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Abstract: Long Short Term Memory (LSTM)-based structures have demonstrated their efficiency
for daily living recognition activities in smart homes by capturing the order of sensor activations
and their temporal dependencies. Nevertheless, they still fail in dealing with the semantics and the
context of the sensors. More than isolated id and their ordered activation values, sensors also carry
meaning. Indeed, their nature and type of activation can translate various activities. Their logs are
correlated with each other, creating a global context. We propose to use and compare two Natural
Language Processing embedding methods to enhance LSTM-based structures in activity-sequences
classification tasks: Word2Vec, a static semantic embedding, and ELMo, a contextualized embedding.
Results, on real smart homes datasets, indicate that this approach provides useful information, such
as a sensor organization map, and makes less confusion between daily activity classes. It helps to
better perform on datasets with competing activities of other residents or pets. Our tests show also
that the embeddings can be pretrained on different datasets than the target one, enabling transfer
learning. We thus demonstrate that taking into account the context of the sensors and their semantics
increases the classification performances and enables transfer learning.

Keywords: sensors embedding; human activity recognition; deep learning; smart home; ambient
assisting living; language model; contextualized model; long short-term memory; LSTM; transfer
learning; ambient sensors; Word2Vec; ELMo; semantic model

1. Introduction

Recent advances in the Internet of Things (IoT) hardwares, particularly in terms
of energy consumption, cost or inter-operationality [1], have boosted the development
of smart environments, such as smart homes. With more and more new constructions
incorporating smart sensors and actuators, a new field of automated home assistance
services is opening up, focusing on improving the life quality, autonomy, health, and well-
being in smart homes for the elderly or disabled [2]. Moreover, smart homes can provide
many other useful services, such as energy management or security systems. However,
in order to offer both automated and customized services, a smart home must be able to
understand the daily activities of the residents.

1.1. Recognition of Daily Activities in Smart Homes

In general, Human Activity Recognition (HAR) in smart homes consists of classifying
streams of sensor traces into Activities of Daily Living (ADLs). These traces are captured
by a variety of sensors (motion, open/close door, temperature, etc.) integrated in the
environment or in objects of the house [3]. Through the sensor logs, algorithms identify
the activities of residents using appropriate HAR techniques. Nevertheless, recognizing
ADLs in a smart home is a challenging task. One has to take into account: (1) the structure
and the topology of the houses, that are generally different; (2) the diverging equipment
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and living habits of the residents; (3) the number of residents living at the same time (the
more residents there are, the more sensors activation are mixed into sensors’ activations
sequences); and (4) the dependence of ADLs on specific contexts related to the room where
the activity is performed, to the objects, to the devices of the house used, or even to the type
of interactions, during the activity. Moreover, sensors logging human activities in smart
homes are event-triggered. This last generates non-regularly sampled and sparse data,
comparatively to activity recognition using videos (see Reference [4] for a comparative
survey). Therefore, we have to continuously deal with challenges in terms of pattern
recognition and temporal sequence analyses [5]. Clearly, distinct recordings of the same
activity would show little similarity.

Another issue is related to the dataset itself; indeed, most of the sensor activation data
are not annotated. One of the reasons is that the dataset has been built with predefined set
of activities/classes to be labeled. Thus, the sensor activations, linked to other activities,
are annotated under the label “Other”. Event sequences in this by-default class are quite
different from each other and may be very similar to event sequences from regular classes.
Classification difficulty increases proportionally to this “Other” class growth. For instance,
this special class represents more than 50% of studied datasets, provided by the Center of
Advanced Studies In Adaptive System (CASAS) [6]. This induces class confusion.

Finally, each sensor activation gives little information about the current activity by
itself: for instance, the activation of the motion sensor in the kitchen could indicate activities,
such as “cooking”, “washing dishes”, or “housekeeping”. Thus, the information this sensor
offers us is exploitable only in conjunction with neighboring sensor activations. Thus, our
non-Markovian time series is sparse and irregular, and our dataset contains unbalanced
classes and highly variable data.

We propose two methods to automatically encode sensor activation which incor-
porates information addressing neighboring activations. We explored different types of
encoding that take advantage of the co-occurrence of sensor but also their sequential rela-
tionship. Using successful embeddings for Natural Language Processing (NLP), we tested
and reported results from an encoding based on static word embedding, Word2Vec [7],
and an encoding based on contextualized word embedding, Embeddings from Language
Model (ELMo) [8].

1.2. Smart Home Data Embedding

The data representation needs to find both the “meaning” of individual sensor activa-
tion and the “meaning” of the combination of sensors’ activations. Such a need splits up
into two embeddings: lexical and contextual.

1.2.1. Lexical Level Embedding

Instead of mapping sensor activities into arbitrary and uncorrelated vectors, shrewd
embeddings can improve the recognition performance [9–11]. Independently of the id
of the sensor and the value of its activation, each sensor type also carries a meaning.
The nature of the activated sensor or the type of interaction can, thus, translate different
activities. Clearly, a movement does not have the same meaning as the opening of a door.
The same applies for sensors located nearby or in the same room. Thus, the activations
of sensors of the same or nearby type should be correlated to produce an embedding
which takes into account the lexicon and semantics of the sensors types, localization, and
activation values.

1.2.2. Context Level Embedding

More than just isolated sensor’s activations, the sensors’ logs constitute a stream of
traces which are correlated with each other forming syntactical patterns. Indeed, a same
sensor activation or a same interaction may reflect different activities. For example, a
motion caught in the kitchen can be attached to the activity of “cooking” or “washing
dishes”, etc. If the motion sensor is activated, along with an oven switched on or with
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the tap turned on, the meaning is not the same. This illustrates that the meaning of a
particular sensor activation depends not only on the identity of the sensor and its value but
also on the activations of sensors that surround it at that moment. Beyond a single sensor
activity, the recognition of ADL algorithm needs to relate it to temporally close sensor
activities and incorporate information of the temporal context. This proximity has to be
understood in terms of timestep in the time series. A sensor activation can be linked to
another activation n timesteps before or after. Thus, the ADL recognition algorithm should
integrate contextual representations.

