embedding module transforms the categorical features into
numerical form by using the one-hot encoding technique. Encoding and labeling are
used to label flows generated from the window slot. The Standard Scaler normalizes
the data that are significant to the model for calculating and accelerating the time in
training and predicting the phase. The formula can be expressed as:

z =
x−min

max−min
, (5)

where x is the value that is standardized, min and max are the minimum and maxi-
mum values of every features in dataset.

• Data description: For the training phase and testing phase, two datasets are used from
the training scheme and the UNSW-NB15 dataset [31,32]. The UNSW-NB15 dataset
contains pcap files that can extract the packets from the flows by the timestamp.
This dataset can represent actual situations in the real network and overcome the
shortcomings of KDDCUP’99 [33]. Moreover, to evaluate the model prediction results,
the NSL-KDD and CICIDS dataset introduced by the Canadian Institute are used
with the same features and behaviors [33,34]. They have gradually become one of
the benchmark datasets in the field of network security. Table 2 shows the features of
packets that are generated from the system and from the testing UNSW-NB15 dataset.

Table 2. Key features.

Features Description

ip_src Source IP address
ip_dst Destination IP address
proto Network protocol type

port_src Source port
port_dst Destination port

dur Flow duration
sttl Source time to live
dttl Destination time to live

time_s Time stamp packet captured
length Packet length bytes
spkts Source to destination packets count
dpkts Destination to source packets count
sload Source bits per second
dload Destination bits per second
stcpb Source TCP base

cpu_util CPU utilization
memory_usage Memory usage

label Label attack

4.3.2. Model Architecture

• POSITIONAL ENCODING: To make use the order of the sequence input, instead of
recurrence and no convolution, the positional encoding adds up the encoding of the
order of the sequence in the window slot and the input sequence:

pt
(pos,2i)∈d = sin(pos/5002i/dimmodel ) (6)

pt
(pos,2i+1)∈d = sin(pos/5002i/dimmodel ) (7)

Pt
d ∈ [pt

0, pt
1, pt

2, ..., pt
d] (8)

Input = Xt
d + Pt

d (9)



Electronics 2021, 10, 2500 12 of 18

The parameter pos is the position and i is the dimension. Each dimension of the
positional encoding harmonizes to a sinusoidal. The wavelengths form a geometrical
advancement from 2π to 500 × 2π. Connecting these values to the embeddings
provides full meanings of distances between the embedded vectors once they are
projected into the Q, K and V vectors and during dot-product attention.

• Multihead Attention enables the model to attend to information from different posi-
tions of the sequence inputs jointly. The Residual Line is introduced from ResNet [35]
to prevent the loss of information through network layers and improve the propaga-
tion of useful gradient information.

• Add and Normalization: add up the input information to the output from the attention
layers. The normalization layer normalizes the activation of the previous layer for
each given example in a batch independently.

Z = Normal(MultiHead + Xd), (10)

where Xd is the input sequence in the window slot that uses the residual to add to the
output of the multihead layers.

• Feed-Forward Network (FFN) is used to process the output of the previous layers that
compute the feature maps as Fully Connected Feed-Forward networks and enforce a
Sigmoid activation function:

Output = σ(Z). (11)

The calculating and training flow are shown in Algorithm 2 with two-phase data
preprocessing and training phases. The data preparation phase cleans the dataset when
extracting the packets network xt

d from the interface in the size of window slot d by the time
t. The embedding layer makes it possible to convert categorical data into a fixed-length
vector of a defined size. The consequent vector is a dense one with real values instead
of just 0 and 1. The fixed length of categorical data represents data in a better way with
reduced dimensions. The one-hot-encoding embeds works just as a look-up table does.
The categories are the keys in this table, while the dense word vectors are the values.
The standard input that re-scales data from a range of 0 to 1 in order to not cause the
gradient propagation to vanish. The experiment was performed on a local CPU (Intel Core
i7 8700 3.20 GHz) and GPU NVIDIA GeForce GTX 1060 3 GB (32 GB memory). To train the
Multihead Attention model, the model parameters were constructed as in Table 3.

Table 3. Model parameters.

Number of attention heads 8
Sequence length 500

Embed and Feed forward dimension 64
Dropout 0.1

Batch size 512
Epochs 500

Optimizer SGD



Electronics 2021, 10, 2500 13 of 18

Algorithm 2 Multihead attention network for EDoS attack scheme

{xt
0, xt

1, xt
2, ..., xt

d} −→ A set of packets that captured from interface.
Embedd −→ Embedding layers for encoding the categorical data.
Standard −→ Standard Scaler for the huge value data.
while True:

for x in range from t to t+d do
Embedd, Standard←− x
Xt

d = [xt
0, xt

1, xt
2, ..., xt

d]
end for

end while
Output: X = [Xt

d, Xt+1
d , Xt+3

d , ..., Xt+T
d ]

Attention model training:
Pt

d −→ Positional encoding for the order of the window slot.
WQ

j , WK
j , WV

j , Qj, Kj, Vj −→Weight matrices that are trained and calculated Query, Key
and Value matrices.
ADDNormal −→ Add up layers and Normalization layers.
MultiHead −→MultiHead Attention layer calculation.
FFN −→ Feed-Forward Network layers for linear calculation.
loop forward and backward propagation

for Xt
d in X do:

Input = Pt
d + Xt

d
Qj, Kj, Vj = (WQ

j , WK
j , WV

j )× Input

Z1 ←− MultiHead←− Qj, Kj, Vj

Z2 ←− FFN ←− ADDNormal ←− Z1, Xt
j

Output←− FFN ←− ADDNormal ←− Z2
end for

end loop

5. Results and Evaluation
5.1. Results

During the training phase, the used training dataset, generated from the testbed and
testing validation dataset, was UNSW-NB15.

Figures 7 and 8 illustrate the training and testing results of the multihead attention
model in detecting the EDoS attacks. To evaluate the model results, we use metric accuracy
and sparse category cross-entropy loss were used.

Figure 7. Model accuracy in training and testing phases.



Electronics 2021, 10, 2500 14 of 18

Figure 8. Model loss in training and testing phases.

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Here, TP is the true positives, TN is true negatives, FP is false positives and FN is false
negatives of trained data. The sparse categorical cross-entropy loss function is a measure
from the field of information theory, building upon entropy and commonly calculating
the characteristic between two probability distributions. The difference between sparse
categorical cross-entropy and categorical cross-entropy is the format of true labels. In
multi-class classification issues, the labels are commonly absolute for each datum. Then,
one can represent true labels using one-hot embedding.

J(ω) = − 1
N

N

∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)], (13)

where ω refers to the model parameters, yi is the true label, ŷi is the predicted label. During
the training phase, the accuracy and loss have the intensity to converge in about hundreds
of epochs through the test accuracy and test loss which fluctuate in time owning to the
difference between the training dataset from the testbed and available validation dataset.
However, the validation accuracy and test gradually increase and decrease, respectively,
and gain more than 98.6% in accuracy and 0.012 in loss while the validation accuracy is
nearly 98% and validation loss is 0.015. These results can be compared with the results of
some related works. In a study [36], the best result was 97.3% with the neuron network
attention technique. Likewise, our results are compared to the hierarchical attention
technique in RNN in the work [37], which gained 98.76% on the UNSW-NB15 dataset. The
comparisons reveal that the present method achieved comparable results to those of recent
researches. The proposed scheme not only had better results but also increased the results
of such metrics as time in training and predicting precision scores, and f1 scores.

5.2. Evaluation with Recurrent Models

Table 4 illustrates that the proposed scheme can improve the time in training and
prediction compared with the recurrent models such as LSTM and RNN. According to the
theory of recurrent models, the input that fed one by one with the order of input into the
memory cells of the model to remember the important information of previous input and
predict the output for the sequence. This causes a delay in training time and predicting
time. The attention model not only feeds the inputs and computes in parallel, just as
a neural network, but can also retain the information in the sequence by the attention
techniques to predict the output.