1.3. Contributions

This article aims to address the encoding of a sensor’s activation according to its
context, in order to improve the classification performance for sparse and unevenly spaced
time series. It is somehow close to activity recognition studies based on video, smartphone,
or wearable sensors. However, its particularity is that it uses data from home automation
sensors, under an NLP paradigm.

In this paper, we propose to examine how automatic embeddings of sensor activations
can incorporate their lexical and contextual semantics, and how they can improve the
performance of human activity recognition algorithms. In particular, we propose to apply
two methods coming, precisely, from the field of NLP: a method for static word embeddings,
Word2Vec, and a method for contextualized word embedding, ELMo. We combined
Word2Vec and ELMo embeddings with a state-of-the-art HAR algorithms using Long
Short Term Memory (LSTM). To our knowledge, it is the first time a semantic analysis is
incorporated for activity recognition in smart homes. We show that this combination leads
to better recognition performances by reporting the performance of four methods:

1. Simple LSTM or a bidirectional LSTM with a softmax layer.
2. One embedding layer, followed by a simple LSTM or a bidirectional LSTM with a

softmax layer (Liciotti et al. [12]).
3. Word2Vec embedding layer, followed by a simple LSTM or a bidirectional LSTM with

a softmax layer.
4. ELMo embedding layer, followed by a simple LSTM or a bidirectional LSTM with a

softmax layer.

We compare the embeddings obtained by Word2Vec and ELMo, and we show that
transfer learning is possible with this approach.

The goal of this study is to classify pre-segmented sequences of smart home sensor
data into activities of daily living. Our results show:

• the importance of contextualized semantic representations for activity recognition in
smart homes;

• that Word2Vec and ELMo have the ability to extract information and feature from real
smart home data, leading to better classification performance; and

• that contextualized embedding can bootstrap transfer learning across smart home
datasets and demonstrate robustness to noise in sequences.

To sum up: our contribution demonstrates that, by encoding a sensor activation de-
pending on its context, we can improve the classification performance for sparse unevenly
spaced time series.

Our code is open and available at https://github.com/dbouchabou/Using-Language-
Model-To-Bootstrap-Human-Activity-Recognition-In-Smart-Homes, accessed on 12 Au-
gust 2021.

2. Related Work

To find a suitable embedding for smart home data that can tackle the challenges
described above, we review the methods deployed in ADLs recognition based on pat-
tern recognition and spatio-temporal sequence analysis, as well as the methods used for
extracting semantic features coming from the NLP domain.

https://github.com/dbouchabou/Using-Language-Model-To-Bootstrap-Human-Activity-Recognition-In-Smart-Homes
https://github.com/dbouchabou/Using-Language-Model-To-Bootstrap-Human-Activity-Recognition-In-Smart-Homes
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2.1. Pattern Recognition Approaches

To recognize ADLs based on sensor traces, researchers used various machine learn-
ing algorithms, as reviewed in Reference [13]. These can be divided into two streams:
the algorithms exploiting a spatio-temporal representation, with Naive Bayes, Dynamic
Bayesian Networks, and Hidden Markov Models; and the algorithms based on features
classification, with Decision Tree, Support Vector Machines, or Conditional Random Fields.
These approaches are robust and easy to implement and require little computing power.
However, they commonly use handcrafted feature extraction methods. This does not
allow these methods to adapt when the topology becomes different or the residents’ habits
change. They are limited to working only in the environment for which they were designed
and do not scale up due to lack of generality.

Automatic feature extraction is one of the challenges addressed by Deep Learning (DL)
approaches. Recently, a variety of DL algorithms have been applied for HAR focusing on
pattern recognition used Convolutional Neural Networks (CNN). They have three advan-
tages for HAR: (1) they can capture local dependencies, i.e., the importance of neighboring
observations correlated with the current event; (2) they are scale invariant in terms of step
difference or event frequencies; and (3) they can learn a hierarchical representation of data.
Researchers used 2D [14,15] and 1D [16] CNN on HAR in smart homes.

The 2D CNN are used on sensors activity sequences transformed into images [14,15].
This approach obtained good classification results on pre-segmented activity sequences but is
not suitable for real-time recognition. Indeed, real-time activity recognition consist of associate
an activity label for a current time window. Additional work [17] has been conducted in this
direction to tackle this problem but is not robust enough to deal with unbalanced datasets
and unlabeled events.

The 1D CNN appears to be a competitive solution on spatio-temporal sequence
problems [16]. Most recent work [18] with a more complex 1D CNN structure, a Fully
Convolutional Network (FCN), achieved good results. Nevertheless, the activity sequences
are of variable length, and it is necessary to complete the sequences with a zero fill to train
the algorithms. However, this approach does not manage padding correctly in activity
sequences, which reduces classification performance.

CNN models have the advantage to be fast to train and achieve high accuracy, but
they cannot use long-term dependencies.

2.2. Time Series Approaches

Another stream of DL approaches focused more on the temporal aspect of the data
stream LSTM have also led to good performance in HAR in smart homes, as reported
in References [12,19].

The work of Singh et al. [19] compares a CNN and a LSTM approaches and demon-
strates that LSTM perform better on the classification task because it allows learning of
temporal information from the sensor data.

Liciotti et al. [12] compare different LSTM structures to different deep learning and
traditional machine learning models on pre-segmented activity sequences. They show that
LSTM-based approaches, and particularly bidirectional LSTM, obtain better results, owing
to their ability to exploit their internal memories to capture long-term dependencies in
variable-length input sequences.

LSTM-based approaches better model order and density of events; thus, they better
represent the macro structure of an activity. LSTM seem a viable solution to significantly
improve the HAR task in the smart home, despite a longer training time than CNN-based
approaches.

2.3. Semantic Approaches

The common point of both approaches using DL algorithms is that they extract
automatically features from raw data and capture long-term dependencies. However, they
ignore the semantics, the sensor type, and the context in which the sensor is activated.
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Semantic analysis and context modeling has been the focus of NLP research, where the last
breakthroughs proposed different unsupervised pre-training methods for an embedding
encapsulating some language model. Word embeddings and language models capture
information concerning the construction of words, sentences, and texts. They are able to
capture the context of a word in a document, semantic and syntactic similarities, relations
with other words, etc.