Electronics 2021, 10, 2500 15 of 18

Table 4. Model results and evaluation.

Metrics MAN BiLSTM LSTM RNN

Training time (s/epoch) 11 50 32 26

Predicting time (s) 2.40 3.12 2.77 2.56

Accuracy 0.98 0.99 0.98 0.95

Precision 0.989 1 0.981 0.95

Recall 0.983 0.967 0.98 0.958

F1_score 0.986 0.99 0.978 0.965

The results in the table show that the proposed attention model was much faster in
training and testing times than the bidirectional LSTM, LSTM [21] and RNN [37] models.
For each iteration epoch in the training time, the attention model was twice as fast as the
RNN model and three times faster than the LSTM model, and its accuracy was as high
as that of these other models. Moreover, the performance for the accuracy and f1 score
metrics was superior, demonstrating that the proposed approach is better for EDoS attack
detection. The performance metrics used were: accuracy, precision (the rate of the time
slots anticipated as the attack that is truly an attack), recall (the rate at which the true
attack slots are accurately anticipated as attacks) and f-score (the adjustment mean of the
precision and recall).

Precision =
TP

TP + FN
(14)

Recall =
TP

TP + FP
(15)

F1 = 2× Precision× Recall
Precision + Recall

. (16)

The results in Figures 9 and 10 are the comparisons of the evaluation of the proposed
model to the recent works that are considered as the state-of-the-art for intrusion detection
and NLP issues. The accuracy shown on different popular datasets by different methods
illustrates that the proposed approach produced better results than other methods. The
evaluation results were obtained from four models; RNN, LSTM, BiLSTM and multihead
attention network. The CICIDS-2019 dataset [34] is introduced by the Canadian Institute for
Cybersecurity that contained captured data with timestamps of benign and attack networks.
Another compared dataset is NSK-KDD, which is a dataset suggested to solve some of the
inherent problems of the KDD’99 dataset and provided by the Canadian Institute [33]. To
evaluate the proposed scheme, it was applied to three different datasets and three different
models mentioned in Figures 9 and 10. For each dataset, the accuracy of every model was
gained precisely with a high score. The multihead attention network scheme worked as
well as BiLSTM on every dataset, but had faster training time and predicting time. RNN
and LSTM had lower accuracy and longer times. This evaluation experiment verified
the efficiency of the proposed multihead attention network scheme in the EDoS attack
detection issue.



Electronics 2021, 10, 2500 16 of 18

Figure 9. Accuracy evaluation on different datasets.

Figure 10. Distribution of quantitative of accuracy for different models in different datasets.

6. Conclusions and Future Works

We proposed a testbed scheme, approached by a multihead attention model, which
works with a multivariate time series for EDoS attack detection in the network traffic
environment. By calculating the query, key and value matrices, the multihead attention
matrices scores are applied with neuron networks to be trained with the EDoS data.
The proposed idea is established by improving the recent works of multivariate time
series models applied for EDoS attacks in cloud computing. The results and evaluation
in Section 5 showed that the proposed scheme is very efficient in terms of accuracy and
accelerates the time required for training and predicting. The results have shown that our
proposal gained not only better results, as well as a state-of-the-art mechanism, but also
increased the training time and predicting time, though the gap in predicting time values



Electronics 2021, 10, 2500 17 of 18

was not large. This improvement speeds-up the processing time of the detection system of
cloud computing, which is beneficial for the real-time detection of the system while the
flooding attack is serious to the interface for an instance of time. Predicting time is very
important in the detection system of cloud computing, since, in an instance of time, the
EDoS attackers generate a thousand packets. Besides, the twice-as-fast training time is very
significant when we want to update the system with new types of attacks by fine-tuning
or training with newly-generated data. This time advantage comes from the proposed
attention mechanism. With our proposed work, the detection system in cloud computing
is able to prevent the EDoS attacks which have constituted emergencies for cloud service
payments of many enterprises.

As future work, we plan to implement the scheme for multi-class attack detection,
modify the model in a cloud computing environment, such as the Software Defined
Network (SDN), and improve it for comparison with previous works using more evaluation
criteria. Based on the characteristic of the SDN, the separate control plane helps us monitor
the model to train and predict more precisely. The controller of SDN can extract the flow
features easily and progress the detection system in real-time conveniently. On another
hand, using other metrics and computed decision thresholds will increase the quality of
the model to adapt better with other types of data that are related to the DoS attacks .

Author Contributions: Conceptualization, V.Q.T.; Project administration, M.P.; Supervision, M.P.;
Writing—original draft, V.Q.T. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Research Foundation of Korea (NRF) grant
number 2020R1F1A1076795.

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korean government (MSIT) (No. 2020R1F1A1076795).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rambabu, M.; Gupta, S.; Singh, R.S. Data Mining in Cloud Computing: Survey. In Innovations in Computational Intelligence and

Computer Vision; Advances in Intelligent Systems and Computing; Sharma, M.K., Dhaka, V.S., Perumal, T., Dey, N., Tavares,
J.M.R.S., Eds.; Springer: Singapore, 2021; Volume 1189. [CrossRef]

2. El Kafhali, S.; El Mir, I.; Hanini, M. Security Threats, Defense Mechanisms, Challenges, and Future Directions in Cloud Computing.
Arch. Comput. Methods Eng. 2021, 1–24. [CrossRef]

3. Kuyoro, S.O.; Ibikunle, F.; Awodele, O. Cloud Computing Security Issues and Challenges. Int. J. Comput. Netw. 2011, 3, 247–255.
4. Sabahi, F. Cloud computing security threats and responses. In Proceedings of the 2011 IEEE 3rd International Conference on

Communication Software and Networks, Xi’an, China, 27–29 May 2011; pp. 245–249. [CrossRef]
5. Liagkou, V.; Kavvadas, V.; Chronopoulos, S.K.; Tafiadis, D.; Christofilakis, V.; Peppas, K.P. Attack Detection for Healthcare Moni-

toring Systems Using Mechanical Learning in Virtual Private Networks over Optical Transport Layer Architecture. Computation
2019, 7, 24. [CrossRef]

6. Singh, P.; Rehman, S.U.; Manickam, S. Comparative Analysis of State-of-the-Art EDoS Mitigation Techniques in Cloud Computing
Environment. arXiv 2019, arXiv:1905.13447.

7. Zargar, S.T.; Joshi, J.; Tipper, D. A Survey of Defense Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks.
IEEE Commun. Surv. Tutor. 2013, 15, 2046–2069. [CrossRef]

8. Shawahna, A.; Abu-Amara, M.; Mahmoud, A.S.H.; Osais, Y. EDoS-ADS: An Enhanced Mitigation Technique Against Economic
Denial of Sustainability (EDoS) Attacks. IEEE Trans. Cloud Comput. 2020, 8, 790–804. [CrossRef]

9. Ghanem, K.; Aparicio-Navarro, F.J.; Kyriakopoulos, K.G.; Lambotharan, S.; Chambers, J.A. Support Vector Machine for Network
Intrusion and Cyber Attack Detection. In Proceedings of the 2017 Sensor Signal Processing for Defence Conference (SSPD),
London, UK, 6–7 December 2017; pp. 1–5. [CrossRef]

10. Phan, T.V.; Park, M. Efficient Distributed Denial-of-Service Attack Defense in SDN-Based Cloud. IEEE Access 2019, 7, 18701–18714.
[CrossRef]

11. Yin, C.; Zhu, Y.; Fei, J.; He, X. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks. IEEE Access
2017, 5, 21954–21961. [CrossRef]

12. Liang, X.; Znati, T. A Long Short-Term Memory Enabled Framework for DDoS Detection. In Proceedings of the 2019
IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [CrossRef]

http://doi.org/10.1007/978-981-15-6067-5_7
http://dx.doi.org/10.1007/s11831-021-09573-y
http://dx.doi.org/10.1109/ICCSN.2011.6014715
http://dx.doi.org/10.3390/computation7020024
http://dx.doi.org/10.1109/SURV.2013.031413.00127
http://dx.doi.org/10.1109/TCC.2018.2805907
http://dx.doi.org/10.1109/SSPD.2017.8233268
http://dx.doi.org/10.1109/ACCESS.2019.2896783
http://dx.doi.org/10.1109/ACCESS.2017.2762418
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013450


Electronics 2021, 10, 2500 18 of 18

13. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I.I. Attention Is All You Need.
arXiv 2017, arXiv:1706.03762.