Several training structures and methods have enabled advances in NLP. They can
be classified into static word embedding approaches, such as Word2Vec [7], GloVe [20],
FastText [21], etc.; and contextualized word embedding approaches, such as ELMo [8],
BERT [22], GPT [23], etc. Among these methods, Word2Vec seems the most renowned
static word embedding technique. On the other hand, ELMo has made great progress with
the contextual representation of words it proposes. The unsupervised training methods
have been shown to be effective in translation, text generation, and classification tasks.

Many works have already investigated the use of word embedding for HAR. For
instance, Cao et al. [24] applied the Word2Vec model to cluster and create a semantic
relationship between population habits, whereas Matsuki et al. [25], Shimoda et al. [26]
used pretrained public word embeddings to associate a label with unknown activities
for wearable sensors. Abramova et al. [27] exploited a similar approach to annotate
unknown activities and studied the zero-shot learning in a smart home. Nevertheless, to
our knowledge, the training of unsupervised learning methods has not been exploited for
the problem of classifying ADL sequences in smart homes. Furthermore, capturing the
context and semantics of sensor activation is still not exploited today and could improve
the performance of ADLs classification algorithms, such as LSTM.

3. Background

We describe in the sequel the background that leads to ideas defended in this paper.
We detail, in particular, the two embeddings we adapted from the NLP domain: Word2Vec
and ELMo. Our work is built up on these proven methods. Our goal is to deviate their use
in order to extract contextual and semantic information from smart home sensors.

3.1. Word2Vec: Context-Free Embedding

Word2Vec is one of the most popular techniques to learn word embeddings using
shallow neural networks. It was developed by Mikolov et al. [7]. Word2Vec is an un-
supervised learning technique to learn continuous representations of words. In many
ways, Word2Vec builds on a bag of words, but, instead of assigning discrete tokens to
words, it learns continuous multi-dimensional vector representation for each word in the
training corpus. There exist two main methods for learning representations of words in
the Word2Vec algorithm (Figure 1): (1) the Continuous Bag Of Words (CBOW), trained
by learning to predict the center word based on the context words, as in Figure 1a; (2) the
Skip-Gram method, which is trained to predict, given a target word, the most probable
words in a fixed sized window around it, as in Figure 1b.
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word (t-2)

word (t-1)

word (t+1)

word (t+2)

word (t)

outputprojectioninput

(a) Continuous Bag Of Words

word (t-2)

word (t-1)

word (t+1)

word (t+2)

word (t)

outputprojectioninput

(b) Skip-Gram

Figure 1. Word2Vec methods.

By the way it is designed, Word2Vec captures the similarity of words in a corpus.
Moreover, thanks to the distance of a word from other words it calculates, Word2Vec also
captures some sense of the word.

Word2Vec is a powerful technique. Nevertheless, the main problem of this word
embedding is that it provides a single representation for each word regardless of the
context. Put differently, the word “orange” in syntagms, such as “the orange juice” or “the
orange car”, garners the same vector representation, although “orange” does not have the
same meaning in the two sequences of words. This lack of context understanding is an
important issue to capture the sentence’s meaning and introduce the well-known polysemy
problem.

3.2. ELMo: Contextualized Embedding

Generally, word embeddings, such as Word2Vec, fail to deal efficiently with lexical
polysemy. These word embeddings cannot take advantage of information of the context in
which the word was used. Instead of using a fixed embedding for each word, ELMo [8]
looks at the entire sentence before assigning each word in its embedding. The core idea
behind contextual word embeddings is to provide more than one representations for a
word, based on the context in which this word appears. ELMo uses a bidirectional LSTM
trained on a specific task to be able to create such embeddings. More exactly, it uses two
parallel stacked LSTM to capture information from past and future context to encode the
current token. In addition, a residual connection is created between the two staked LSTM.
ELMo acquires its understanding of language by being trained to: (1) predict the next word
in a sequence of words and (2) also predict the previous word. The former task is called
“language modeling”, and the latter “reverse language modeling”. This method of learning
is convenient because such a model can learn without the need for labels.

Usually, the ELMo representation is the weighted sum of the outputs of the different
layers of the model, where the weights are trained according to the final task (see Figure 2a).
However, we also evaluate three other output forms as depicted in Figure 2. First, we
use the simple sum of outputs (Figure 2b). Secondly, we evaluated with only the output
of the last layer of the model (Figure 2c). Finally, we have found in our experiments that
concatenating the output of the different layers of the model provides the best results
(Figure 2d). We selected the concatenation output to train the classifier. This output allows
the classifier to use different levels of representation of the sequence and select on its own
which information in each representation is important to accomplish the final task.
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Figure 2. ELMo outputs.

4. Proposed Approach
4.1. Key Ideas

Our approach tackles the contextual representation of each IoT activation by propos-
ing language models of lexical and contextual semantics able to encode the context of
sparse and unevenly spaced time series. We argue that HAR algorithms need to use models
that can extract and use semantic and contextual information. Indeed, the encoding of the
ith activation data should not depend only on its value and be expressed as a function
f (activationi). Instead, it should capture more information on sensor behavior, incorporat-
ing relevant neighboring activations while smoothing out variability and noise. In other
words, the sensor encoding at ith activation should also depend on the other activations
in the sequence, and be expressed as a function f (activationi, {activation1, activationi−1},
{activationi+1, activationn}), where n is the number of activations in the sequence.

Below, we describe the proposed system for human activity recognition in smart
homes, designed as a classifier of a semantic time series. It relies on a semantic embedding
and bi-directional LSTM as a time series classifier, combined as depicted in Figure 3. In
order to facilitate the understanding of our approach we will follow the step by step
workflow described in this figure.

4.2. Step 1 and Step 2: Sensors’ Stream Segmentation and Encoding

From the stream of activations recorded by the sensors, the Step 1 consists of seg-
menting the dataset into event sequences. Each sequence corresponds to an activity. This
segmentation is also called Explicit Window [5]. We keep the event timestamp order inside
the sequences.