14. Dehghani, M.; Gouws, S.; Vinyals, O.; Uszkoreit, J.; Kaiser, L. Universal Transformers. arXiv 2019, arXiv:1807.03819.
15. Al-Haidari, F.; Salah, K.; Sqalli, M.; Buhari, S.M. Performance Modeling and Analysis of the EDoS-Shield Mitigation. Arab. J. Sci.

Eng. 2017, 42, 793–804. [CrossRef]
16. Khor, S.H.; Nakao, A. Spow On-Demand Cloud-based EDDoS Mitigation Mechanism. In Proceedings of the 5th Workshop on

Hot Topics in System Dependability, Lisbon, Portugal, 29 June 2009; pp. 1–6.
17. Masood, M.; Anwar, Z.; Raza, S.A.; Hur, M.A. EDoS Armor: A cost effective economic denial of sustainability attack mitigation

framework for e-commerce applications in cloud environments. In Proceedings of the INMIC, Lahore, Pakistan, 19–20 December
2013; pp. 37–42. [CrossRef]

18. Chowdhury, F.Z.; Idris, M.Y.I.; Kiah, L.M.; Manazir Ahsan, A.M. EDoS eye: A game theoretic approach to mitigate economic
denial of sustainability attack in cloud computing. In Proceedings of the 2017 IEEE 8th Control and System Graduate Research
Colloquium (ICSGRC), Shah Alam, Malaysia, 4–5 August 2017; pp. 164–169. [CrossRef]

19. Shaaban, A.R.; Abd-Elwanis, E.; Hussein, M. DDoS attack detection and classification via Convolutional Neural Network (CNN).
In Proceedings of the 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo,
Egypt, 8–10 December 2019; pp. 233–238. [CrossRef]

20. Li, Y.; Lu, Y. LSTM-BA: DDoS Detection Approach Combining LSTM and Bayes. In Proceedings of the 2019 Seventh International
Conference on Advanced Cloud and Big Data (CBD), Suzhou, China, 21–22 September 2019; pp. 180–185. [CrossRef]

21. Dinh, P.T.; Park, M. Dynamic Economic-Denial-of-Sustainability (EDoS) Detection in SDN-based Cloud. In Proceedings of the
2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC), Paris, France, 20–23 April 2020; pp. 62–69.
[CrossRef]

22. Roy, B.; Cheung, H. A Deep Learning Approach for Intrusion Detection in Internet of Things using Bi-Directional Long Short-
Term Memory Recurrent Neural Network. In Proceedings of the 2018 28th International Telecommunication Networks and
Applications Conference (ITNAC), Sydney, Australia, 21–23 November 2018; pp. 1–6. [CrossRef]

23. Dong, S.; Abbas, K.; Jain, R. A Survey on Distributed Denial of Service (DDoS) Attacks in SDN and Cloud Computing
Environments. IEEE Access 2019, 7, 80813–80828. [CrossRef]

24. Monge, M.A.S.; Vidal, J.M.; Perez, G.M. Detection of economic denial of sustainability (EDoS) threats in self-organizing networks.
Comput. Commun. 2019, 145, 248–308. [CrossRef]

25. Geetha, K.; Sreenath, N. SYN flooding attack—Identification and analysis. In Proceedings of the International Conference on
Information Communication and Embedded Systems (ICICES2014), Chennai, India, 27–28 February 2014; pp. 1–7. [CrossRef]