These event sequences are then encoded in Step 2. The goal of the encoding is to obtain
words that can be used as inputs of the pretrained embeddings of Step 3. To be able to
represent all possible activations of the different sensors, we create a corpus of sensors’
activations and consider these activations as categorical values i.e. each sensor activation
is represented by one and only one value. By transforming the sensors’ activations into
categorical values we allow the model to learn the notion of frequency of occurrence of
an activation in a sequence. Moreover, the model, via this representation, can capture the
relation of an activation to another. All these categorical variables (“words”) define the
smart home vocabulary that describes activities.
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Figure 3. Proposed model architecture and global workflow.

More concretely, an event ei is composed of the sensor ID si, the value vi and the
timestamp ti. We concatenate the sensor ID si and its value vi and ignore the timestamp
ti to create the “word” associated to this event, e.g., si = M001 and the binary value
vi = ON becomes M001ON. For instance the sequence of event for the activity bed_to_toilet
in Figure 3 at Step 1 is turned into the sequence [M004ON M005OFF M007OFF M004OFF
M004ON M004OFF M007ON M004ON M007OFF M007ON M005ON M004OFF]. Sensors
with numerical values are represented in the same way, as a concatenation of the sensor
label and the measurement. For instance, if the activation of a sensor named T004 gives a
value of 24.5, the input to the system is T00424.5.

4.3. Step 3: Words to Indexes

As in NLP for words in sentences, each sensor activation in sequences is transformed
into an index to be used as the input to a neural network. The index starts at 1 while the 0
value is reserved for the sequence padding. As in NLP, indexes are assigned following the
“word” frequency (categorical value of the sensor activation frequency), e.g., if the “word”
M004ON has the highest occurrence in the dataset, the assigned index is the lowest one i.e.,
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1. This ordinal encoding encodes the frequency of a sensor activation. Thus, a sequence of
“words” such as [M005OFF M007OFF M004OFF M004ON M004OFF M007ON M004ON
M007OFF M007ON M005ON M004OFF] becomes the sequence of indexes [1 4 8 2 1 2 7 1 8
7 3 2], according to the sensor activation frequency, (Step 3).

4.4. Step 4: Pre-Trained Embeddings

For each pre-segmented activity, the sequence of sensor activations is transformed
into a sequence of indexes, the sequence is encoded by the pre-trained language model
embedding. The workflow in Figure 3 shows the Step 4 "Sequence encoding and content
representation" using the ELMo language model structure. Alternatively, for the Word2Vec
version, the Step 4 "Sequence encoding and content representation" module is replaced by the
Word2Vec embedding model.

The two embeddings were trained using methodologies presented in Section 3 where,
sentences or sequences of words, were replaced by sequences of sensors’ activations. By
analogy, we consider this events stream like a text that contains sentences (the activity
sequences), composed of words (the sensor activations). These embeddings were trained
without supervision on the whole dataset, for each studied dataset, in order to allow
models to extract features and a representation of sensor activations. ELMo predicts the
activation of the next and previous sensor in the sequence while Word2Vec uses the Skip-
Gram method to predict from the activation of one sensor the activations of neighboring
sensors. Training is stopped when, the validation perplexity loss [28] for ELMo and the
validation sparse categorical loss [29] for Word2Vec, stop decreasing. Once the embeddings
were trained, their weights are frozen and finally, their output representations are used as
inputs for the classifier.

4.5. Step 5: The ADLs Classifier

In the Step 5, the classifier receives as input the encoded representation of the embed-
ding. It can then select the features that will allow it to assign the right activity label. In
our approach, we have chosen to use a bidirectional LSTM followed by a Softmax layer
as classifier as proposed in [12]. Details on the parameters and how the training was
conducted are provided in the next section.

5. Experiment
5.1. Datasets

The experiment was conducted on three CASAS datasets [30]: Aruba, Milan, and
Cairo, as introduced by Washington State University. Data collected from daily activities
come from real apartments and houses with real inhabitants. All these living places are
equipped with temperature and binary sensors, such as motion or doors sensors.

The three selected datasets are different according to the structure of the house and
the number of inhabitants, see details in Table 1. Aruba is a dataset of a single person living
in a house. Milan contains daily activities of one person living with a pet, while Cairo is a
dataset of two persons living in the same place. They contain data of several months of
labeled activities and are unbalanced, i.e., some activities are less represented than others.

We have selected these three datasets to have simple examples of activities in the case
of: (1) only a single inhabitant as a baseline (Aruba), (2) a more complex dataset, when a
pet can introduce more noise (Milan), and (3) a complex situation with two inhabitants
(Cairo). Indeed, during the activity of one resident, a pet (in the case of Milan), or another
resident (in the case of Cairo), may activate sensors that are not necessarily related to the
current activity of the targeted person. These sensors activations can be considered as
perturbations or noise. The algorithms must be resilient to these perturbations, in order
to avoid miss-classifications. Notice that sensor activations triggered by pets are more
marginal and produce less disturbances than those triggered by the other human resident.
The reason is that sensors are designed to detect human activities, while pets can be out
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of the field of view of the sensor or their activity can below the activation threshold of
the sensors.

Table 1. Datasets details.

Aruba Milan Cairo

Residents 1 1 + pet 2 + pet
Number of sensors 39 33 27

Number of activities 12 16 13
Number of days 219 82 56

5.2. Datasets Pre-Processing

Liciotti et al. [12] also uses the Milan and Cairo datasets; they have groups activities
under new generic labels, and more details are in Table 2. To compare our method to their
work, we performed the same relabeling. The objective of this relabeling, according to the
authors, is to allow a fairer comparison between the datasets in cases where same activities
are labeled differently or the converse.

Table 2. New activity groups.

Milan Cairo

Bathing Master Bathroom
Guest Bathroom

Bed to toilet Bed to toilet Bed to toilet

Cook Kitchen Activity
Lunch
Dinner

Breakfast

Eat Dining Room Activity

Enter home

Leave home Leave home Leave Home

Personal hygiene

Relax Read
Watch Tv

Sleep Sleep R1 sleep
R2 sleep

Take medicine Eve Meds
Morning Meds

R2 take medecine

Work Desk Activity
Chores

Laundry
R1 work in office

Other
Meditate

Master Bedroom Activity
Other

Night wandering
R2 wake
R1 wake

Other

This relabeling uses has the effect to re-balance almost the datasets, but it also, para-
doxically, increases the number of examples of the “Other” class. This class corresponds to
unidentified sensors activation or unidentified activation sequences. Since this class repre-
sents more than 50% of the dataset, a bias can be underlined. Indeed, if the classification
algorithm is able to find all the elements of this "Other" class, then the accuracy will be at
least 50%. This last aspect should be kept in mind when results are analyzed.

Contrary to Liciotti et al. [12]’s original work, we have first cleaned the datasets.
Indeed, after a detailed analysis of the datasets, we noticed, especially on the Milan
dataset, that the datasets contained anomalies: (1) the datasets may contain duplicate
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data; (2) complete or part of days can be duplicated, e.g., in the Milan dataset; and (3) the
sensors’ activations may not correctly ordered temporarily, i.e., in the chronological order
of timestamps.

It is also necessary to annotate each event with an activity label, paying attention to
the beginning and end of the activities. Activities in the datasets are tagged with a keyword
“begin” or “end” to determine when an activity starts and when it ends. However, activities
can be encapsulated in other, i.e., an activity starts with the keyword “begin”; then, a few
events later, a new activity starts without the previous activity being terminated by the
keyword “end”. Therefore, it is important to pay attention to these particular cases when
pre-segmenting the dataset into activity sequences.

We observed by reproducing the work of Liciotti et al. [12] that this cleaning and
annotation had an impact on the final results. We observed a loss of 5 points of accuracy
on the Milan dataset using the bidirectional LSTM model of Liciotti et al. [12]. This loss is
explained by a decrease in the number of occurrences of the “Other” class.

5.3. Training and Evaluation

In this experiment, the standard stratified K-fold cross validation method [31] was
chosen. This choice is motivated by our intention to compare our results to other research
studies addressing this problem (Liciotti et al. [12]). This method consists, after having
segmented the dataset into sequences of activities, of distributing the sequences of activities
by stratified sampling in K-folds; here, it is 3, as in Figure 4. Each fold contains 33% of
the dataset. The stratified folds are obtained by preserving the percentage of samples for
each class, i.e., each class of activity is present in each fold. From these K-folds, K runs are
made. Each run uses K-1 folds as the training set and the last fold as the test set. During
the training phase, 20% of the training set is used for the validation in order to follow and
stop the training of the models before overfitting. Results, reported in our study, show the
average of scores obtained on test sets.

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3 Test data

Train data

All data

Figure 4. K-fold cross validation principle.

In order to speed up the training time, we have defined a maximum number of
possible training epochs; in our case, 400 seem quite sufficient. In addition, the training can
be stopped automatically by the system if the validation loss is not decreasing anymore; we
defined 20 patience epochs. It is the well-known “early stop” method [32]. The validation
loss is the metric tracked for classifiers to interrupt the training, while, for the ELMo
embedding training, the metric tracked is perplexity [28]. Perplexity is used to evaluate
language models in NLP. It indicates the variability of a prediction model. Lower perplexity
corresponds to lower entropy and, thus, better performance. The experiment’s parameters
are detailed in Tables 3–5.
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Table 3. General hyperparameters.

K-fold cross validation 3
Max sequence length 2000
Max epochs number 400

Batch size 64
Patience 20

Table 4. Embeddings’ hyperparameters.

Embedding Word2Vec ELMo

Embedding size 64 64 64
Context windows size None 20 60
Max epochs number 400 100 400
Batch size None None 512

Table 5. Classifiers’ hyperparameters.

LSTM Bi-LSTM

Nb Units 64 64
NB layers 1 1

We recall that the used datasets are unbalanced. Therefore, it is important to observe
not only the accuracy metric and the usual F1-score but also other weighted metrics [5].
This is why we introduce the use of metrics weighted by the class support, such as the
balance accuracy, the weighted precision, the weighted recall, and the weighted F1-score.

5.4. Hardware and Software Setup

Experiments were conducted on a server, with an Intel(R) Xeon(R) CPU E5-2640 v3
2.60 GHz, with 32 CPUs, 128 Go of RAM and a NVIDIA Tesla K80 graphic card. We did
not carry out precise measurements because this is not the objective of our study. However,
we have observed that the training of the algorithms on this platform takes only a few
minutes: 1–2 min for the classifiers and between 10 and 40 min for the embeddings.

Keras and Tensorflow frameworks were used for the implementation of the algorithm.
The Word2Vec algorithm was trained thanks to the Gensim library [33]. We used the “early
stop” method provided by the Tensorflow framework. The Word2Vec training was stoped
after a maximum number of epochs, see Table 4, as far as the Gensim library does not
provide this method.

6. Results and Discussion

In this section, we will firstly try to observe what the Word2Vec and ELMo embeddings
learned in an unsupervised way. Secondly, we will compare our Word2Vec and ELMo
approach with the previous work done by Liciotti et al. [12], thanks to the scores obtained
and the confusion matrices. Then, we will compare the ELMo approach to an extension
of Liciotti et al. [12]’s model by adding an additional layer of bidirectional LSTM. Indeed,
the ELMo model can be approximated by an embedding layer, followed by two tacked
bidirectional LSTM layers. Finally, we will evaluate the transfer learning capability of a
pretrained ELMo embedding. We used one of the three pretrained ELMo embeddings,
here, Aruba, and trained a bidirectional LSTM classifier to perform the classification on the
Cairo dataset.

6.1. Word2Vec Embedding Features

In order to visualize the embedding of the Word2Vec model, we use the UMAP
algorithm [34] to reduce the dimension of the embedding vectors from dimension 64 to
two dimensions. The visualization of these 2D vectors that represent each sensor activation
reveals different clusters (see Figure 5a).
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We have associated to each point a color representing the room where the sensor is
located (Figure 5b). By observing the color taken by the clusters, it appears that, in general,
each cluster corresponds to a room of the house. A zoom on the violet cluster, “kitchen”, is
provided in Figure 6a and can be compared to the floor map of the house in Figure 6b. All
sensors on the floor map can be seen in the cluster. The two clusters located in the middle
of Figure 5b are the exceptions. The two multi-color clusters are actually composed only by
temperature sensors activations. The binary sensors, such as the motion or door opening
sensors, belong to clusters corresponding to the house’s rooms. This grouping into rooms
is quite coherent because the ADLs are generally located in a sole room of the house. For
instance, the activity of cooking is carried out in the kitchen, so it is normal that only sensors
belonging to the kitchen are activated during this activity. It is important to note that, in an
unsupervised way, the Word2Vec method has captured the notion of sensor localization by
grouping the sensors belonging to the same room. This sensor localization clustering was
also observed by Singla and Bose [35] in their work on IoT devices identification.