26. Boro, D.; Basumatary, H.; Goswami, T.; Bhattacharyya, D.K. UDP Flooding Attack Detection Using Information Metric Measure.
In Proceedings of International Conference on ICT for Sustainable Development; Advances in Intelligent Systems and Computing;
Satapathy, S., Joshi, A., Modi, N., Pathak, N., Eds.; Springer: Singapore, 2016; Volume 408. [CrossRef]

27. Open vSwitch. Available online: https://www.openvswitch.org/ (accessed on 9 August 2016).
28. VirtualBox Oracle. Available online: https://www.virtualbox.org/ (accessed on 13 December 2012).
29. Sqalli, M.H.; Al-Haidari, F.; Salah, K. EDoS-Shield—A Two-Steps Mitigation Technique against EDoS Attacks in Cloud Computing.

In Proceedings of the 2011 Fourth IEEE International Conference on Utility and Cloud Computing, Melbourne, Australia,
5–8 December 2011; pp. 49–56. [CrossRef]

30. BoNeSi, The DDoS Botnet Simulator. 2015. Available online: https://github.com/Markus-Go/bonesi (accessed on 2 December 2018).
31. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive dataset for network intrusion detection systems (UNSW-NB15 network

dataset). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; pp. 1–6. [CrossRef]

32. Moustafa, N.; Slay, J. The evaluation of Net-work Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 dataset
and the comparison with the KDD99 dataset. Inf. Secur. J. Glob. Perspect. 2016, 25, 18–31. [CrossRef]

33. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A. A Detailed Analysis of the KDD CUP 99 DataSet. In Proceedings of the 2009 IEEE
Symposium on Computational Intelligence for Security and Defense Applications (CISDA), Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6. [CrossRef]

34. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP),
Funchal, Portugal, 22–24 January 2018.

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
36. Tan, M.; Iacovazzi, A.; Cheung, N.M.; Elovici, Y. A Neural Attention Model for Real-Time Network Intrusion Detection.

In Proceedings of the 2019 IEEE 44th Conference on Local Computer Networks (LCN), Osnabrueck, Germany, 14–17 October 2019;
pp. 291–299. [CrossRef]

37. Liu, C.; Liu, Y.; Yan, Y.; Wang, J. An Intrusion Detection Model with Hierarchical Attention Mechanism. IEEE Access 2020, 8,
67542–67554. [CrossRef]

http://dx.doi.org/10.1007/s13369-016-2331-z
http://dx.doi.org/10.1109/INMIC.2013.6731321
http://dx.doi.org/10.1109/ICSGRC.2017.8070588
http://dx.doi.org/10.1109/ICICIS46948.2019.9014826
http://dx.doi.org/10.1109/CBD.2019.00041
http://dx.doi.org/10.1109/FMEC49853.2020.9144972
http://dx.doi.org/10.1109/ATNAC.2018.8615294
http://dx.doi.org/10.1109/ACCESS.2019.2922196
http://dx.doi.org/10.1016/j.comcom.2019.07.002
http://dx.doi.org/10.1109/ICICES.2014.7033828
http://dx.doi.org/10.1007/978-981-10-0129-1_16
https://www.openvswitch.org/
https://www.virtualbox.org/
http://dx.doi.org/10.1109/UCC.2011.17
https://github.com/Markus-Go/bonesi
http://dx.doi.org/10.1109/MilCIS.2015.7348942
http://dx.doi.org/10.1080/19393555.2015.1125974
http://dx.doi.org/10.1109/CISDA.2009.5356528
http://dx.doi.org/10.1109/LCN44214.2019.8990890
http://dx.doi.org/10.1109/ACCESS.2020.2983568

	Introduction
	Problems Statements
	Contribution

	Related Works
	Background Knowledge
	EDoS Attack on Network
	TCP SYN Flooding Attack
	UDP Flooding attack
	ICMP Flooding attack

	Attention Technique

	Proposed Scheme and Experiment
	Testbed Scheme for Network Communication
	EDoS Attack Performance
	Preprocessing and Model Work Flow
	Data Preparation
	Model Architecture


	Results and Evaluation
	Results
	Evaluation with Recurrent Models

	Conclusions and Future Works
	References