Moreover, the nature of the sensors is captured, since sensors of the same nature, such
as temperature sensors, are also grouped together.

Here, we illustrate only the case of the Aruba dataset. However, generally, we have
very similar results on all evaluated datasets in this experiment.

(a) Aruba: word embedding visualization (b) Aruba: room color clusters
Figure 5. Aruba: Word2Vec embedding.

(a) Word2Vec zoom on violet “Kitchen” cluster

(b) Kitchen sensors on Aruba house map

Figure 6. Cluster meaning.

Aiming at visualizing the embedding of the activation sequences, we add on top of
the Word2Vec model a Global Average Pooling layer [36] in order to transform our word
vector sequence into a single vector. Once the set of activation sequences is transformed
into a vector, we use UMAP to reduce each of the activity vectors to two dimensions. Each
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activity vector is then displayed and tagged with a color corresponding to the activity label
(see Figure 7).

We can observe that activities with the same label are grouped together. The activities
corresponding to the “Other” class are mainly concentrated in the center of the repre-
sentation, while the other activity classes are found at the periphery. Very few distinct
clusters appear. All the clusters are connected by the points corresponding to the activation
sequence labeled “Other”.

This representation allows us to assert that Word2Vec is able to extract features able to
classify the activation sequences. However, the Word2Vec embedding method does not
seem to be efficient enough to isolate in individual clusters all the activity classes.

(a) Activity sequences of Aruba embedded by Word2Vec (b) Activity sequences of Milan embedded by Word2Vec

(c) Activity sequences of Cairo embedded by Word2Vec

Figure 7. Word2Vec activity sequences embedding.
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6.2. ELMo Embedding Features

The main advantage of ELMo is to provide more than one representation for each word
based on the context in which it appears. Therefore, it is a non-sense to visualize ELMo
embedding of isolated words, insofar as the word vector provided by this embedding
depends on surrounding words. However, the visualization of the sentence embedding
garners the appearance of some interesting cues. In order to visualize the embedding of
the activation sequences, we proceeded in the same way as for the Word2Vec method (see
Figure 8).

(a) Activity sequences of Aruba embedded by ELMo (b) Activity sequences of Milan embedded by ELMo

(c) Activity sequences of Cairo embedded by ELMo

Figure 8. ELMo activity sequences embedding.

Compared to the Word2Vec method, the clusters proposed by the association of ELMo
and UMAP are more isolated from each other. This means that ELMo is able to extract more
revealing features than Word2Vec. Moreover, within the activity class “Other”, clusters
appear. We assume that these clusters of activation sequences, labeled “Other”, are in fact
potential new activity classes. ELMo mixed with UMAP is a possible way to discover new
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activities. This visualization demonstrates the strong ability of the ELMo embedding to
capture relevant features from raw sensors activations.

The combination of the ELMo pretrained embedding and a dimension reduction
algorithm, such as UMAP, seems able to make unsupervised clustering of similar activity
sequences. Indeed, the training of the ELMo embedding and UMAP are done in an
unsupervised way, i.e., by using no labels. Therefore, it seems possible to group pre-
segmented activity sequences completely unsupervised. In other words, if it is possible to
split a dataset into unlabeled activity sequences and, by using ELMo and UMAP, seems
able to group sequences belonging to the same class.

However, this clustering is not perfect, when looking closely at the clusters. Some
points of a different color than the cluster majority color can appear. This confusion can be
explained in two ways. First, some sequences belonging to two different classes may be
very similar in terms of sensor activation because there is not enough sensor to distinguish
them. Second, it is potentially a labeling error in the dataset. Indeed, it is difficult to create
and label datasets about human activities in houses [5].

6.3. Comparison with Context-Free Embeddings

To evaluate our proposed method, we compare our results to the work of Liciotti et al. [12].
Their works have showed that LSTM and bidirectional LSTM with an embedding layer
performs well on the classification problem of sequences of sensors’ activations. We also
add two models for comparison, a LSTM and a bidirectional LSTM without embedding
layer, to evaluate the improvement of this layer.

The experiment results in Tables 6 and 7 show that the bidirectional LSTM obtained
better results, as shown in Reference [12]. In addition, using an embedding layer improved
the global classification performance, thanks to the ability of this layer to capture similarity
features between sensors’ activations.

Against all odds, we notice that the Word2Vec embedding did not improve the classi-
fication performance compared to standard embeddings. On the contrary, using Word2Vec
decreases the performance, except on the dataset Aruba, where it performs better for
balance accuracy score and the weighted recall score. This means that the Word2Vec em-
bedding did not accurately capture some important features by itself but allows a very
small gain in different classes retrieval.

The ELMo embedding performs better than all other methods on every dataset,
especially on the multi-user dataset Cairo. It increases the F1-score by 5 points and
the weighted F1-score by 10 points. We suppose that a multi-user dataset requires the
understanding of the context in order to differentiate users’ activities. Moreover, as it is
possible to see on the confusion matrix in Figures A1–A3, ELMo allows for finding a larger
number of classes.

Concerning the training time, we noted a negligible gain of about 30 s to 2 min,
depending on the dataset, by using a pretrained embedding.

Table 6. Without and with embedding coupled with a LSTM Classifier.

Aruba Milan Cairo

No Embedding Liciotti W2V ELMo No Embedding Liciotti W2V ELMo No Embedding Liciotti W2V ELMo

Accuracy 94.63 96.50 96.6 96.61 79.18 89.88 86.31 87.29 74.82 81.44 79.31 82.62
Precision 93.56 96.11 96.21 96.41 78.84 88.51 86.08 87.26 72.08 79.64 73.6 82.77

Recall 94.06 95.5 96.6 96.61 79.18 88.99 86.31 87.29 74.82 81.44 79.31 82.62
F1-score 93.77 96.88 96.32 96.43 78.42 88.63 85.79 87.07 72.73 80.09 75.79 82.05

Balance Accuracy 70.00 79.52 80.11 79.39 61.88 74.26 69.33 75.35 60.46 69.98 62.91 72.58
Weighted Precision 71.84 80.50 79.39 86.24 76.22 79.17 81.75 86.16 60.73 68.88 55.31 78.10

Weighted Recall 70.00 79.52 80.07 79.39 61.89 74.26 69.33 75.35 60.46 69.98 62.90 72.358
Weighted F1 score 70.55 79.49 79.34 80.73 65.94 76.28 72.07 78.90 59.11 68.80 58.92 73.78
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Table 7. Without and with embedding coupled with a Bi-LSTM Classifier.

Aruba Milan Cairo

No Embedding Liciotti W2V ELMo No Embedding Liciotti W2V ELMo No Embedding Liciotti W2V ELMo

Accuracy 95.01 96.52 96.59 96.76 82.24 90.54 88.33 90.14 81.68 84.99 82.27 89.12
Precision 94.69 96.11 96.23 96.43 82.28 90.08 88.28 90.2 80.22 83.17 82.04 88.41

Recall 95.01 96.50 96.59 96.69 82.24 90.45 88.33 90.31 81.68 82.98 82.27 87.59
F1-score 94.74 96.22 96.32 96.42 81.97 90.02 87.98 90.1 80.49 82.18 81.14 87.48

Balance Accuracy 77.73 79.96 81.06 79.98 67.77 74.31 73.61 78.25 70.09 77.52 69.38 87.00
Weighted Precision 79.75 82.30 82.97 88.64 79.6 82.03 84.42 87.56 68.45 80.03 77.56 86.83

Weighted Recall 77.73 80.71 81.06 79.17 67.77 75.51 73.62 78.75 70.09 73.82 69.38 84.78
Weighted F1 score 77.92 81.21 81.43 81.93 71.81 77.74 76.59 82.26 68.47 74.84 70.95 84.71

6.4. Confusion Matrices Analysis

The confusion matrices in Appendix A allow us to visualize the classification rate
for each class of the embedding + bidirectional LSTM and ELMo + bidirectional LSTM
approaches. We observe that the misclassification rate is lower with ELMo method. This
rate is almost two times smaller on the Cairo dataset, a multi-user dataset.

However, for the Aruba dataset, we observe that the activity “Respirate” is not
correctly recognized for the both methods. This activity has very few examples (5 examples)
and, therefore, is difficult to recognize. The activity “Wash Dishes” is poorly recognized
and is very confused with the activity “Meal Preparation”. This confusion is explained by
the fact that these two activities activate the same sensors. In order to solve this problem,
the algorithms should be able to take into account the time of day, or the activity preceding
the current activity.

In the case of the Milan dataset, the activity “Eat” is also poorly recognized because it
mainly activates only the motion sensor located in the dining room. However, our method
using the ELMo embedding is able to find a part of the occurrences of this activity. This
performance is explained by the fact that ELMo captures in which context the motion
sensor in the dining room is activated. In other words, it is able to differentiate between
the resident’s passage in the dining room to join the kitchen or the living room, from a real
activation of the sensor for the “Eat” activity.

6.5. Comparison Against Staked Bidirectional LSTM

The ELMo model can be approximated by a bidirectional LSTM layer with an em-
bedding layer. In this experiment, we compare the ELMo method to two stacked layers of
bidirectional LSTM with an embedding layer. Table 8 shows the results of this comparison.

The results demonstrate that the ELMo structure obtains a non-negligible gain on the
three datasets, except on the Milan dataset. On this one, gains are less, but not negligible,
on the weighted scores. ELMo still allows recognizing more classes and is more precise
than the other structures. The stacking of bidirectional LSTM does not allow obtaining
better performance. This type of structure can even degrade the performance in some cases,
as on the Cairo dataset, or Aruba. It seems that the method to train ELMo helps to capture
more useful features.

Table 8. Comparison with two layers of Bi-LSTM.

Aruba Milan Cairo

1 L 2 L ELMo 1 L 2 L ELMo 1 L 2 L ELMo

Accuracy 96.52 96.46 96.76 90.54 90.03 90.14 84.99 84.99 89.12
Precision 96.11 96.04 96.43 90.08 90.22 90.20 83.17 85.04 88.41
Recall 96.50 96.41 96.69 90.45 90.28 90.31 82.98 84.4 87.59
F1-score 96.22 96.13 96.42 90.02 90.07 90.10 82.18 84.08 87.48
Balance Accuracy 79.96 78.74 79.98 74.31 75.51 78.25 77.52 76.52 87.00
Weighted Precision 82.30 82.01 88.64 82.03 84.29 87.56 80.03 80.87 86.83
Weighted Recall 80.71 79.05 79.17 75.51 77.31 78.75 73.82 76.6 84.78
Weight F1-score 81.21 79.97 81.93 77.74 79.29 82.26 74.84 77.44 84.71
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6.6. Transfer Learning

In the field of NLP, embeddings are pretrained on large corpora and then used on
a more specific corpus to perform particular tasks, such as text classification. This is the
principle of transfer learning. The objective is to use the very generic features of the large
corpus on a smaller and specific corpus to gain in learning time but also in genericity.

In the case of ADLs recognition, this practice would allow for transfer of the knowledge
from a smart house to another one so that the latter can recognize ADLs without further
training. This transferred model could then be refined for the context of this new house. We
experimented with this practice using Aruba’s ELMo embedding on a the Cairo dataset.

To do this, we trained the ELMo model on the dataset Aruba. Then, we used this
trained model to extract and encode the activity sequence frames of the Cairo dataset.
These features are then given as input to a classifier. The classifier is a neural network
composed of a bidirectional LSTM, followed by a softmax layer. The weights of the ELMo
embedding were frozen, and only the bidirectional LSTM and the softmax were trained to
classify the activities of the second dataset. The results of the experimentation can be seen
in Table 9.

These results show that the generic features learned on the Aruba dataset allowed
the classification of activities in the Cairo dataset with scores equivalent to the ELMo
embedding trained on Cairo. We assume that the Aruba ELMo embedding was able to
capture enough features about the “syntax” and the order of activation of the sensors, as
well as the nature of the activated sensor, to encode the activation sequences efficiently,
despite a different vocabulary.

Indeed, the two datasets do not have the same number of sensors. The name of the
sensors is also different in some cases. The set of word is different from one house to
another, but, in our case, both Aruba and Cairo datasets belong to the CASAS datasets,
which use the same sensor type and the same denomination structure. The sensors follow
the structure: “sensor type” + index. However, this experiment could not have worked
fully if the vocabulary was too different because of out of vocabulary cases. We observe that,
even if a word does not have the same "meaning" from one dataset to another (for example,
“M001ON” corresponds to the motion sensor in the kitchen in dataset “A” and to the motion
sensor in the bathroom in dataset “B”), the encoding provided by the ELMo embedding
generate patterns still allows the classifier to reach performance rates equivalent to a model
fully trained on the destination dataset. We conjecture this good performance comes from
the fact that ELMo takes into account the word order. Thus, even if the input words have
changed, the syntax is captured by the classifier, i.e., the order of each word, as well as
the patterns of their recurrence in the sequence. These results indicate the importance of
contextualized embeddings.

Table 9. Comparison between ELMo trained on the Cairo dataset and ELMo trained on the Aruba
dataset, applied on the Cairo dataset (Bidirectional LSTM classifier).

Cairo

ELMo from Cairo ELMo from Aruba

Accuracy 89.12 89.24
Precision 88.41 87.77

Recall 87.59 86.35
F1-score 87.48 85.88

Balance Accuracy 87.00 84.02
Weighted Precision 86.83 87.55

Weighted Recall 84.78 79.56
Weighted F1-score 84.71 80.80

7. Conclusions and Discussion

Human activity recognition is a very dynamic and challenging research area that plays
a crucial role in various applications, especially for smart homes. Such IoT environments
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require robust activity learning technology to provide adequate services to the residents.
The topology of homes, their different sensor and actuator installations, and the different
lifestyle habits of residents add variability of the sensors’ data, while IoT data are sparse.
Thus, the activity modeling is challenging. It is not only a problem of pattern recognition
but also a spatio-temporal sequence analysis problem, where the semantics and context of
each sensor trigger can change the meaning of a sensor activation. Moreover, the nature of
the activated sensor can give a certain amount of information about the current activity.

In this study, we proposed a new approach, applied for the first time to the field
of recognition of activities of daily living in smart homes. We used techniques from
the domain of NLP to capture the context and the semantics of sensor activations in an
embedding. This approach allows recognition of a larger number of activity classes, despite
the fact that datasets remain unbalanced. Indeed, fewer activation sequences are confused
with the “Other” class, which, nevertheless, represents more than 50% of the datasets.

The visualization of the Word2Vec embedding allowed us to realize that this method
has captured some relations between the activations of sensors. It appears that sensors of
the same nature have a close distance in this embedding space. Moreover, the clusters that
appear in the space represent different rooms in the house.

Our experimentation shows that capturing the context of a sensor activation allows for
improvement of the classification of activity sequences, particularly on datasets containing
activities performed by several residents or that became noisy by pets.

Finally, we were able to evaluate that an embedding trained in a house could be reused
in a new environment containing another denomination of sensors and allow a high rate
of classification of activities. It should be noted that these methods are capable to extract
generic information, transferable to other datasets. This last observation suggests that
transfer learning between environments is possible through these methods, as it is possible
today in the NLP domain.

Through our proposition, that combines a language model embedding the semantics
of sensor activations and a time-series classification algorithm, our experimental results
on real smart home data highlight the importance of a dynamic contextualized semantic
representation in ADL recognition. Moreover, our results show that such a representation
can be shared across datasets to allow transfer learning. These findings could be the key to
solve the main problems of smart home data: the scarcity and the variability that hinder
any possible generalization of ADL recognition models.

In a future work, we plan to apply unsupervised learning methods based on trans-
formers, such as BERT [22] or GPT [23]. Indeed, transformers have become state-of-the-art
in the NLP domain, thanks to their ability to capture distant dependencies and to focus
attention on important elements in sequences. Our goal, even via these transformer-based
structures, remains the same: to capture a broader context but also to use more advanced
tokenization methods to take into account the activation of unknown sensors. It should
be noted that the method proposed here is limited by a certain size of vocabulary or
possible sensor activation. It is currently impossible to obtain a representation of sensor
values that have never been observed. Methods, such as byte pair encoding (BPE) [37]
or WordPiece [38], could be considered splitting words or tokens, representing a sensor
activation, into subwords or word compositions. This should capture more semantics
addressing the construction of these words, thus taking into account new activation values.
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Appendix A. Confusion Matrices

(a) Aruba Liciotti (Embedding + Bi-LSTM) K = 1 (b) Aruba ELMo + Bi-LSTM K = 1

(c) Aruba Liciotti (Embedding + Bi-LSTM) K = 2 (d) Aruba ELMo + Bi-LSTM K = 2

(e) Aruba Liciotti (Embedding + Bi-LSTM) K = 3 (f) Aruba ELMo + Bi-LSTM K = 3

Figure A1. Aruba confusion matrices.
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(a) Milan Liciotti (Embedding + Bi-LSTM) K = 1 (b) Milan ELMo + Bi-LSTM K = 1

(c) Milan Liciotti (Embedding + Bi-LSTM) K = 2 (d) Milan ELMo + Bi-LSTM K = 2

(e) Milan Liciotti (Embedding + Bi-LSTM) K = 3 (f) Milan ELMo + Bi-LSTM K = 3

Figure A2. Milan confusion matrices.
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(a) Cairo Liciotti (Embedding + Bi-LSTM) K = 1 (b) Cairo ELMo + Bi-LSTM K = 1

(c) Cairo Liciotti (Embedding + Bi-LSTM) K = 2 (d) Cairo ELMo + Bi-LSTM K = 2

(e) Cairo Liciotti (Embedding + Bi-LSTM) K = 3 (f) Cairo ELMo + Bi-LSTM K = 3

Figure A3. Cairo confusion matrices.
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